mirror of
https://github.com/openssl/openssl.git
synced 2024-12-27 06:21:43 +08:00
da9342ed5e
The compression methods are now a global variable in libssl. This change moves it into OSSL library context. It is necessary to eliminate atexit call from libssl. Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/24414)
1479 lines
51 KiB
C
1479 lines
51 KiB
C
/*
|
|
* Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
#include <errno.h>
|
|
#include <assert.h>
|
|
#include "../ssl_local.h"
|
|
#include "../quic/quic_local.h"
|
|
#include <openssl/evp.h>
|
|
#include <openssl/buffer.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/core_names.h>
|
|
#include "record_local.h"
|
|
#include "internal/packet.h"
|
|
#include "internal/comp.h"
|
|
|
|
void RECORD_LAYER_init(RECORD_LAYER *rl, SSL_CONNECTION *s)
|
|
{
|
|
rl->s = s;
|
|
}
|
|
|
|
int RECORD_LAYER_clear(RECORD_LAYER *rl)
|
|
{
|
|
int ret = 1;
|
|
|
|
/* Clear any buffered records we no longer need */
|
|
while (rl->curr_rec < rl->num_recs)
|
|
ret &= ssl_release_record(rl->s,
|
|
&(rl->tlsrecs[rl->curr_rec++]),
|
|
0);
|
|
|
|
|
|
rl->wnum = 0;
|
|
memset(rl->handshake_fragment, 0, sizeof(rl->handshake_fragment));
|
|
rl->handshake_fragment_len = 0;
|
|
rl->wpend_tot = 0;
|
|
rl->wpend_type = 0;
|
|
rl->wpend_buf = NULL;
|
|
rl->alert_count = 0;
|
|
rl->num_recs = 0;
|
|
rl->curr_rec = 0;
|
|
|
|
BIO_free(rl->rrlnext);
|
|
rl->rrlnext = NULL;
|
|
|
|
if (rl->rrlmethod != NULL)
|
|
rl->rrlmethod->free(rl->rrl); /* Ignore return value */
|
|
if (rl->wrlmethod != NULL)
|
|
rl->wrlmethod->free(rl->wrl); /* Ignore return value */
|
|
BIO_free(rl->rrlnext);
|
|
rl->rrlmethod = NULL;
|
|
rl->wrlmethod = NULL;
|
|
rl->rrlnext = NULL;
|
|
rl->rrl = NULL;
|
|
rl->wrl = NULL;
|
|
|
|
if (rl->d)
|
|
DTLS_RECORD_LAYER_clear(rl);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int RECORD_LAYER_reset(RECORD_LAYER *rl)
|
|
{
|
|
int ret;
|
|
|
|
ret = RECORD_LAYER_clear(rl);
|
|
|
|
/* We try and reset both record layers even if one fails */
|
|
ret &= ssl_set_new_record_layer(rl->s,
|
|
SSL_CONNECTION_IS_DTLS(rl->s)
|
|
? DTLS_ANY_VERSION : TLS_ANY_VERSION,
|
|
OSSL_RECORD_DIRECTION_READ,
|
|
OSSL_RECORD_PROTECTION_LEVEL_NONE, NULL, 0,
|
|
NULL, 0, NULL, 0, NULL, 0, NULL, 0,
|
|
NID_undef, NULL, NULL, NULL);
|
|
|
|
ret &= ssl_set_new_record_layer(rl->s,
|
|
SSL_CONNECTION_IS_DTLS(rl->s)
|
|
? DTLS_ANY_VERSION : TLS_ANY_VERSION,
|
|
OSSL_RECORD_DIRECTION_WRITE,
|
|
OSSL_RECORD_PROTECTION_LEVEL_NONE, NULL, 0,
|
|
NULL, 0, NULL, 0, NULL, 0, NULL, 0,
|
|
NID_undef, NULL, NULL, NULL);
|
|
|
|
/* SSLfatal already called in the event of failure */
|
|
return ret;
|
|
}
|
|
|
|
/* Checks if we have unprocessed read ahead data pending */
|
|
int RECORD_LAYER_read_pending(const RECORD_LAYER *rl)
|
|
{
|
|
return rl->rrlmethod->unprocessed_read_pending(rl->rrl);
|
|
}
|
|
|
|
/* Checks if we have decrypted unread record data pending */
|
|
int RECORD_LAYER_processed_read_pending(const RECORD_LAYER *rl)
|
|
{
|
|
return (rl->curr_rec < rl->num_recs)
|
|
|| rl->rrlmethod->processed_read_pending(rl->rrl);
|
|
}
|
|
|
|
int RECORD_LAYER_write_pending(const RECORD_LAYER *rl)
|
|
{
|
|
return rl->wpend_tot > 0;
|
|
}
|
|
|
|
static uint32_t ossl_get_max_early_data(SSL_CONNECTION *s)
|
|
{
|
|
uint32_t max_early_data;
|
|
SSL_SESSION *sess = s->session;
|
|
|
|
/*
|
|
* If we are a client then we always use the max_early_data from the
|
|
* session/psksession. Otherwise we go with the lowest out of the max early
|
|
* data set in the session and the configured max_early_data.
