mirror of
https://github.com/openssl/openssl.git
synced 2025-02-05 14:10:53 +08:00
This happens rarely, but only because very few CI runs use the exotic CPU type that is necessary to execute anything within rsaz_exp_x2.c and enable UBSAN at the same time. crypto/bn/rsaz_exp_x2.c:562:20: runtime error: load of misaligned address 0x612000022cc6 for type 'uint64_t' (aka 'unsigned long'), which requires 8 byte alignment 0x612000022cc6: note: pointer points here 84 a3 78 e0 8e 8d 4a a5 51 9c 57 d0 d6 41 f3 26 d1 4e e1 98 42 b5 3a 9f 04 f1 73 d2 1d bf 73 44 ^ SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior crypto/bn/rsaz_exp_x2.c:562:20 in ../../util/wrap.pl ../../fuzz/server-test ../../fuzz/corpora/server => 1 not ok 2 - Fuzzing server Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Paul Dale <pauli@openssl.org> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/19394)
660 lines
23 KiB
C
660 lines
23 KiB
C
/*
|
|
* Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2020-2021, Intel Corporation. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*
|
|
*
|
|
* Originally written by Sergey Kirillov and Andrey Matyukov.
|
|
* Special thanks to Ilya Albrekht for his valuable hints.
|
|
* Intel Corporation
|
|
*
|
|
*/
|
|
|
|
#include <openssl/opensslconf.h>
|
|
#include <openssl/crypto.h>
|
|
#include "rsaz_exp.h"
|
|
|
|
#ifndef RSAZ_ENABLED
|
|
NON_EMPTY_TRANSLATION_UNIT
|
|
#else
|
|
# include <assert.h>
|
|
# include <string.h>
|
|
|
|
# if defined(__GNUC__)
|
|
# define ALIGN1 __attribute__((aligned(1)))
|
|
# elif defined(_MSC_VER)
|
|
# define ALIGN1 __declspec(align(1))
|
|
# else
|
|
# define ALIGN1
|
|
# endif
|
|
|
|
# define ALIGN_OF(ptr, boundary) \
|
|
((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
|
|
|
|
/* Internal radix */
|
|
# define DIGIT_SIZE (52)
|
|
/* 52-bit mask */
|
|
# define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
|
|
|
|
# define BITS2WORD8_SIZE(x) (((x) + 7) >> 3)
|
|
# define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
|
|
|
|
/* Number of registers required to hold |digits_num| amount of qword digits */
|
|
# define NUMBER_OF_REGISTERS(digits_num, register_size) \
|
|
(((digits_num) * 64 + (register_size) - 1) / (register_size))
|
|
|
|
typedef uint64_t ALIGN1 uint64_t_align1;
|
|
|
|
static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len);
|
|
static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit);
|
|
static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
|
|
int in_bitsize);
|
|
static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
|
|
static ossl_inline void set_bit(BN_ULONG *a, int idx);
|
|
|
|
/* Number of |digit_size|-bit digits in |bitsize|-bit value */
|
|
static ossl_inline int number_of_digits(int bitsize, int digit_size)
|
|
{
|
|
return (bitsize + digit_size - 1) / digit_size;
|
|
}
|
|
|
|
/*
|
|
* For details of the methods declared below please refer to
|
|
* crypto/bn/asm/rsaz-avx512.pl
|
|
*
|
|
* Naming conventions:
|
|
* amm = Almost Montgomery Multiplication
|
|
* ams = Almost Montgomery Squaring
|
|
* 52xZZ - data represented as array of ZZ digits in 52-bit radix
