mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
440e5d805f
Reviewed-by: Richard Levitte <levitte@openssl.org>
752 lines
23 KiB
C
752 lines
23 KiB
C
/*
|
|
* Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/opensslconf.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/aes.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/modes.h>
|
|
|
|
#ifndef OPENSSL_NO_HW
|
|
# ifndef OPENSSL_NO_HW_PADLOCK
|
|
|
|
/* Attempt to have a single source for both 0.9.7 and 0.9.8 :-) */
|
|
# if (OPENSSL_VERSION_NUMBER >= 0x00908000L)
|
|
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
|
|
# define DYNAMIC_ENGINE
|
|
# endif
|
|
# elif (OPENSSL_VERSION_NUMBER >= 0x00907000L)
|
|
# ifdef ENGINE_DYNAMIC_SUPPORT
|
|
# define DYNAMIC_ENGINE
|
|
# endif
|
|
# else
|
|
# error "Only OpenSSL >= 0.9.7 is supported"
|
|
# endif
|
|
|
|
/*
|
|
* VIA PadLock AES is available *ONLY* on some x86 CPUs. Not only that it
|
|
* doesn't exist elsewhere, but it even can't be compiled on other platforms!
|
|
*/
|
|
|
|
# undef COMPILE_HW_PADLOCK
|
|
# if !defined(I386_ONLY) && !defined(OPENSSL_NO_ASM)
|
|
# if defined(__i386__) || defined(__i386) || \
|
|
defined(__x86_64__) || defined(__x86_64) || \
|
|
defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)
|
|
# define COMPILE_HW_PADLOCK
|
|
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
|
|
static ENGINE *ENGINE_padlock(void);
|
|
# endif
|
|
# endif
|
|
# endif
|
|
|
|
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
|
|
void engine_load_padlock_int(void);
|
|
void engine_load_padlock_int(void)
|
|
{
|
|
/* On non-x86 CPUs it just returns. */
|
|
# ifdef COMPILE_HW_PADLOCK
|
|
ENGINE *toadd = ENGINE_padlock();
|
|
if (!toadd)
|
|
return;
|
|
ENGINE_add(toadd);
|
|
ENGINE_free(toadd);
|
|
ERR_clear_error();
|
|
# endif
|
|
}
|
|
|
|
# endif
|
|
|
|
# ifdef COMPILE_HW_PADLOCK
|
|
|
|
/* Function for ENGINE detection and control */
|
|
static int padlock_available(void);
|
|
static int padlock_init(ENGINE *e);
|
|
|
|
/* RNG Stuff */
|
|
static RAND_METHOD padlock_rand;
|
|
|
|
/* Cipher Stuff */
|
|
static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
|
|
const int **nids, int nid);
|
|
|
|
/* Engine names */
|
|
static const char *padlock_id = "padlock";
|
|
static char padlock_name[100];
|
|
|
|
/* Available features */
|
|
static int padlock_use_ace = 0; /* Advanced Cryptography Engine */
|
|
static int padlock_use_rng = 0; /* Random Number Generator */
|
|
|
|
/* ===== Engine "management" functions ===== */
|
|
|
|
/* Prepare the ENGINE structure for registration */
|
|
static int padlock_bind_helper(ENGINE *e)
|
|
{
|
|
/* Check available features */
|
|
padlock_available();
|
|
|
|
/*
|
|
* RNG is currently disabled for reasons discussed in commentary just
|
|
* before padlock_rand_bytes function.