|
|
*/
|
|
if (!s->server && sess->ext.max_early_data == 0) {
|
|
if (!ossl_assert(s->psksession != NULL
|
|
&& s->psksession->ext.max_early_data > 0)) {
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
sess = s->psksession;
|
|
}
|
|
|
|
if (!s->server)
|
|
max_early_data = sess->ext.max_early_data;
|
|
else if (s->ext.early_data != SSL_EARLY_DATA_ACCEPTED)
|
|
max_early_data = s->recv_max_early_data;
|
|
else
|
|
max_early_data = s->recv_max_early_data < sess->ext.max_early_data
|
|
? s->recv_max_early_data : sess->ext.max_early_data;
|
|
|
|
return max_early_data;
|
|
}
|
|
|
|
static int ossl_early_data_count_ok(SSL_CONNECTION *s, size_t length,
|
|
size_t overhead, int send)
|
|
{
|
|
uint32_t max_early_data;
|
|
|
|
max_early_data = ossl_get_max_early_data(s);
|
|
|
|
if (max_early_data == 0) {
|
|
SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_TOO_MUCH_EARLY_DATA);
|
|
return 0;
|
|
}
|
|
|
|
/* If we are dealing with ciphertext we need to allow for the overhead */
|
|
max_early_data += overhead;
|
|
|
|
if (s->early_data_count + length > max_early_data) {
|
|
SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_TOO_MUCH_EARLY_DATA);
|
|
return 0;
|
|
}
|
|
s->early_data_count += length;
|
|
|
|
return 1;
|
|
}
|
|
|
|
size_t ssl3_pending(const SSL *s)
|
|
{
|
|
size_t i, num = 0;
|
|
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
|
|
|
|
if (sc == NULL)
|
|
return 0;
|
|
|
|
if (SSL_CONNECTION_IS_DTLS(sc)) {
|
|
TLS_RECORD *rdata;
|
|
pitem *item, *iter;
|
|
|
|
iter = pqueue_iterator(sc->rlayer.d->buffered_app_data);
|
|
while ((item = pqueue_next(&iter)) != NULL) {
|
|
rdata = item->data;
|
|
num += rdata->length;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < sc->rlayer.num_recs; i++) {
|
|
if (sc->rlayer.tlsrecs[i].type != SSL3_RT_APPLICATION_DATA)
|
|
return num;
|
|
num += sc->rlayer.tlsrecs[i].length;
|
|
}
|
|
|
|
num += sc->rlayer.rrlmethod->app_data_pending(sc->rlayer.rrl);
|
|
|
|
return num;
|
|
}
|
|
|
|
void SSL_CTX_set_default_read_buffer_len(SSL_CTX *ctx, size_t len)
|
|
{
|
|
ctx->default_read_buf_len = len;
|
|
}
|
|
|
|
void SSL_set_default_read_buffer_len(SSL *s, size_t len)
|
|
{
|
|
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
|
|
|
|
if (sc == NULL || IS_QUIC(s))
|
|
return;
|
|
sc->rlayer.default_read_buf_len = len;
|
|
}
|
|
|
|
const char *SSL_rstate_string_long(const SSL *s)
|
|
{
|
|
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
|
|
const char *lng;
|
|
|
|
if (sc == NULL)
|
|
return NULL;
|
|
|
|
if (sc->rlayer.rrlmethod == NULL || sc->rlayer.rrl == NULL)
|
|
return "unknown";
|
|
|
|
sc->rlayer.rrlmethod->get_state(sc->rlayer.rrl, NULL, &lng);
|
|
|
|
return lng;
|
|
}
|
|
|
|
const char *SSL_rstate_string(const SSL *s)
|
|
{
|
|
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
|
|
const char *shrt;
|
|
|
|
if (sc == NULL)
|
|
return NULL;
|
|
|
|
if (sc->rlayer.rrlmethod == NULL || sc->rlayer.rrl == NULL)
|
|
return "unknown";
|
|
|
|
sc->rlayer.rrlmethod->get_state(sc->rlayer.rrl, &shrt, NULL);
|
|
|
|
return shrt;
|
|
}
|
|
|
|
static int tls_write_check_pending(SSL_CONNECTION *s, uint8_t type,
|
|
const unsigned char *buf, size_t len)
|
|
{
|
|
if (s->rlayer.wpend_tot == 0)
|
|
return 0;
|
|
|
|
/* We have pending data, so do some sanity checks */
|
|
if ((s->rlayer.wpend_tot > len)
|
|
|| (!(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER)
|
|
&& (s->rlayer.wpend_buf != buf))
|
|
|| (s->rlayer.wpend_type != type)) {
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_WRITE_RETRY);
|
|
return -1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Call this to write data in records of type 'type' It will return <= 0 if
|
|
* not all data has been sent or non-blocking IO.
|
|
*/
|
|
int ssl3_write_bytes(SSL *ssl, uint8_t type, const void *buf_, size_t len,
|
|
size_t *written)
|
|
{
|
|
const unsigned char *buf = buf_;
|
|
size_t tot;
|
|
size_t n, max_send_fragment, split_send_fragment, maxpipes;
|
|
int i;
|
|
SSL_CONNECTION *s = SSL_CONNECTION_FROM_SSL_ONLY(ssl);
|
|
OSSL_RECORD_TEMPLATE tmpls[SSL_MAX_PIPELINES];
|
|
unsigned int recversion;
|
|
|
|
if (s == NULL)
|
|
return -1;
|
|
|
|
s->rwstate = SSL_NOTHING;
|
|
tot = s->rlayer.wnum;
|
|
/*
|
|
* ensure that if we end up with a smaller value of data to write out
|
|
* than the original len from a write which didn't complete for
|
|
* non-blocking I/O and also somehow ended up avoiding the check for
|
|
* this in tls_write_check_pending/SSL_R_BAD_WRITE_RETRY as it must never be
|
|
* possible to end up with (len-tot) as a large number that will then
|
|
* promptly send beyond the end of the users buffer ... so we trap and
|
|
* report the error in a way the user will notice
|
|
*/
|
|
if ((len < s->rlayer.wnum)
|
|
|| ((s->rlayer.wpend_tot != 0)
|
|
&& (len < (s->rlayer.wnum + s->rlayer.wpend_tot)))) {
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_LENGTH);
|
|
return -1;
|
|
}
|
|
|
|
if (s->early_data_state == SSL_EARLY_DATA_WRITING
|
|
&& !ossl_early_data_count_ok(s, len, 0, 1)) {
|
|
/* SSLfatal() already called */
|
|
return -1;
|
|
}
|
|
|
|
s->rlayer.wnum = 0;
|
|
|
|
/*
|
|
* If we are supposed to be sending a KeyUpdate or NewSessionTicket then go
|
|
* into init unless we have writes pending - in which case we should finish
|
|
* doing that first.
|
|
*/
|
|
if (s->rlayer.wpend_tot == 0 && (s->key_update != SSL_KEY_UPDATE_NONE
|
|
|| s->ext.extra_tickets_expected > 0))
|
|
ossl_statem_set_in_init(s, 1);
|
|
|
|
/*
|
|
* When writing early data on the server side we could be "in_init" in
|
|
* between receiving the EoED and the CF - but we don't want to handle those
|
|
* messages yet.