|
|
* _x1_/_x2_ - 1 or 2 independent inputs/outputs
|
|
* _ifma256 - uses 256-bit wide IFMA ISA (AVX512_IFMA256)
|
|
*/
|
|
|
|
void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
|
|
const BN_ULONG *b, const BN_ULONG *m,
|
|
BN_ULONG k0);
|
|
void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
|
|
const BN_ULONG *b, const BN_ULONG *m,
|
|
const BN_ULONG k0[2]);
|
|
void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
|
|
const BN_ULONG *red_table,
|
|
int red_table_idx1, int red_table_idx2);
|
|
|
|
void ossl_rsaz_amm52x30_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
|
|
const BN_ULONG *b, const BN_ULONG *m,
|
|
BN_ULONG k0);
|
|
void ossl_rsaz_amm52x30_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
|
|
const BN_ULONG *b, const BN_ULONG *m,
|
|
const BN_ULONG k0[2]);
|
|
void ossl_extract_multiplier_2x30_win5(BN_ULONG *red_Y,
|
|
const BN_ULONG *red_table,
|
|
int red_table_idx1, int red_table_idx2);
|
|
|
|
void ossl_rsaz_amm52x40_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
|
|
const BN_ULONG *b, const BN_ULONG *m,
|
|
BN_ULONG k0);
|
|
void ossl_rsaz_amm52x40_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
|
|
const BN_ULONG *b, const BN_ULONG *m,
|
|
const BN_ULONG k0[2]);
|
|
void ossl_extract_multiplier_2x40_win5(BN_ULONG *red_Y,
|
|
const BN_ULONG *red_table,
|
|
int red_table_idx1, int red_table_idx2);
|
|
|
|
static int RSAZ_mod_exp_x2_ifma256(BN_ULONG *res, const BN_ULONG *base,
|
|
const BN_ULONG *exp[2], const BN_ULONG *m,
|
|
const BN_ULONG *rr, const BN_ULONG k0[2],
|
|
int modulus_bitsize);
|
|
|
|
/*
|
|
* Dual Montgomery modular exponentiation using prime moduli of the
|
|
* same bit size, optimized with AVX512 ISA.
|
|
*
|
|
* Input and output parameters for each exponentiation are independent and
|
|
* denoted here by index |i|, i = 1..2.
|
|
*
|
|
* Input and output are all in regular 2^64 radix.
|
|
*
|
|
* Each moduli shall be |factor_size| bit size.
|
|
*
|
|
* Supported cases:
|
|
* - 2x1024
|
|
* - 2x1536
|
|
* - 2x2048
|
|
*
|
|
* [out] res|i| - result of modular exponentiation: array of qword values
|
|
* in regular (2^64) radix. Size of array shall be enough
|
|
* to hold |factor_size| bits.
|
|
* [in] base|i| - base
|
|
* [in] exp|i| - exponent
|
|
* [in] m|i| - moduli
|
|
* [in] rr|i| - Montgomery parameter RR = R^2 mod m|i|
|
|
* [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64
|
|
* [in] factor_size - moduli bit size
|
|
*
|
|
* \return 0 in case of failure,
|
|
* 1 in case of success.
|
|
*/
|
|
int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
|
|
const BN_ULONG *base1,
|
|
const BN_ULONG *exp1,
|
|
const BN_ULONG *m1,
|
|
const BN_ULONG *rr1,
|
|
BN_ULONG k0_1,
|
|
BN_ULONG *res2,
|
|
const BN_ULONG *base2,
|
|
const BN_ULONG *exp2,
|
|
const BN_ULONG *m2,
|
|
const BN_ULONG *rr2,
|
|
BN_ULONG k0_2,
|
|
int factor_size)
|
|
{
|
|
typedef void (*AMM)(BN_ULONG *res, const BN_ULONG *a,
|
|
const BN_ULONG *b, const BN_ULONG *m, BN_ULONG k0);
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Number of word-size (BN_ULONG) digits to store exponent in redundant
|
|
* representation.