|
|
*/
|
|
padlock_use_rng = 0;
|
|
|
|
/* Generate a nice engine name with available features */
|
|
BIO_snprintf(padlock_name, sizeof(padlock_name),
|
|
"VIA PadLock (%s, %s)",
|
|
padlock_use_rng ? "RNG" : "no-RNG",
|
|
padlock_use_ace ? "ACE" : "no-ACE");
|
|
|
|
/* Register everything or return with an error */
|
|
if (!ENGINE_set_id(e, padlock_id) ||
|
|
!ENGINE_set_name(e, padlock_name) ||
|
|
!ENGINE_set_init_function(e, padlock_init) ||
|
|
(padlock_use_ace && !ENGINE_set_ciphers(e, padlock_ciphers)) ||
|
|
(padlock_use_rng && !ENGINE_set_RAND(e, &padlock_rand))) {
|
|
return 0;
|
|
}
|
|
|
|
/* Everything looks good */
|
|
return 1;
|
|
}
|
|
|
|
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
|
|
/* Constructor */
|
|
static ENGINE *ENGINE_padlock(void)
|
|
{
|
|
ENGINE *eng = ENGINE_new();
|
|
|
|
if (eng == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!padlock_bind_helper(eng)) {
|
|
ENGINE_free(eng);
|
|
return NULL;
|
|
}
|
|
|
|
return eng;
|
|
}
|
|
# endif
|
|
|
|
/* Check availability of the engine */
|
|
static int padlock_init(ENGINE *e)
|
|
{
|
|
return (padlock_use_rng || padlock_use_ace);
|
|
}
|
|
|
|
/*
|
|
* This stuff is needed if this ENGINE is being compiled into a
|
|
* self-contained shared-library.
|
|
*/
|
|
# ifdef DYNAMIC_ENGINE
|
|
static int padlock_bind_fn(ENGINE *e, const char *id)
|
|
{
|
|
if (id && (strcmp(id, padlock_id) != 0)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!padlock_bind_helper(e)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
IMPLEMENT_DYNAMIC_CHECK_FN()
|
|
IMPLEMENT_DYNAMIC_BIND_FN(padlock_bind_fn)
|
|
# endif /* DYNAMIC_ENGINE */
|
|
/* ===== Here comes the "real" engine ===== */
|
|
|
|
/* Some AES-related constants */
|
|
# define AES_BLOCK_SIZE 16
|
|
# define AES_KEY_SIZE_128 16
|
|
# define AES_KEY_SIZE_192 24
|
|
# define AES_KEY_SIZE_256 32
|
|
/*
|
|
* Here we store the status information relevant to the current context.
|
|
*/
|
|
/*
|
|
* BIG FAT WARNING: Inline assembler in PADLOCK_XCRYPT_ASM() depends on
|
|
* the order of items in this structure. Don't blindly modify, reorder,
|
|
* etc!
|
|
*/
|
|
struct padlock_cipher_data {
|
|
unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */
|
|
union {
|
|
unsigned int pad[4];
|
|
struct {
|
|
int rounds:4;
|
|
int dgst:1; /* n/a in C3 */
|
|
int align:1; /* n/a in C3 */
|
|
int ciphr:1; /* n/a in C3 */
|
|
unsigned int keygen:1;
|
|
int interm:1;
|
|
unsigned int encdec:1;
|
|
int ksize:2;
|
|
} b;
|
|
} cword; /* Control word */
|
|
AES_KEY ks; /* Encryption key */
|
|
};
|
|
|
|
/* Interface to assembler module */
|
|
unsigned int padlock_capability();
|
|
void padlock_key_bswap(AES_KEY *key);
|
|
void padlock_verify_context(struct padlock_cipher_data *ctx);
|
|
void padlock_reload_key();
|
|
void padlock_aes_block(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx);
|
|
int padlock_ecb_encrypt(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx, size_t len);
|
|
int padlock_cbc_encrypt(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx, size_t len);
|
|
int padlock_cfb_encrypt(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx, size_t len);
|
|
int padlock_ofb_encrypt(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx, size_t len);
|
|
int padlock_ctr32_encrypt(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx, size_t len);
|
|
int padlock_xstore(void *out, int edx);
|
|
void padlock_sha1_oneshot(void *ctx, const void *inp, size_t len);
|
|
void padlock_sha1(void *ctx, const void *inp, size_t len);
|
|
void padlock_sha256_oneshot(void *ctx, const void *inp, size_t len);
|
|
void padlock_sha256(void *ctx, const void *inp, size_t len);
|
|
|
|
/*
|
|
* Load supported features of the CPU to see if the PadLock is available.