|
|
*/
|
|
if (SSL_in_init(ssl) && !ossl_statem_get_in_handshake(s)
|
|
&& s->early_data_state != SSL_EARLY_DATA_UNAUTH_WRITING) {
|
|
i = s->handshake_func(ssl);
|
|
/* SSLfatal() already called */
|
|
if (i < 0)
|
|
return i;
|
|
if (i == 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
i = tls_write_check_pending(s, type, buf, len);
|
|
if (i < 0) {
|
|
/* SSLfatal() already called */
|
|
return i;
|
|
} else if (i > 0) {
|
|
/* Retry needed */
|
|
i = HANDLE_RLAYER_WRITE_RETURN(s,
|
|
s->rlayer.wrlmethod->retry_write_records(s->rlayer.wrl));
|
|
if (i <= 0) {
|
|
s->rlayer.wnum = tot;
|
|
return i;
|
|
}
|
|
tot += s->rlayer.wpend_tot;
|
|
s->rlayer.wpend_tot = 0;
|
|
} /* else no retry required */
|
|
|
|
if (tot == 0) {
|
|
/*
|
|
* We've not previously sent any data for this write so memorize
|
|
* arguments so that we can detect bad write retries later
|
|
*/
|
|
s->rlayer.wpend_tot = 0;
|
|
s->rlayer.wpend_type = type;
|
|
s->rlayer.wpend_buf = buf;
|
|
}
|
|
|
|
if (tot == len) { /* done? */
|
|
*written = tot;
|
|
return 1;
|
|
}
|
|
|
|
/* If we have an alert to send, lets send it */
|
|
if (s->s3.alert_dispatch > 0) {
|
|
i = ssl->method->ssl_dispatch_alert(ssl);
|
|
if (i <= 0) {
|
|
/* SSLfatal() already called if appropriate */
|
|
s->rlayer.wnum = tot;
|
|
return i;
|
|
}
|
|
/* if it went, fall through and send more stuff */
|
|
}
|
|
|
|
n = (len - tot);
|
|
|
|
max_send_fragment = ssl_get_max_send_fragment(s);
|
|
split_send_fragment = ssl_get_split_send_fragment(s);
|
|
|
|
if (max_send_fragment == 0
|
|
|| split_send_fragment == 0
|
|
|| split_send_fragment > max_send_fragment) {
|
|
/*
|
|
* We should have prevented this when we set/get the split and max send
|
|
* fragments so we shouldn't get here
|
|
*/
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Some servers hang if initial client hello is larger than 256 bytes
|
|
* and record version number > TLS 1.0
|
|
*/
|
|
recversion = (s->version == TLS1_3_VERSION) ? TLS1_2_VERSION : s->version;
|
|
if (SSL_get_state(ssl) == TLS_ST_CW_CLNT_HELLO
|
|
&& !s->renegotiate
|
|
&& TLS1_get_version(ssl) > TLS1_VERSION
|
|
&& s->hello_retry_request == SSL_HRR_NONE)
|
|
recversion = TLS1_VERSION;
|
|
|
|
for (;;) {
|
|
size_t tmppipelen, remain;
|
|
size_t j, lensofar = 0;
|
|
|
|
/*
|
|
* Ask the record layer how it would like to split the amount of data
|
|
* that we have, and how many of those records it would like in one go.
|
|
*/
|
|
maxpipes = s->rlayer.wrlmethod->get_max_records(s->rlayer.wrl, type, n,
|
|
max_send_fragment,
|
|
&split_send_fragment);
|
|
/*
|
|
* If max_pipelines is 0 then this means "undefined" and we default to
|
|
* whatever the record layer wants to do. Otherwise we use the smallest
|
|
* value from the number requested by the record layer, and max number
|
|
* configured by the user.
|
|
*/
|
|
if (s->max_pipelines > 0 && maxpipes > s->max_pipelines)
|
|
maxpipes = s->max_pipelines;
|
|
|
|
if (maxpipes > SSL_MAX_PIPELINES)
|
|
maxpipes = SSL_MAX_PIPELINES;
|
|
|
|
if (split_send_fragment > max_send_fragment) {
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
if (n / maxpipes >= split_send_fragment) {
|
|
/*
|
|
* We have enough data to completely fill all available
|
|
* pipelines
|
|
*/
|
|
for (j = 0; j < maxpipes; j++) {
|
|
tmpls[j].type = type;
|
|
tmpls[j].version = recversion;
|
|
tmpls[j].buf = &(buf[tot]) + (j * split_send_fragment);
|
|
tmpls[j].buflen = split_send_fragment;
|
|
}
|
|
/* Remember how much data we are going to be sending */
|
|
s->rlayer.wpend_tot = maxpipes * split_send_fragment;
|
|
} else {
|
|
/* We can partially fill all available pipelines */
|
|
tmppipelen = n / maxpipes;
|
|
remain = n % maxpipes;
|
|
/*
|
|
* If there is a remainder we add an extra byte to the first few
|
|
* pipelines
|
|
*/
|
|
if (remain > 0)
|
|
tmppipelen++;
|
|
for (j = 0; j < maxpipes; j++) {
|
|
tmpls[j].type = type;
|
|
tmpls[j].version = recversion;
|
|
tmpls[j].buf = &(buf[tot]) + lensofar;
|
|
tmpls[j].buflen = tmppipelen;
|
|
lensofar += tmppipelen;
|
|
if (j + 1 == remain)
|
|
tmppipelen--;
|
|
}
|
|
/* Remember how much data we are going to be sending */
|
|
s->rlayer.wpend_tot = n;
|
|
}
|
|
|
|
i = HANDLE_RLAYER_WRITE_RETURN(s,
|
|
s->rlayer.wrlmethod->write_records(s->rlayer.wrl, tmpls, maxpipes));
|
|
if (i <= 0) {
|
|
/* SSLfatal() already called if appropriate */
|
|
s->rlayer.wnum = tot;
|
|
return i;
|
|
}
|
|
|
|
if (s->rlayer.wpend_tot == n
|
|
|| (type == SSL3_RT_APPLICATION_DATA
|
|
&& (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE) != 0)) {
|
|
*written = tot + s->rlayer.wpend_tot;
|
|
s->rlayer.wpend_tot = 0;
|
|
return 1;
|
|
}
|
|
|
|
n -= s->rlayer.wpend_tot;
|
|
tot += s->rlayer.wpend_tot;
|
|
}
|
|
}
|
|
|
|
int ossl_tls_handle_rlayer_return(SSL_CONNECTION *s, int writing, int ret,
|
|
char *file, int line)
|
|
{
|
|
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
|
|
|
|
if (ret == OSSL_RECORD_RETURN_RETRY) {
|
|
s->rwstate = writing ? SSL_WRITING : SSL_READING;
|
|
ret = -1;
|
|
} else {
|
|
s->rwstate = SSL_NOTHING;
|
|
if (ret == OSSL_RECORD_RETURN_EOF) {
|
|
if (writing) {
|
|
/*
|
|
* This shouldn't happen with a writing operation. We treat it
|
|
* as fatal.