|
|
*/
|
|
int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
|
|
int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
|
|
|
|
/* Number of YMM registers required to store exponent's digits */
|
|
int ymm_regs_num = NUMBER_OF_REGISTERS(exp_digits, 256 /* ymm bit size */);
|
|
/* Capacity of the register set (in qwords) to store exponent */
|
|
int regs_capacity = ymm_regs_num * 4;
|
|
|
|
BN_ULONG *base1_red, *m1_red, *rr1_red;
|
|
BN_ULONG *base2_red, *m2_red, *rr2_red;
|
|
BN_ULONG *coeff_red;
|
|
BN_ULONG *storage = NULL;
|
|
BN_ULONG *storage_aligned = NULL;
|
|
int storage_len_bytes = 7 * regs_capacity * sizeof(BN_ULONG)
|
|
+ 64 /* alignment */;
|
|
|
|
const BN_ULONG *exp[2] = {0};
|
|
BN_ULONG k0[2] = {0};
|
|
/* AMM = Almost Montgomery Multiplication */
|
|
AMM amm = NULL;
|
|
|
|
switch (factor_size) {
|
|
case 1024:
|
|
amm = ossl_rsaz_amm52x20_x1_ifma256;
|
|
break;
|
|
case 1536:
|
|
amm = ossl_rsaz_amm52x30_x1_ifma256;
|
|
break;
|
|
case 2048:
|
|
amm = ossl_rsaz_amm52x40_x1_ifma256;
|
|
break;
|
|
default:
|
|
goto err;
|
|
}
|
|
|
|
storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes);
|
|
if (storage == NULL)
|
|
goto err;
|
|
storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
|
|
|
|
/* Memory layout for red(undant) representations */
|
|
base1_red = storage_aligned;
|
|
base2_red = storage_aligned + 1 * regs_capacity;
|
|
m1_red = storage_aligned + 2 * regs_capacity;
|
|
m2_red = storage_aligned + 3 * regs_capacity;
|
|
rr1_red = storage_aligned + 4 * regs_capacity;
|
|
rr2_red = storage_aligned + 5 * regs_capacity;
|
|
coeff_red = storage_aligned + 6 * regs_capacity;
|
|
|
|
/* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
|
|
to_words52(base1_red, regs_capacity, base1, factor_size);
|
|
to_words52(base2_red, regs_capacity, base2, factor_size);
|
|
to_words52(m1_red, regs_capacity, m1, factor_size);
|
|
to_words52(m2_red, regs_capacity, m2, factor_size);
|
|
to_words52(rr1_red, regs_capacity, rr1, factor_size);
|
|
to_words52(rr2_red, regs_capacity, rr2, factor_size);
|
|
|
|
/*
|
|
* Compute target domain Montgomery converters RR' for each modulus
|
|
* based on precomputed original domain's RR.
|
|
*
|
|
* RR -> RR' transformation steps:
|
|
* (1) coeff = 2^k
|
|
* (2) t = AMM(RR,RR) = RR^2 / R' mod m
|
|
* (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
|
|
* where
|
|
* k = 4 * (52 * digits52 - modlen)
|
|
* R = 2^(64 * ceil(modlen/64)) mod m
|
|
* RR = R^2 mod m
|
|
* R' = 2^(52 * ceil(modlen/52)) mod m
|
|
*
|
|
* EX/ modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
|
|
*/
|
|
memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
|
|
/* (1) in reduced domain representation */
|
|
set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
|
|
|
|
amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */
|
|
amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */
|
|
|
|
amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */
|
|
amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */
|
|
|
|
exp[0] = exp1;
|
|
exp[1] = exp2;
|
|
|
|
k0[0] = k0_1;
|
|
k0[1] = k0_2;
|
|
|
|
/* Dual (2-exps in parallel) exponentiation */
|
|
ret = RSAZ_mod_exp_x2_ifma256(rr1_red, base1_red, exp, m1_red, rr1_red,
|
|
k0, factor_size);
|
|
if (!ret)
|
|
goto err;
|
|
|
|
/* Convert rr_i back to regular radix */
|
|
from_words52(res1, factor_size, rr1_red);
|
|
from_words52(res2, factor_size, rr2_red);
|
|
|
|
/* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
|
|
factor_size /= sizeof(BN_ULONG) * 8;
|
|
|
|
bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
|
|
bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
|
|
|
|
err:
|
|
if (storage != NULL) {
|
|
OPENSSL_cleanse(storage, storage_len_bytes);
|
|
OPENSSL_free(storage);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Dual {1024,1536,2048}-bit w-ary modular exponentiation using prime moduli of
|
|
* the same bit size using Almost Montgomery Multiplication, optimized with
|
|
* AVX512_IFMA256 ISA.