|
|
*/
|
|
static int padlock_available(void)
|
|
{
|
|
unsigned int edx = padlock_capability();
|
|
|
|
/* Fill up some flags */
|
|
padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6));
|
|
padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2));
|
|
|
|
return padlock_use_ace + padlock_use_rng;
|
|
}
|
|
|
|
/* ===== AES encryption/decryption ===== */
|
|
|
|
# if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb)
|
|
# define NID_aes_128_cfb NID_aes_128_cfb128
|
|
# endif
|
|
|
|
# if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb)
|
|
# define NID_aes_128_ofb NID_aes_128_ofb128
|
|
# endif
|
|
|
|
# if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb)
|
|
# define NID_aes_192_cfb NID_aes_192_cfb128
|
|
# endif
|
|
|
|
# if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb)
|
|
# define NID_aes_192_ofb NID_aes_192_ofb128
|
|
# endif
|
|
|
|
# if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb)
|
|
# define NID_aes_256_cfb NID_aes_256_cfb128
|
|
# endif
|
|
|
|
# if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb)
|
|
# define NID_aes_256_ofb NID_aes_256_ofb128
|
|
# endif
|
|
|
|
/* List of supported ciphers. */
|
|
static const int padlock_cipher_nids[] = {
|
|
NID_aes_128_ecb,
|
|
NID_aes_128_cbc,
|
|
NID_aes_128_cfb,
|
|
NID_aes_128_ofb,
|
|
NID_aes_128_ctr,
|
|
|
|
NID_aes_192_ecb,
|
|
NID_aes_192_cbc,
|
|
NID_aes_192_cfb,
|
|
NID_aes_192_ofb,
|
|
NID_aes_192_ctr,
|
|
|
|
NID_aes_256_ecb,
|
|
NID_aes_256_cbc,
|
|
NID_aes_256_cfb,
|
|
NID_aes_256_ofb,
|
|
NID_aes_256_ctr
|
|
};
|
|
|
|
static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids) /
|
|
sizeof(padlock_cipher_nids[0]));
|
|
|
|
/* Function prototypes ... */
|
|
static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
|
const unsigned char *iv, int enc);
|
|
|
|
# define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \
|
|
( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) )
|
|
# define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\
|
|
NEAREST_ALIGNED(EVP_CIPHER_CTX_get_cipher_data(ctx)))
|
|
|
|
static int
|
|
padlock_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
|
const unsigned char *in_arg, size_t nbytes)
|
|
{
|
|
return padlock_ecb_encrypt(out_arg, in_arg,
|
|
ALIGNED_CIPHER_DATA(ctx), nbytes);
|
|
}
|
|
|
|
static int
|
|
padlock_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
|
const unsigned char *in_arg, size_t nbytes)
|
|
{
|
|
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
|
|
int ret;
|
|
|
|
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
|
|
if ((ret = padlock_cbc_encrypt(out_arg, in_arg, cdata, nbytes)))
|
|
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
padlock_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
|
const unsigned char *in_arg, size_t nbytes)
|
|
{
|
|
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
|
|
size_t chunk;
|
|
|
|
if ((chunk = EVP_CIPHER_CTX_num(ctx))) { /* borrow chunk variable */
|
|
unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);
|
|
|
|
if (chunk >= AES_BLOCK_SIZE)
|
|
return 0; /* bogus value */
|
|
|
|
if (EVP_CIPHER_CTX_encrypting(ctx))
|
|
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
|
|
ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk];
|
|
chunk++, nbytes--;
|
|
} else
|
|
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
|
|
unsigned char c = *(in_arg++);
|
|
*(out_arg++) = c ^ ivp[chunk];
|
|
ivp[chunk++] = c, nbytes--;
|
|
}
|
|
|
|
EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
|
|
}
|
|
|
|
if (nbytes == 0)
|
|
return 1;
|
|
|
|
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
|
|
|
|
if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
|
|
if (!padlock_cfb_encrypt(out_arg, in_arg, cdata, chunk))
|
|
return 0;
|
|
nbytes -= chunk;
|
|
}
|
|
|
|
if (nbytes) {
|
|
unsigned char *ivp = cdata->iv;
|
|
|
|
out_arg += chunk;
|
|
in_arg += chunk;
|
|
EVP_CIPHER_CTX_set_num(ctx, nbytes);
|
|
if (cdata->cword.b.encdec) {
|
|
cdata->cword.b.encdec = 0;
|
|
padlock_reload_key();
|
|
padlock_aes_block(ivp, ivp, cdata);
|
|
cdata->cword.b.encdec = 1;
|
|
padlock_reload_key();
|
|
while (nbytes) {
|
|
unsigned char c = *(in_arg++);
|
|
*(out_arg++) = c ^ *ivp;
|
|
*(ivp++) = c, nbytes--;
|
|
}
|
|
} else {
|
|
padlock_reload_key();
|
|
padlock_aes_block(ivp, ivp, cdata);
|
|
padlock_reload_key();
|
|
while (nbytes) {
|
|
*ivp = *(out_arg++) = *(in_arg++) ^ *ivp;
|
|
ivp++, nbytes--;
|
|
}
|
|
}
|
|
}
|
|
|
|
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
padlock_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
|
const unsigned char *in_arg, size_t nbytes)
|
|
{
|
|
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
|
|
size_t chunk;
|
|
|
|
/*
|
|
* ctx->num is maintained in byte-oriented modes, such as CFB and OFB...
|
|
*/
|
|
if ((chunk = EVP_CIPHER_CTX_num(ctx))) { /* borrow chunk variable */
|
|
unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);
|
|
|
|
if (chunk >= AES_BLOCK_SIZE)
|
|
return 0; /* bogus value */
|
|
|
|
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
|
|
*(out_arg++) = *(in_arg++) ^ ivp[chunk];
|
|
chunk++, nbytes--;
|
|
}
|
|
|
|
EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
|
|
}
|
|
|
|
if (nbytes == 0)
|
|
return 1;
|
|
|
|
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
|
|
|
|
if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
|
|
if (!padlock_ofb_encrypt(out_arg, in_arg, cdata, chunk))
|
|
return 0;
|
|
nbytes -= chunk;
|
|
}
|
|
|
|
if (nbytes) {
|
|
unsigned char *ivp = cdata->iv;
|
|
|
|
out_arg += chunk;
|
|
in_arg += chunk;
|
|
EVP_CIPHER_CTX_set_num(ctx, nbytes);
|
|
padlock_reload_key(); /* empirically found */
|
|
padlock_aes_block(ivp, ivp, cdata);
|
|
padlock_reload_key(); /* empirically found */
|
|
while (nbytes) {
|
|
*(out_arg++) = *(in_arg++) ^ *ivp;
|
|
ivp++, nbytes--;
|
|
}
|
|
}
|
|
|
|
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void padlock_ctr32_encrypt_glue(const unsigned char *in,