|
|
*/
|
|
ERR_new();
|
|
ERR_set_debug(file, line, 0);
|
|
ossl_statem_fatal(s, SSL_AD_INTERNAL_ERROR,
|
|
ERR_R_INTERNAL_ERROR, NULL);
|
|
ret = OSSL_RECORD_RETURN_FATAL;
|
|
} else if ((s->options & SSL_OP_IGNORE_UNEXPECTED_EOF) != 0) {
|
|
SSL_set_shutdown(ssl, SSL_RECEIVED_SHUTDOWN);
|
|
s->s3.warn_alert = SSL_AD_CLOSE_NOTIFY;
|
|
} else {
|
|
ERR_new();
|
|
ERR_set_debug(file, line, 0);
|
|
/*
|
|
* This reason code is part of the API and may be used by
|
|
* applications for control flow decisions.
|
|
*/
|
|
ossl_statem_fatal(s, SSL_AD_DECODE_ERROR,
|
|
SSL_R_UNEXPECTED_EOF_WHILE_READING, NULL);
|
|
}
|
|
} else if (ret == OSSL_RECORD_RETURN_FATAL) {
|
|
int al = s->rlayer.rrlmethod->get_alert_code(s->rlayer.rrl);
|
|
|
|
if (al != SSL_AD_NO_ALERT) {
|
|
ERR_new();
|
|
ERR_set_debug(file, line, 0);
|
|
ossl_statem_fatal(s, al, SSL_R_RECORD_LAYER_FAILURE, NULL);
|
|
}
|
|
/*
|
|
* else some failure but there is no alert code. We don't log an
|
|
* error for this. The record layer should have logged an error
|
|
* already or, if not, its due to some sys call error which will be
|
|
* reported via SSL_ERROR_SYSCALL and errno.
|
|
*/
|
|
}
|
|
/*
|
|
* The record layer distinguishes the cases of EOF, non-fatal
|
|
* err and retry. Upper layers do not.
|
|
* If we got a retry or success then *ret is already correct,
|
|
* otherwise we need to convert the return value.
|
|
*/
|
|
if (ret == OSSL_RECORD_RETURN_NON_FATAL_ERR || ret == OSSL_RECORD_RETURN_EOF)
|
|
ret = 0;
|
|
else if (ret < OSSL_RECORD_RETURN_NON_FATAL_ERR)
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ssl_release_record(SSL_CONNECTION *s, TLS_RECORD *rr, size_t length)
|
|
{
|
|
assert(rr->length >= length);
|
|
if (rr->rechandle != NULL) {
|
|
if (length == 0)
|
|
length = rr->length;
|
|
/* The record layer allocated the buffers for this record */
|
|
if (HANDLE_RLAYER_READ_RETURN(s,
|
|
s->rlayer.rrlmethod->release_record(s->rlayer.rrl,
|
|
rr->rechandle,
|
|
length)) <= 0) {
|
|
/* RLAYER_fatal already called */
|
|
return 0;
|
|
}
|
|
|
|
if (length == rr->length)
|
|
s->rlayer.curr_rec++;
|
|
} else if (length == 0 || length == rr->length) {
|
|
/* We allocated the buffers for this record (only happens with DTLS) */
|
|
OPENSSL_free(rr->allocdata);
|
|
rr->allocdata = NULL;
|
|
}
|
|
rr->length -= length;
|
|
if (rr->length > 0)
|
|
rr->off += length;
|
|
else
|
|
rr->off = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*-
|
|
* Return up to 'len' payload bytes received in 'type' records.
|
|
* 'type' is one of the following:
|
|
*
|
|
* - SSL3_RT_HANDSHAKE (when tls_get_message_header and tls_get_message_body
|
|
* call us)
|
|
* - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
|
|
* - 0 (during a shutdown, no data has to be returned)
|
|
*
|
|
* If we don't have stored data to work from, read a SSL/TLS record first
|
|
* (possibly multiple records if we still don't have anything to return).
|
|
*
|
|
* This function must handle any surprises the peer may have for us, such as
|
|
* Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec
|
|
* messages are treated as if they were handshake messages *if* the |recvd_type|
|
|
* argument is non NULL.
|
|
* Also if record payloads contain fragments too small to process, we store
|
|
* them until there is enough for the respective protocol (the record protocol
|
|
* may use arbitrary fragmentation and even interleaving):
|
|
* Change cipher spec protocol
|
|
* just 1 byte needed, no need for keeping anything stored
|
|
* Alert protocol
|
|
* 2 bytes needed (AlertLevel, AlertDescription)
|
|
* Handshake protocol
|
|
* 4 bytes needed (HandshakeType, uint24 length) -- we just have
|
|
* to detect unexpected Client Hello and Hello Request messages
|
|
* here, anything else is handled by higher layers
|
|
* Application data protocol
|
|
* none of our business
|
|
*/
|
|
int ssl3_read_bytes(SSL *ssl, uint8_t type, uint8_t *recvd_type,
|
|
unsigned char *buf, size_t len,
|
|
int peek, size_t *readbytes)
|
|
{
|
|
int i, j, ret;
|
|
size_t n, curr_rec, totalbytes;
|
|
TLS_RECORD *rr;
|
|
void (*cb) (const SSL *ssl, int type2, int val) = NULL;
|
|
int is_tls13;
|
|
SSL_CONNECTION *s = SSL_CONNECTION_FROM_SSL_ONLY(ssl);
|
|
|
|
is_tls13 = SSL_CONNECTION_IS_TLS13(s);
|
|
|
|
if ((type != 0
|
|
&& (type != SSL3_RT_APPLICATION_DATA)
|
|
&& (type != SSL3_RT_HANDSHAKE))
|
|
|| (peek && (type != SSL3_RT_APPLICATION_DATA))) {
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
if ((type == SSL3_RT_HANDSHAKE) && (s->rlayer.handshake_fragment_len > 0))
|
|
/* (partially) satisfy request from storage */
|
|
{
|
|
unsigned char *src = s->rlayer.handshake_fragment;
|
|
unsigned char *dst = buf;
|
|
unsigned int k;
|
|
|
|
/* peek == 0 */
|
|
n = 0;
|
|
while ((len > 0) && (s->rlayer.handshake_fragment_len > 0)) {
|
|
*dst++ = *src++;
|
|
len--;
|
|
s->rlayer.handshake_fragment_len--;
|
|
n++;
|
|
}
|
|
/* move any remaining fragment bytes: */
|
|
for (k = 0; k < s->rlayer.handshake_fragment_len; k++)
|
|
s->rlayer.handshake_fragment[k] = *src++;
|
|
|
|
if (recvd_type != NULL)
|
|
*recvd_type = SSL3_RT_HANDSHAKE;
|
|
|
|
*readbytes = n;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Now s->rlayer.handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE.