|
|
*
|
|
* The parameter w (window size) = 5.
|
|
*
|
|
* [out] res - result of modular exponentiation: 2x{20,30,40} qword
|
|
* values in 2^52 radix.
|
|
* [in] base - base (2x{20,30,40} qword values in 2^52 radix)
|
|
* [in] exp - array of 2 pointers to {16,24,32} qword values in 2^64 radix.
|
|
* Exponent is not converted to redundant representation.
|
|
* [in] m - moduli (2x{20,30,40} qword values in 2^52 radix)
|
|
* [in] rr - Montgomery parameter for 2 moduli:
|
|
* RR(1024) = 2^2080 mod m.
|
|
* RR(1536) = 2^3120 mod m.
|
|
* RR(2048) = 2^4160 mod m.
|
|
* (2x{20,30,40} qword values in 2^52 radix)
|
|
* [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
|
|
*
|
|
* \return (void).
|
|
*/
|
|
int RSAZ_mod_exp_x2_ifma256(BN_ULONG *out,
|
|
const BN_ULONG *base,
|
|
const BN_ULONG *exp[2],
|
|
const BN_ULONG *m,
|
|
const BN_ULONG *rr,
|
|
const BN_ULONG k0[2],
|
|
int modulus_bitsize)
|
|
{
|
|
typedef void (*DAMM)(BN_ULONG *res, const BN_ULONG *a,
|
|
const BN_ULONG *b, const BN_ULONG *m,
|
|
const BN_ULONG k0[2]);
|
|
typedef void (*DEXTRACT)(BN_ULONG *res, const BN_ULONG *red_table,
|
|
int red_table_idx, int tbl_idx);
|
|
|
|
int ret = 0;
|
|
int idx;
|
|
|
|
/* Exponent window size */
|
|
int exp_win_size = 5;
|
|
int exp_win_mask = (1U << exp_win_size) - 1;
|
|
|
|
/*
|
|
* Number of digits (64-bit words) in redundant representation to handle
|
|
* modulus bits
|
|
*/
|
|
int red_digits = 0;
|
|
int exp_digits = 0;
|
|
|
|
BN_ULONG *storage = NULL;
|
|
BN_ULONG *storage_aligned = NULL;
|
|
int storage_len_bytes = 0;
|
|
|
|
/* Red(undant) result Y and multiplier X */
|
|
BN_ULONG *red_Y = NULL; /* [2][red_digits] */
|
|
BN_ULONG *red_X = NULL; /* [2][red_digits] */
|
|
/* Pre-computed table of base powers */
|
|
BN_ULONG *red_table = NULL; /* [1U << exp_win_size][2][red_digits] */
|
|
/* Expanded exponent */
|
|
BN_ULONG *expz = NULL; /* [2][exp_digits + 1] */
|
|
|
|
/* Dual AMM */
|
|
DAMM damm = NULL;
|
|
/* Extractor from red_table */
|
|
DEXTRACT extract = NULL;
|
|
|
|
/*
|
|
* Squaring is done using multiplication now. That can be a subject of
|
|
* optimization in future.