|
|
unsigned char *out, size_t blocks,
|
|
struct padlock_cipher_data *ctx,
|
|
const unsigned char *ivec)
|
|
{
|
|
memcpy(ctx->iv, ivec, AES_BLOCK_SIZE);
|
|
padlock_ctr32_encrypt(out, in, ctx, AES_BLOCK_SIZE * blocks);
|
|
}
|
|
|
|
static int
|
|
padlock_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
|
const unsigned char *in_arg, size_t nbytes)
|
|
{
|
|
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
|
|
unsigned int num = EVP_CIPHER_CTX_num(ctx);
|
|
|
|
CRYPTO_ctr128_encrypt_ctr32(in_arg, out_arg, nbytes,
|
|
cdata, EVP_CIPHER_CTX_iv_noconst(ctx),
|
|
EVP_CIPHER_CTX_buf_noconst(ctx), &num,
|
|
(ctr128_f) padlock_ctr32_encrypt_glue);
|
|
|
|
EVP_CIPHER_CTX_set_num(ctx, (size_t)num);
|
|
return 1;
|
|
}
|
|
|
|
# define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE
|
|
# define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE
|
|
# define EVP_CIPHER_block_size_OFB 1
|
|
# define EVP_CIPHER_block_size_CFB 1
|
|
# define EVP_CIPHER_block_size_CTR 1
|
|
|
|
/*
|
|
* Declaring so many ciphers by hand would be a pain. Instead introduce a bit
|
|
* of preprocessor magic :-)
|
|
*/
|
|
# define DECLARE_AES_EVP(ksize,lmode,umode) \
|
|
static EVP_CIPHER *_hidden_aes_##ksize##_##lmode = NULL; \
|
|
static const EVP_CIPHER *padlock_aes_##ksize##_##lmode(void) \
|
|
{ \
|
|
if (_hidden_aes_##ksize##_##lmode == NULL \
|
|
&& ((_hidden_aes_##ksize##_##lmode = \
|
|
EVP_CIPHER_meth_new(NID_aes_##ksize##_##lmode, \
|
|
EVP_CIPHER_block_size_##umode, \
|
|
AES_KEY_SIZE_##ksize)) == NULL \
|
|
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_##ksize##_##lmode, \
|
|
AES_BLOCK_SIZE) \
|
|
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_##ksize##_##lmode, \
|
|
0 | EVP_CIPH_##umode##_MODE) \
|
|
|| !EVP_CIPHER_meth_set_init(_hidden_aes_##ksize##_##lmode, \
|
|
padlock_aes_init_key) \
|
|
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_##ksize##_##lmode, \
|
|
padlock_##lmode##_cipher) \
|
|
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_##ksize##_##lmode, \
|
|
sizeof(struct padlock_cipher_data) + 16) \
|
|
|| !EVP_CIPHER_meth_set_set_asn1_params(_hidden_aes_##ksize##_##lmode, \
|
|
EVP_CIPHER_set_asn1_iv) \
|
|
|| !EVP_CIPHER_meth_set_get_asn1_params(_hidden_aes_##ksize##_##lmode, \
|
|
EVP_CIPHER_get_asn1_iv))) { \
|
|
EVP_CIPHER_meth_free(_hidden_aes_##ksize##_##lmode); \
|
|
_hidden_aes_##ksize##_##lmode = NULL; \
|
|
} \
|
|
return _hidden_aes_##ksize##_##lmode; \
|
|
}
|
|
|
|
DECLARE_AES_EVP(128, ecb, ECB)
|
|
DECLARE_AES_EVP(128, cbc, CBC)
|
|
DECLARE_AES_EVP(128, cfb, CFB)
|
|
DECLARE_AES_EVP(128, ofb, OFB)
|
|
DECLARE_AES_EVP(128, ctr, CTR)
|
|
|
|
DECLARE_AES_EVP(192, ecb, ECB)
|
|
DECLARE_AES_EVP(192, cbc, CBC)
|
|
DECLARE_AES_EVP(192, cfb, CFB)
|
|
DECLARE_AES_EVP(192, ofb, OFB)
|
|
DECLARE_AES_EVP(192, ctr, CTR)
|
|
|
|
DECLARE_AES_EVP(256, ecb, ECB)
|
|
DECLARE_AES_EVP(256, cbc, CBC)
|
|
DECLARE_AES_EVP(256, cfb, CFB)