|
|
*/
|
|
|
|
if (!ossl_statem_get_in_handshake(s) && SSL_in_init(ssl)) {
|
|
/* type == SSL3_RT_APPLICATION_DATA */
|
|
i = s->handshake_func(ssl);
|
|
/* SSLfatal() already called */
|
|
if (i < 0)
|
|
return i;
|
|
if (i == 0)
|
|
return -1;
|
|
}
|
|
start:
|
|
s->rwstate = SSL_NOTHING;
|
|
|
|
/*-
|
|
* For each record 'i' up to |num_recs]
|
|
* rr[i].type - is the type of record
|
|
* rr[i].data, - data
|
|
* rr[i].off, - offset into 'data' for next read
|
|
* rr[i].length, - number of bytes.
|
|
*/
|
|
/* get new records if necessary */
|
|
if (s->rlayer.curr_rec >= s->rlayer.num_recs) {
|
|
s->rlayer.curr_rec = s->rlayer.num_recs = 0;
|
|
do {
|
|
rr = &s->rlayer.tlsrecs[s->rlayer.num_recs];
|
|
|
|
ret = HANDLE_RLAYER_READ_RETURN(s,
|
|
s->rlayer.rrlmethod->read_record(s->rlayer.rrl,
|
|
&rr->rechandle,
|
|
&rr->version, &rr->type,
|
|
&rr->data, &rr->length,
|
|
NULL, NULL));
|
|
if (ret <= 0) {
|
|
/* SSLfatal() already called if appropriate */
|
|
return ret;
|
|
}
|
|
rr->off = 0;
|
|
s->rlayer.num_recs++;
|
|
} while (s->rlayer.rrlmethod->processed_read_pending(s->rlayer.rrl)
|
|
&& s->rlayer.num_recs < SSL_MAX_PIPELINES);
|
|
}
|
|
rr = &s->rlayer.tlsrecs[s->rlayer.curr_rec];
|
|
|
|
if (s->rlayer.handshake_fragment_len > 0
|
|
&& rr->type != SSL3_RT_HANDSHAKE
|
|
&& SSL_CONNECTION_IS_TLS13(s)) {
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_MIXED_HANDSHAKE_AND_NON_HANDSHAKE_DATA);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Reset the count of consecutive warning alerts if we've got a non-empty
|
|
* record that isn't an alert.
|
|
*/
|
|
if (rr->type != SSL3_RT_ALERT && rr->length != 0)
|
|
s->rlayer.alert_count = 0;
|
|
|
|
/* we now have a packet which can be read and processed */
|
|
|
|
if (s->s3.change_cipher_spec /* set when we receive ChangeCipherSpec,
|
|
* reset by ssl3_get_finished */
|
|
&& (rr->type != SSL3_RT_HANDSHAKE)) {
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_DATA_BETWEEN_CCS_AND_FINISHED);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* If the other end has shut down, throw anything we read away (even in
|
|
* 'peek' mode)
|
|
*/
|
|
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
|
|
s->rlayer.curr_rec++;
|
|
s->rwstate = SSL_NOTHING;
|
|
return 0;
|
|
}
|
|
|
|
if (type == rr->type
|
|
|| (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC
|
|
&& type == SSL3_RT_HANDSHAKE && recvd_type != NULL
|
|
&& !is_tls13)) {
|
|
/*
|
|
* SSL3_RT_APPLICATION_DATA or
|
|
* SSL3_RT_HANDSHAKE or
|
|
* SSL3_RT_CHANGE_CIPHER_SPEC
|
|
*/
|
|
/*
|
|
* make sure that we are not getting application data when we are
|
|
* doing a handshake for the first time
|
|
*/
|
|
if (SSL_in_init(ssl) && type == SSL3_RT_APPLICATION_DATA
|
|
&& SSL_IS_FIRST_HANDSHAKE(s)) {
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_APP_DATA_IN_HANDSHAKE);
|
|
return -1;
|
|
}
|
|
|
|
if (type == SSL3_RT_HANDSHAKE
|
|
&& rr->type == SSL3_RT_CHANGE_CIPHER_SPEC
|
|
&& s->rlayer.handshake_fragment_len > 0) {
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY);
|
|
return -1;
|
|
}
|
|
|
|
if (recvd_type != NULL)
|
|
*recvd_type = rr->type;
|
|
|
|
if (len == 0) {
|
|
/*
|
|
* Skip a zero length record. This ensures multiple calls to
|
|
* SSL_read() with a zero length buffer will eventually cause
|
|
* SSL_pending() to report data as being available.
|
|
*/
|
|
if (rr->length == 0 && !ssl_release_record(s, rr, 0))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
totalbytes = 0;
|
|
curr_rec = s->rlayer.curr_rec;
|
|
do {
|
|
if (len - totalbytes > rr->length)
|
|
n = rr->length;
|
|
else
|
|
n = len - totalbytes;
|
|
|
|
memcpy(buf, &(rr->data[rr->off]), n);
|
|
buf += n;
|
|
if (peek) {
|
|
/* Mark any zero length record as consumed CVE-2016-6305 */
|
|
if (rr->length == 0 && !ssl_release_record(s, rr, 0))
|
|
return -1;
|
|
} else {
|
|
if (!ssl_release_record(s, rr, n))
|
|
return -1;
|
|
}
|
|
if (rr->length == 0
|
|
|| (peek && n == rr->length)) {
|
|
rr++;
|
|
curr_rec++;
|
|
}
|
|
totalbytes += n;
|
|
} while (type == SSL3_RT_APPLICATION_DATA
|
|
&& curr_rec < s->rlayer.num_recs
|
|
&& totalbytes < len);
|
|
if (totalbytes == 0) {
|
|
/* We must have read empty records. Get more data */
|
|
goto start;
|
|
}
|
|
*readbytes = totalbytes;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If we get here, then type != rr->type; if we have a handshake message,
|
|
* then it was unexpected (Hello Request or Client Hello) or invalid (we
|
|
* were actually expecting a CCS).
|
|
*/
|
|
|
|
/*
|
|
* Lets just double check that we've not got an SSLv2 record
|
|
*/
|
|
if (rr->version == SSL2_VERSION) {
|
|
/*
|
|
* Should never happen. ssl3_get_record() should only give us an SSLv2
|
|
* record back if this is the first packet and we are looking for an
|
|
* initial ClientHello. Therefore |type| should always be equal to
|
|
* |rr->type|. If not then something has gone horribly wrong
|
|
*/
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
if (ssl->method->version == TLS_ANY_VERSION
|
|
&& (s->server || rr->type != SSL3_RT_ALERT)) {
|
|
/*
|
|
* If we've got this far and still haven't decided on what version
|
|
* we're using then this must be a client side alert we're dealing
|
|
* with. We shouldn't be receiving anything other than a ClientHello
|
|
* if we are a server.
