openssl/crypto/modes/ctr128.c
Shane Lontis 459b15d451 Add Common shared code needed to move aes ciphers to providers
Custom aes ciphers will be placed into multiple new files
(instead of the monolithic setup used in the e_aes.c legacy code)
so it makes sense to have a header for the platform specific
code that needs to be shared between files.
modes_lcl.h has also moved to modes_int.h to allow sharing with the
provider source.
Code that will be common to AEAD ciphers has also been added. These
will be used by seperate PR's for GCM, CCM & OCB.

Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9301)
2019-07-16 09:46:14 +10:00

210 lines
5.8 KiB
C

/*
* Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/crypto.h>
#include "internal/modes_int.h"
/*
* NOTE: the IV/counter CTR mode is big-endian. The code itself is
* endian-neutral.
*/
/* increment counter (128-bit int) by 1 */
static void ctr128_inc(unsigned char *counter)
{
u32 n = 16, c = 1;
do {
--n;
c += counter[n];
counter[n] = (u8)c;
c >>= 8;
} while (n);
}
#if !defined(OPENSSL_SMALL_FOOTPRINT)
static void ctr128_inc_aligned(unsigned char *counter)
{
size_t *data, c, d, n;
const union {
long one;
char little;
} is_endian = {
1
};
if (is_endian.little || ((size_t)counter % sizeof(size_t)) != 0) {
ctr128_inc(counter);
return;
}
data = (size_t *)counter;
c = 1;
n = 16 / sizeof(size_t);
do {
--n;
d = data[n] += c;
/* did addition carry? */
c = ((d - c) & ~d) >> (sizeof(size_t) * 8 - 1);
} while (n);
}
#endif
/*
* The input encrypted as though 128bit counter mode is being used. The
* extra state information to record how much of the 128bit block we have
* used is contained in *num, and the encrypted counter is kept in
* ecount_buf. Both *num and ecount_buf must be initialised with zeros
* before the first call to CRYPTO_ctr128_encrypt(). This algorithm assumes
* that the counter is in the x lower bits of the IV (ivec), and that the
* application has full control over overflow and the rest of the IV. This
* implementation takes NO responsibility for checking that the counter
* doesn't overflow into the rest of the IV when incremented.
*/
void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const void *key,
unsigned char ivec[16],
unsigned char ecount_buf[16], unsigned int *num,
block128_f block)
{
unsigned int n;
size_t l = 0;
n = *num;
#if !defined(OPENSSL_SMALL_FOOTPRINT)
if (16 % sizeof(size_t) == 0) { /* always true actually */
do {
while (n && len) {
*(out++) = *(in++) ^ ecount_buf[n];
--len;
n = (n + 1) % 16;
}
# if defined(STRICT_ALIGNMENT)
if (((size_t)in | (size_t)out | (size_t)ecount_buf)
% sizeof(size_t) != 0)
break;
# endif
while (len >= 16) {
(*block) (ivec, ecount_buf, key);
ctr128_inc_aligned(ivec);
for (n = 0; n < 16; n += sizeof(size_t))
*(size_t *)(out + n) =
*(size_t *)(in + n) ^ *(size_t *)(ecount_buf + n);
len -= 16;
out += 16;
in += 16;
n = 0;
}
if (len) {
(*block) (ivec, ecount_buf, key);
ctr128_inc_aligned(ivec);
while (len--) {
out[n] = in[n] ^ ecount_buf[n];
++n;
}
}
*num = n;
return;
} while (0);
}
/* the rest would be commonly eliminated by x86* compiler */
#endif
while (l < len) {
if (n == 0) {
(*block) (ivec, ecount_buf, key);
ctr128_inc(ivec);
}
out[l] = in[l] ^ ecount_buf[n];
++l;
n = (n + 1) % 16;
}
*num = n;
}
/* increment upper 96 bits of 128-bit counter by 1 */
static void ctr96_inc(unsigned char *counter)
{
u32 n = 12, c = 1;
do {
--n;
c += counter[n];
counter[n] = (u8)c;
c >>= 8;
} while (n);
}
void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out,
size_t len, const void *key,
unsigned char ivec[16],
unsigned char ecount_buf[16],
unsigned int *num, ctr128_f func)
{
unsigned int n, ctr32;
n = *num;
while (n && len) {
*(out++) = *(in++) ^ ecount_buf[n];
--len;
n = (n + 1) % 16;
}
ctr32 = GETU32(ivec + 12);
while (len >= 16) {
size_t blocks = len / 16;
/*
* 1<<28 is just a not-so-small yet not-so-large number...
* Below condition is practically never met, but it has to
* be checked for code correctness.
*/
if (sizeof(size_t) > sizeof(unsigned int) && blocks > (1U << 28))
blocks = (1U << 28);
/*
* As (*func) operates on 32-bit counter, caller
* has to handle overflow. 'if' below detects the
* overflow, which is then handled by limiting the
* amount of blocks to the exact overflow point...
*/
ctr32 += (u32)blocks;
if (ctr32 < blocks) {
blocks -= ctr32;
ctr32 = 0;
}
(*func) (in, out, blocks, key, ivec);
/* (*ctr) does not update ivec, caller does: */
PUTU32(ivec + 12, ctr32);
/* ... overflow was detected, propagate carry. */
if (ctr32 == 0)
ctr96_inc(ivec);
blocks *= 16;
len -= blocks;
out += blocks;
in += blocks;
}
if (len) {
memset(ecount_buf, 0, 16);
(*func) (ecount_buf, ecount_buf, 1, key, ivec);
++ctr32;
PUTU32(ivec + 12, ctr32);
if (ctr32 == 0)
ctr96_inc(ivec);
while (len--) {
out[n] = in[n] ^ ecount_buf[n];
++n;
}
}
*num = n;
}