|
|
*/
|
|
# define DAMS(r,a,m,k0) damm((r),(a),(a),(m),(k0))
|
|
|
|
switch (modulus_bitsize) {
|
|
case 1024:
|
|
red_digits = 20;
|
|
exp_digits = 16;
|
|
damm = ossl_rsaz_amm52x20_x2_ifma256;
|
|
extract = ossl_extract_multiplier_2x20_win5;
|
|
break;
|
|
case 1536:
|
|
/* Extended with 2 digits padding to avoid mask ops in high YMM register */
|
|
red_digits = 30 + 2;
|
|
exp_digits = 24;
|
|
damm = ossl_rsaz_amm52x30_x2_ifma256;
|
|
extract = ossl_extract_multiplier_2x30_win5;
|
|
break;
|
|
case 2048:
|
|
red_digits = 40;
|
|
exp_digits = 32;
|
|
damm = ossl_rsaz_amm52x40_x2_ifma256;
|
|
extract = ossl_extract_multiplier_2x40_win5;
|
|
break;
|
|
default:
|
|
goto err;
|
|
}
|
|
|
|
storage_len_bytes = (2 * red_digits /* red_Y */
|
|
+ 2 * red_digits /* red_X */
|
|
+ 2 * red_digits * (1U << exp_win_size) /* red_table */
|
|
+ 2 * (exp_digits + 1)) /* expz */
|
|
* sizeof(BN_ULONG)
|
|
+ 64; /* alignment */
|
|
|
|
storage = (BN_ULONG *)OPENSSL_zalloc(storage_len_bytes);
|
|
if (storage == NULL)
|
|
goto err;
|
|
storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
|
|
|
|
red_Y = storage_aligned;
|
|
red_X = red_Y + 2 * red_digits;
|
|
red_table = red_X + 2 * red_digits;
|
|
expz = red_table + 2 * red_digits * (1U << exp_win_size);
|
|
|
|
/*
|
|
* Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
|
|
* table[0] = mont(x^0) = mont(1)
|
|
* table[1] = mont(x^1) = mont(x)
|
|
*/
|
|
red_X[0 * red_digits] = 1;
|
|
red_X[1 * red_digits] = 1;
|
|
damm(&red_table[0 * 2 * red_digits], (const BN_ULONG*)red_X, rr, m, k0);
|
|
damm(&red_table[1 * 2 * red_digits], base, rr, m, k0);
|
|
|
|
for (idx = 1; idx < (int)((1U << exp_win_size) / 2); idx++) {
|
|
DAMS(&red_table[(2 * idx + 0) * 2 * red_digits],
|
|
&red_table[(1 * idx) * 2 * red_digits], m, k0);
|
|
damm(&red_table[(2 * idx + 1) * 2 * red_digits],
|
|
&red_table[(2 * idx) * 2 * red_digits],
|
|
&red_table[1 * 2 * red_digits], m, k0);
|
|
}
|
|
|
|
/* Copy and expand exponents */
|
|
memcpy(&expz[0 * (exp_digits + 1)], exp[0], exp_digits * sizeof(BN_ULONG));
|
|
expz[1 * (exp_digits + 1) - 1] = 0;
|
|
memcpy(&expz[1 * (exp_digits + 1)], exp[1], exp_digits * sizeof(BN_ULONG));
|
|
expz[2 * (exp_digits + 1) - 1] = 0;
|
|
|
|
/* Exponentiation */
|
|
{
|
|
const int rem = modulus_bitsize % exp_win_size;
|
|
const BN_ULONG table_idx_mask = exp_win_mask;
|
|
|
|
int exp_bit_no = modulus_bitsize - rem;
|
|
int exp_chunk_no = exp_bit_no / 64;
|
|
int exp_chunk_shift = exp_bit_no % 64;
|
|
|
|
BN_ULONG red_table_idx_0, red_table_idx_1;
|
|
|
|
/*
|
|
* If rem == 0, then
|
|
* exp_bit_no = modulus_bitsize - exp_win_size
|
|
* However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
|
|
* which is { 4, 1, 3 } respectively.