|
|
*/
|
|
s->version = rr->version;
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_MESSAGE);
|
|
return -1;
|
|
}
|
|
|
|
/*-
|
|
* s->rlayer.handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAKE;
|
|
* (Possibly rr is 'empty' now, i.e. rr->length may be 0.)
|
|
*/
|
|
|
|
if (rr->type == SSL3_RT_ALERT) {
|
|
unsigned int alert_level, alert_descr;
|
|
const unsigned char *alert_bytes = rr->data + rr->off;
|
|
PACKET alert;
|
|
|
|
if (!PACKET_buf_init(&alert, alert_bytes, rr->length)
|
|
|| !PACKET_get_1(&alert, &alert_level)
|
|
|| !PACKET_get_1(&alert, &alert_descr)
|
|
|| PACKET_remaining(&alert) != 0) {
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_INVALID_ALERT);
|
|
return -1;
|
|
}
|
|
|
|
if (s->msg_callback)
|
|
s->msg_callback(0, s->version, SSL3_RT_ALERT, alert_bytes, 2, ssl,
|
|
s->msg_callback_arg);
|
|
|
|
if (s->info_callback != NULL)
|
|
cb = s->info_callback;
|
|
else if (ssl->ctx->info_callback != NULL)
|
|
cb = ssl->ctx->info_callback;
|
|
|
|
if (cb != NULL) {
|
|
j = (alert_level << 8) | alert_descr;
|
|
cb(ssl, SSL_CB_READ_ALERT, j);
|
|
}
|
|
|
|
if ((!is_tls13 && alert_level == SSL3_AL_WARNING)
|
|
|| (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED)) {
|
|
s->s3.warn_alert = alert_descr;
|
|
if (!ssl_release_record(s, rr, 0))
|
|
return -1;
|
|
|
|
s->rlayer.alert_count++;
|
|
if (s->rlayer.alert_count == MAX_WARN_ALERT_COUNT) {
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
|
|
SSL_R_TOO_MANY_WARN_ALERTS);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Apart from close_notify the only other warning alert in TLSv1.3
|
|
* is user_cancelled - which we just ignore.
|
|
*/
|
|
if (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED) {
|
|
goto start;
|
|
} else if (alert_descr == SSL_AD_CLOSE_NOTIFY
|
|
&& (is_tls13 || alert_level == SSL3_AL_WARNING)) {
|
|
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
|
|
return 0;
|
|
} else if (alert_level == SSL3_AL_FATAL || is_tls13) {
|
|
s->rwstate = SSL_NOTHING;
|
|
s->s3.fatal_alert = alert_descr;
|
|
SSLfatal_data(s, SSL_AD_NO_ALERT,
|
|
SSL_AD_REASON_OFFSET + alert_descr,
|
|
"SSL alert number %d", alert_descr);
|
|
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
|
|
if (!ssl_release_record(s, rr, 0))
|
|
return -1;
|
|
SSL_CTX_remove_session(s->session_ctx, s->session);
|
|
return 0;
|
|
} else if (alert_descr == SSL_AD_NO_RENEGOTIATION) {
|
|
/*
|
|
* This is a warning but we receive it if we requested
|
|
* renegotiation and the peer denied it. Terminate with a fatal
|
|
* alert because if application tried to renegotiate it
|
|
* presumably had a good reason and expects it to succeed. In
|
|
* future we might have a renegotiation where we don't care if
|
|
* the peer refused it where we carry on.
|
|
*/
|
|
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_RENEGOTIATION);
|
|
return -1;
|
|
} else if (alert_level == SSL3_AL_WARNING) {
|
|
/* We ignore any other warning alert in TLSv1.2 and below */
|
|
goto start;
|
|
}
|
|
|
|
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_UNKNOWN_ALERT_TYPE);
|
|
return -1;
|
|
}
|
|
|
|
if ((s->shutdown & SSL_SENT_SHUTDOWN) != 0) {
|
|
if (rr->type == SSL3_RT_HANDSHAKE) {
|
|
BIO *rbio;
|
|
|
|
/*
|
|
* We ignore any handshake messages sent to us unless they are
|
|
* TLSv1.3 in which case we want to process them. For all other
|
|
* handshake messages we can't do anything reasonable with them
|
|
* because we are unable to write any response due to having already
|
|
* sent close_notify.
|
|
*/
|
|
if (!SSL_CONNECTION_IS_TLS13(s)) {
|
|
if (!ssl_release_record(s, rr, 0))
|
|
return -1;
|
|
|
|
if ((s->mode & SSL_MODE_AUTO_RETRY) != 0)
|
|
goto start;
|
|
|
|
s->rwstate = SSL_READING;
|
|
rbio = SSL_get_rbio(ssl);
|
|
BIO_clear_retry_flags(rbio);
|
|
BIO_set_retry_read(rbio);
|
|
return -1;
|
|
}
|
|
} else {
|
|
/*
|
|
* The peer is continuing to send application data, but we have
|
|
* already sent close_notify. If this was expected we should have
|
|
* been called via SSL_read() and this would have been handled
|
|
* above.
|
|
* No alert sent because we already sent close_notify
|
|
*/
|
|
if (!ssl_release_record(s, rr, 0))
|
|
return -1;
|
|
SSLfatal(s, SSL_AD_NO_ALERT,
|
|
SSL_R_APPLICATION_DATA_AFTER_CLOSE_NOTIFY);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For handshake data we have 'fragment' storage, so fill that so that we
|
|
* can process the header at a fixed place. This is done after the
|
|
* "SHUTDOWN" code above to avoid filling the fragment storage with data
|
|
* that we're just going to discard.