|
|
DECLARE_AES_EVP(256, ofb, OFB)
|
|
DECLARE_AES_EVP(256, ctr, CTR)
|
|
|
|
static int
|
|
padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids,
|
|
int nid)
|
|
{
|
|
/* No specific cipher => return a list of supported nids ... */
|
|
if (!cipher) {
|
|
*nids = padlock_cipher_nids;
|
|
return padlock_cipher_nids_num;
|
|
}
|
|
|
|
/* ... or the requested "cipher" otherwise */
|
|
switch (nid) {
|
|
case NID_aes_128_ecb:
|
|
*cipher = padlock_aes_128_ecb();
|
|
break;
|
|
case NID_aes_128_cbc:
|
|
*cipher = padlock_aes_128_cbc();
|
|
break;
|
|
case NID_aes_128_cfb:
|
|
*cipher = padlock_aes_128_cfb();
|
|
break;
|
|
case NID_aes_128_ofb:
|
|
*cipher = padlock_aes_128_ofb();
|
|
break;
|
|
case NID_aes_128_ctr:
|
|
*cipher = padlock_aes_128_ctr();
|
|
break;
|
|
|
|
case NID_aes_192_ecb:
|
|
*cipher = padlock_aes_192_ecb();
|
|
break;
|
|
case NID_aes_192_cbc:
|
|
*cipher = padlock_aes_192_cbc();
|
|
break;
|
|
case NID_aes_192_cfb:
|
|
*cipher = padlock_aes_192_cfb();
|
|
break;
|
|
case NID_aes_192_ofb:
|
|
*cipher = padlock_aes_192_ofb();
|
|
break;
|
|
case NID_aes_192_ctr:
|
|
*cipher = padlock_aes_192_ctr();
|
|
break;
|
|
|
|
case NID_aes_256_ecb:
|
|
*cipher = padlock_aes_256_ecb();
|
|
break;
|
|
case NID_aes_256_cbc:
|
|
*cipher = padlock_aes_256_cbc();
|
|
break;
|
|
case NID_aes_256_cfb:
|
|
*cipher = padlock_aes_256_cfb();
|
|
break;
|
|
case NID_aes_256_ofb:
|
|
*cipher = padlock_aes_256_ofb();
|
|
break;
|
|
case NID_aes_256_ctr:
|
|
*cipher = padlock_aes_256_ctr();
|
|
break;
|
|
|
|
default:
|
|
/* Sorry, we don't support this NID */
|
|
*cipher = NULL;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Prepare the encryption key for PadLock usage */
|
|
static int
|
|
padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
|
const unsigned char *iv, int enc)
|
|
{
|
|
struct padlock_cipher_data *cdata;
|
|
int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8;
|
|
unsigned long mode = EVP_CIPHER_CTX_mode(ctx);
|
|
|
|
if (key == NULL)
|
|
return 0; /* ERROR */
|
|
|
|
cdata = ALIGNED_CIPHER_DATA(ctx);
|
|
memset(cdata, 0, sizeof(*cdata));
|
|
|
|
/* Prepare Control word. */
|
|
if (mode == EVP_CIPH_OFB_MODE || mode == EVP_CIPH_CTR_MODE)
|
|
cdata->cword.b.encdec = 0;
|
|
else
|
|
cdata->cword.b.encdec = (EVP_CIPHER_CTX_encrypting(ctx) == 0);
|
|
cdata->cword.b.rounds = 10 + (key_len - 128) / 32;
|
|
cdata->cword.b.ksize = (key_len - 128) / 64;
|
|
|
|
switch (key_len) {
|
|
case 128:
|
|
/*
|
|
* PadLock can generate an extended key for AES128 in hardware
|
|
*/
|
|
memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128);
|
|
cdata->cword.b.keygen = 0;
|
|
break;
|
|
|
|
case 192:
|
|
case 256:
|
|
/*
|
|
* Generate an extended AES key in software. Needed for AES192/AES256
|
|
*/
|
|
/*
|
|
* Well, the above applies to Stepping 8 CPUs and is listed as
|
|
* hardware errata. They most likely will fix it at some point and
|
|
* then a check for stepping would be due here.