|
|
*
|
|
* If this assertion ever fails the fix above is easy.
|
|
*/
|
|
OPENSSL_assert(rem != 0);
|
|
|
|
/* Process 1-st exp window - just init result */
|
|
red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
|
|
red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
|
|
|
|
/*
|
|
* The function operates with fixed moduli sizes divisible by 64,
|
|
* thus table index here is always in supported range [0, EXP_WIN_SIZE).
|
|
*/
|
|
red_table_idx_0 >>= exp_chunk_shift;
|
|
red_table_idx_1 >>= exp_chunk_shift;
|
|
|
|
extract(&red_Y[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
|
|
|
|
/* Process other exp windows */
|
|
for (exp_bit_no -= exp_win_size; exp_bit_no >= 0; exp_bit_no -= exp_win_size) {
|
|
/* Extract pre-computed multiplier from the table */
|
|
{
|
|
BN_ULONG T;
|
|
|
|
exp_chunk_no = exp_bit_no / 64;
|
|
exp_chunk_shift = exp_bit_no % 64;
|
|
{
|
|
red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
|
|
T = expz[exp_chunk_no + 1 + 0 * (exp_digits + 1)];
|
|
|
|
red_table_idx_0 >>= exp_chunk_shift;
|
|
/*
|
|
* Get additional bits from then next quadword
|
|
* when 64-bit boundaries are crossed.
|
|
*/
|
|
if (exp_chunk_shift > 64 - exp_win_size) {
|
|
T <<= (64 - exp_chunk_shift);
|
|
red_table_idx_0 ^= T;
|
|
}
|
|
red_table_idx_0 &= table_idx_mask;
|
|
}
|
|
{
|
|
red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
|
|
T = expz[exp_chunk_no + 1 + 1 * (exp_digits + 1)];
|
|
|
|
red_table_idx_1 >>= exp_chunk_shift;
|
|
/*
|
|
* Get additional bits from then next quadword
|
|
* when 64-bit boundaries are crossed.
|
|
*/
|
|
if (exp_chunk_shift > 64 - exp_win_size) {
|
|
T <<= (64 - exp_chunk_shift);
|
|
red_table_idx_1 ^= T;
|
|
}
|
|
red_table_idx_1 &= table_idx_mask;
|
|
}
|
|
|
|
extract(&red_X[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
|
|
}
|
|
|
|
/* Series of squaring */
|
|
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
|
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
|
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
|
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
|
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
|
|
|
damm((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* NB: After the last AMM of exponentiation in Montgomery domain, the result
|
|
* may be (modulus_bitsize + 1), but the conversion out of Montgomery domain
|
|
* performs an AMM(x,1) which guarantees that the final result is less than
|
|
* |m|, so no conditional subtraction is needed here. See [1] for details.
|
|
*
|
|
* [1] Gueron, S. Efficient software implementations of modular exponentiation.
|
|
* DOI: 10.1007/s13389-012-0031-5
|
|
*/
|
|
|
|
/* Convert result back in regular 2^52 domain */
|
|
memset(red_X, 0, 2 * red_digits * sizeof(BN_ULONG));
|
|
red_X[0 * red_digits] = 1;
|
|
red_X[1 * red_digits] = 1;
|
|
damm(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
if (storage != NULL) {
|
|
/* Clear whole storage */
|
|
OPENSSL_cleanse(storage, storage_len_bytes);
|
|
OPENSSL_free(storage);
|
|
}
|
|
|
|
#undef DAMS
|
|
return ret;
|
|
}
|
|
|
|
static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len)
|
|
{
|
|
uint64_t digit = 0;
|
|
|
|
assert(in != NULL);
|
|
assert(in_len <= 8);
|
|
|
|
for (; in_len > 0; in_len--) {
|
|
digit <<= 8;
|
|
digit += (uint64_t)(in[in_len - 1]);
|
|
}
|
|
return digit;
|
|
}
|
|
|
|
/*
|
|
* Convert array of words in regular (base=2^64) representation to array of
|
|
* words in redundant (base=2^52) one.