|
|
*/
|
|
if (rr->type == SSL3_RT_HANDSHAKE) {
|
|
size_t dest_maxlen = sizeof(s->rlayer.handshake_fragment);
|
|
unsigned char *dest = s->rlayer.handshake_fragment;
|
|
size_t *dest_len = &s->rlayer.handshake_fragment_len;
|
|
|
|
n = dest_maxlen - *dest_len; /* available space in 'dest' */
|
|
if (rr->length < n)
|
|
n = rr->length; /* available bytes */
|
|
|
|
/* now move 'n' bytes: */
|
|
if (n > 0) {
|
|
memcpy(dest + *dest_len, rr->data + rr->off, n);
|
|
*dest_len += n;
|
|
}
|
|
/*
|
|
* We release the number of bytes consumed, or the whole record if it
|
|
* is zero length
|
|
*/
|
|
if ((n > 0 || rr->length == 0) && !ssl_release_record(s, rr, n))
|
|
return -1;
|
|
|
|
if (*dest_len < dest_maxlen)
|
|
goto start; /* fragment was too small */
|
|
}
|
|
|
|
if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC) {
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Unexpected handshake message (ClientHello, NewSessionTicket (TLS1.3) or
|
|
* protocol violation)
|
|
*/
|
|
if ((s->rlayer.handshake_fragment_len >= 4)
|
|
&& !ossl_statem_get_in_handshake(s)) {
|
|
int ined = (s->early_data_state == SSL_EARLY_DATA_READING);
|
|
|
|
/* We found handshake data, so we're going back into init */
|
|
ossl_statem_set_in_init(s, 1);
|
|
|
|
i = s->handshake_func(ssl);
|
|
/* SSLfatal() already called if appropriate */
|
|
if (i < 0)
|
|
return i;
|
|
if (i == 0) {
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* If we were actually trying to read early data and we found a
|
|
* handshake message, then we don't want to continue to try and read
|
|
* the application data any more. It won't be "early" now.
|
|
*/
|
|
if (ined)
|
|
return -1;
|
|
|
|
if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
|
|
if (!RECORD_LAYER_read_pending(&s->rlayer)) {
|
|
BIO *bio;
|
|
/*
|
|
* In the case where we try to read application data, but we
|
|
* trigger an SSL handshake, we return -1 with the retry
|
|
* option set. Otherwise renegotiation may cause nasty
|
|
* problems in the blocking world
|
|
*/
|
|
s->rwstate = SSL_READING;
|
|
bio = SSL_get_rbio(ssl);
|
|
BIO_clear_retry_flags(bio);
|
|
BIO_set_retry_read(bio);
|
|
return -1;
|
|
}
|
|
}
|
|
goto start;
|
|
}
|
|
|
|
switch (rr->type) {
|
|
default:
|
|
/*
|
|
* TLS 1.0 and 1.1 say you SHOULD ignore unrecognised record types, but
|
|
* TLS 1.2 says you MUST send an unexpected message alert. We use the
|
|
* TLS 1.2 behaviour for all protocol versions to prevent issues where
|
|
* no progress is being made and the peer continually sends unrecognised
|
|
* record types, using up resources processing them.
|
|
*/
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD);
|
|
return -1;
|
|
case SSL3_RT_CHANGE_CIPHER_SPEC:
|
|
case SSL3_RT_ALERT:
|
|
case SSL3_RT_HANDSHAKE:
|
|
/*
|
|
* we already handled all of these, with the possible exception of
|
|
* SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but
|
|
* that should not happen when type != rr->type
|
|
*/
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, ERR_R_INTERNAL_ERROR);
|
|
return -1;
|
|
case SSL3_RT_APPLICATION_DATA:
|
|
/*
|
|
* At this point, we were expecting handshake data, but have
|
|
* application data. If the library was running inside ssl3_read()
|
|
* (i.e. in_read_app_data is set) and it makes sense to read
|
|
* application data at this point (session renegotiation not yet
|
|
* started), we will indulge it.
|
|
*/
|
|
if (ossl_statem_app_data_allowed(s)) {
|
|
s->s3.in_read_app_data = 2;
|
|
return -1;
|
|
} else if (ossl_statem_skip_early_data(s)) {
|
|
/*
|
|
* This can happen after a client sends a CH followed by early_data,
|
|
* but the server responds with a HelloRetryRequest. The server
|
|
* reads the next record from the client expecting to find a
|
|
* plaintext ClientHello but gets a record which appears to be
|
|
* application data. The trial decrypt "works" because null
|
|
* decryption was applied. We just skip it and move on to the next
|
|
* record.
|
|
*/
|
|
if (!ossl_early_data_count_ok(s, rr->length,
|
|
EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
|
|
/* SSLfatal() already called */
|
|
return -1;
|
|
}
|
|
if (!ssl_release_record(s, rr, 0))
|
|
return -1;
|
|
goto start;
|
|
} else {
|
|
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns true if the current rrec was sent in SSLv2 backwards compatible
|
|
* format and false otherwise.
|
|
*/
|
|
int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl)
|
|
{
|
|
if (SSL_CONNECTION_IS_DTLS(rl->s))
|
|
return 0;
|
|
return rl->tlsrecs[0].version == SSL2_VERSION;
|
|
}
|
|
|
|
static OSSL_FUNC_rlayer_msg_callback_fn rlayer_msg_callback_wrapper;
|
|
static void rlayer_msg_callback_wrapper(int write_p, int version,
|
|
int content_type, const void *buf,
|
|
size_t len, void *cbarg)
|
|
{
|
|
SSL_CONNECTION *s = cbarg;
|
|
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
|
|
|
|
if (s->msg_callback != NULL)
|
|
s->msg_callback(write_p, version, content_type, buf, len, ssl,
|
|
s->msg_callback_arg);
|
|
}
|
|
|
|
static OSSL_FUNC_rlayer_security_fn rlayer_security_wrapper;
|
|
static int rlayer_security_wrapper(void *cbarg, int op, int bits, int nid,
|
|
void *other)
|
|
{
|
|