|
|
*/
|
|
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
|
&& !enc)
|
|
AES_set_decrypt_key(key, key_len, &cdata->ks);
|
|
else
|
|
AES_set_encrypt_key(key, key_len, &cdata->ks);
|
|
# ifndef AES_ASM
|
|
/*
|
|
* OpenSSL C functions use byte-swapped extended key.
|
|
*/
|
|
padlock_key_bswap(&cdata->ks);
|
|
# endif
|
|
cdata->cword.b.keygen = 1;
|
|
break;
|
|
|
|
default:
|
|
/* ERROR */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is done to cover for cases when user reuses the
|
|
* context for new key. The catch is that if we don't do
|
|
* this, padlock_eas_cipher might proceed with old key...
|
|
*/
|
|
padlock_reload_key();
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* ===== Random Number Generator ===== */
|
|
/*
|
|
* This code is not engaged. The reason is that it does not comply
|
|
* with recommendations for VIA RNG usage for secure applications
|
|
* (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it
|
|
* provide meaningful error control...
|
|
*/
|
|
/*
|
|
* Wrapper that provides an interface between the API and the raw PadLock
|
|
* RNG
|
|
*/
|
|
static int padlock_rand_bytes(unsigned char *output, int count)
|
|
{
|
|
unsigned int eax, buf;
|
|
|
|
while (count >= 8) {
|
|
eax = padlock_xstore(output, 0);
|
|
if (!(eax & (1 << 6)))
|
|
return 0; /* RNG disabled */
|
|
/* this ---vv--- covers DC bias, Raw Bits and String Filter */
|
|
if (eax & (0x1F << 10))
|
|
return 0;
|
|
if ((eax & 0x1F) == 0)
|
|
continue; /* no data, retry... */
|
|
if ((eax & 0x1F) != 8)
|
|
return 0; /* fatal failure... */
|
|
output += 8;
|
|
count -= 8;
|
|
}
|
|
while (count > 0) {
|
|
eax = padlock_xstore(&buf, 3);
|
|
if (!(eax & (1 << 6)))
|
|
return 0; /* RNG disabled */
|
|
/* this ---vv--- covers DC bias, Raw Bits and String Filter */
|
|
if (eax & (0x1F << 10))
|
|
return 0;
|
|
if ((eax & 0x1F) == 0)
|
|
continue; /* no data, retry... */
|
|
if ((eax & 0x1F) != 1)
|
|
return 0; /* fatal failure... */
|
|
*output++ = (unsigned char)buf;
|
|
count--;
|
|
}
|
|
OPENSSL_cleanse(&buf, sizeof(buf));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Dummy but necessary function */
|
|
static int padlock_rand_status(void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/* Prepare structure for registration */
|
|
static RAND_METHOD padlock_rand = {
|
|
NULL, /* seed */
|
|
padlock_rand_bytes, /* bytes */
|
|
NULL, /* cleanup */
|
|
NULL, /* add */
|
|
padlock_rand_bytes, /* pseudorand */
|
|
padlock_rand_status, /* rand status */
|
|
};
|
|
|
|
# endif /* COMPILE_HW_PADLOCK */
|
|
# endif /* !OPENSSL_NO_HW_PADLOCK */
|
|
#endif /* !OPENSSL_NO_HW */
|
|
|
|
#if defined(OPENSSL_NO_HW) || defined(OPENSSL_NO_HW_PADLOCK) \
|
|
|| !defined(COMPILE_HW_PADLOCK)
|
|
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
|
|
OPENSSL_EXPORT
|
|
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns);
|
|
OPENSSL_EXPORT
|
|
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
IMPLEMENT_DYNAMIC_CHECK_FN()
|
|
# endif
|
|
#endif
|