|
|
*/
|
|
static void to_words52(BN_ULONG *out, int out_len,
|
|
const BN_ULONG *in, int in_bitsize)
|
|
{
|
|
uint8_t *in_str = NULL;
|
|
|
|
assert(out != NULL);
|
|
assert(in != NULL);
|
|
/* Check destination buffer capacity */
|
|
assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
|
|
|
|
in_str = (uint8_t *)in;
|
|
|
|
for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
|
|
out[0] = (*(uint64_t_align1 *)in_str) & DIGIT_MASK;
|
|
in_str += 6;
|
|
out[1] = ((*(uint64_t_align1 *)in_str) >> 4) & DIGIT_MASK;
|
|
in_str += 7;
|
|
out_len -= 2;
|
|
}
|
|
|
|
if (in_bitsize > DIGIT_SIZE) {
|
|
uint64_t digit = get_digit(in_str, 7);
|
|
|
|
out[0] = digit & DIGIT_MASK;
|
|
in_str += 6;
|
|
in_bitsize -= DIGIT_SIZE;
|
|
digit = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
|
|
out[1] = digit >> 4;
|
|
out += 2;
|
|
out_len -= 2;
|
|
} else if (in_bitsize > 0) {
|
|
out[0] = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
|
|
out++;
|
|
out_len--;
|
|
}
|
|
|
|
while (out_len > 0) {
|
|
*out = 0;
|
|
out_len--;
|
|
out++;
|
|
}
|
|
}
|
|
|
|
static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit)
|
|
{
|
|
assert(out != NULL);
|
|
assert(out_len <= 8);
|
|
|
|
for (; out_len > 0; out_len--) {
|
|
*out++ = (uint8_t)(digit & 0xFF);
|
|
digit >>= 8;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert array of words in redundant (base=2^52) representation to array of
|
|
* words in regular (base=2^64) one.
|
|
*/
|
|
static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
|
|
{
|
|
int i;
|
|
int out_len = BITS2WORD64_SIZE(out_bitsize);
|
|
|
|
assert(out != NULL);
|
|
assert(in != NULL);
|
|
|
|
for (i = 0; i < out_len; i++)
|
|
out[i] = 0;
|
|
|
|
{
|
|
uint8_t *out_str = (uint8_t *)out;
|
|
|
|
for (; out_bitsize >= (2 * DIGIT_SIZE);
|
|
out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
|
|
(*(uint64_t_align1 *)out_str) = in[0];
|
|
out_str += 6;
|
|
(*(uint64_t_align1 *)out_str) ^= in[1] << 4;
|
|
out_str += 7;
|
|
}
|
|
|
|
if (out_bitsize > DIGIT_SIZE) {
|
|
put_digit(out_str, 7, in[0]);
|
|
out_str += 6;
|
|
out_bitsize -= DIGIT_SIZE;
|
|
put_digit(out_str, BITS2WORD8_SIZE(out_bitsize),
|
|
(in[1] << 4 | in[0] >> 48));
|
|
} else if (out_bitsize) {
|
|
put_digit(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set bit at index |idx| in the words array |a|.
|
|
* It does not do any boundaries checks, make sure the index is valid before
|
|
* calling the function.
|
|
*/
|
|
static ossl_inline void set_bit(BN_ULONG *a, int idx)
|
|
{
|
|
assert(a != NULL);
|
|
|
|
{
|
|
int i, j;
|
|
|
|
i = idx / BN_BITS2;
|
|
j = idx % BN_BITS2;
|
|
a[i] |= (((BN_ULONG)1) << j);
|
|
}
|
|
}
|
|
|
|
#endif
|