SSL_CONNECTION *s = cbarg;
|
|
|
|
return ssl_security(s, op, bits, nid, other);
|
|
}
|
|
|
|
static OSSL_FUNC_rlayer_padding_fn rlayer_padding_wrapper;
|
|
static size_t rlayer_padding_wrapper(void *cbarg, int type, size_t len)
|
|
{
|
|
SSL_CONNECTION *s = cbarg;
|
|
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
|
|
|
|
return s->rlayer.record_padding_cb(ssl, type, len,
|
|
s->rlayer.record_padding_arg);
|
|
}
|
|
|
|
static const OSSL_DISPATCH rlayer_dispatch[] = {
|
|
{ OSSL_FUNC_RLAYER_SKIP_EARLY_DATA, (void (*)(void))ossl_statem_skip_early_data },
|
|
{ OSSL_FUNC_RLAYER_MSG_CALLBACK, (void (*)(void))rlayer_msg_callback_wrapper },
|
|
{ OSSL_FUNC_RLAYER_SECURITY, (void (*)(void))rlayer_security_wrapper },
|
|
{ OSSL_FUNC_RLAYER_PADDING, (void (*)(void))rlayer_padding_wrapper },
|
|
OSSL_DISPATCH_END
|
|
};
|
|
|
|
void ossl_ssl_set_custom_record_layer(SSL_CONNECTION *s,
|
|
const OSSL_RECORD_METHOD *meth,
|
|
void *rlarg)
|
|
{
|
|
s->rlayer.custom_rlmethod = meth;
|
|
s->rlayer.rlarg = rlarg;
|
|
}
|
|
|
|
static const OSSL_RECORD_METHOD *ssl_select_next_record_layer(SSL_CONNECTION *s,
|
|
int direction,
|
|
int level)
|
|
{
|
|
if (s->rlayer.custom_rlmethod != NULL)
|
|
return s->rlayer.custom_rlmethod;
|
|
|
|
if (level == OSSL_RECORD_PROTECTION_LEVEL_NONE) {
|
|
if (SSL_CONNECTION_IS_DTLS(s))
|
|
return &ossl_dtls_record_method;
|
|
|
|
return &ossl_tls_record_method;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_KTLS
|
|
/* KTLS does not support renegotiation */
|
|
if (level == OSSL_RECORD_PROTECTION_LEVEL_APPLICATION
|
|
&& (s->options & SSL_OP_ENABLE_KTLS) != 0
|
|
&& (SSL_CONNECTION_IS_TLS13(s) || SSL_IS_FIRST_HANDSHAKE(s)))
|
|
return &ossl_ktls_record_method;
|
|
#endif
|
|
|
|
/* Default to the current OSSL_RECORD_METHOD */
|
|
return direction == OSSL_RECORD_DIRECTION_READ ? s->rlayer.rrlmethod
|
|
: s->rlayer.wrlmethod;
|
|
}
|
|
|
|
static int ssl_post_record_layer_select(SSL_CONNECTION *s, int direction)
|
|
{
|
|
const OSSL_RECORD_METHOD *thismethod;
|
|
OSSL_RECORD_LAYER *thisrl;
|
|
|
|
if (direction == OSSL_RECORD_DIRECTION_READ) {
|
|
thismethod = s->rlayer.rrlmethod;
|
|
thisrl = s->rlayer.rrl;
|
|
} else {
|
|
thismethod = s->rlayer.wrlmethod;
|
|
thisrl = s->rlayer.wrl;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_KTLS
|
|
{
|
|
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
|
|
|
|
if (s->rlayer.rrlmethod == &ossl_ktls_record_method) {
|
|
/* KTLS does not support renegotiation so disallow it */
|
|
SSL_set_options(ssl, SSL_OP_NO_RENEGOTIATION);
|
|
}
|
|
}
|
|
#endif
|
|
if (SSL_IS_FIRST_HANDSHAKE(s) && thismethod->set_first_handshake != NULL)
|
|
thismethod->set_first_handshake(thisrl, 1);
|
|
|
|
if (s->max_pipelines != 0 && thismethod->set_max_pipelines != NULL)
|
|
thismethod->set_max_pipelines(thisrl, s->max_pipelines);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ssl_set_new_record_layer(SSL_CONNECTION *s, int version,
|
|
int direction, int level,
|
|
unsigned char *secret, size_t secretlen,
|
|
unsigned char *key, size_t keylen,
|
|
unsigned char *iv, size_t ivlen,
|
|
unsigned char *mackey, size_t mackeylen,
|
|
const EVP_CIPHER *ciph, size_t taglen,
|
|
int mactype, const EVP_MD *md,
|
|
const SSL_COMP *comp, const EVP_MD *kdfdigest)
|
|
{
|
|
OSSL_PARAM options[5], *opts = options;
|
|
OSSL_PARAM settings[6], *set = settings;
|
|
const OSSL_RECORD_METHOD **thismethod;
|
|
OSSL_RECORD_LAYER **thisrl, *newrl = NULL;
|
|
BIO *thisbio;
|
|
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
|
|
const OSSL_RECORD_METHOD *meth;
|
|
int use_etm, stream_mac = 0, tlstree = 0;
|
|
unsigned int maxfrag = (direction == OSSL_RECORD_DIRECTION_WRITE)
|
|
? ssl_get_max_send_fragment(s)
|
|
: SSL3_RT_MAX_PLAIN_LENGTH;
|
|
int use_early_data = 0;
|
|
uint32_t max_early_data;
|
|
COMP_METHOD *compm = (comp == NULL) ? NULL : comp->method;
|
|
|
|
meth = ssl_select_next_record_layer(s, direction, level);
|
|
|
|
if (direction == OSSL_RECORD_DIRECTION_READ) {
|
|
thismethod = &s->rlayer.rrlmethod;
|
|
thisrl = &s->rlayer.rrl;
|
|
thisbio = s->rbio;
|
|
} else {
|
|
thismethod = &s->rlayer.wrlmethod;
|
|
thisrl = &s->rlayer.wrl;
|
|
thisbio = s->wbio;
|
|
}
|
|
|
|
if (meth == NULL)
|
|
meth = *thismethod;
|
|
|
|
if (!ossl_assert(meth != NULL)) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
/* Parameters that *may* be supported by a record layer if passed */
|
|
*opts++ = OSSL_PARAM_construct_uint64(OSSL_LIBSSL_RECORD_LAYER_PARAM_OPTIONS,
|
|
&s->options);
|
|
*opts++ = OSSL_PARAM_construct_uint32(OSSL_LIBSSL_RECORD_LAYER_PARAM_MODE,
|
|
&s->mode);
|
|
if (direction == OSSL_RECORD_DIRECTION_READ) {
|
|
*opts++ = OSSL_PARAM_construct_size_t(OSSL_LIBSSL_RECORD_LAYER_READ_BUFFER_LEN,
|
|
&s->rlayer.default_read_buf_len);
|
|
*opts++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_READ_AHEAD,
|
|
&s->rlayer.read_ahead);
|
|
} else {
|
|
*opts++ = OSSL_PARAM_construct_size_t(OSSL_LIBSSL_RECORD_LAYER_PARAM_BLOCK_PADDING,
|
|
&s->rlayer.block_padding);
|
|
}
|
|
*opts = OSSL_PARAM_construct_end();
|
|
|
|
/* Parameters that *must* be supported by a record layer if passed */
|
|
if (direction == OSSL_RECORD_DIRECTION_READ) {
|
|
use_etm = SSL_READ_ETM(s) ? 1 : 0;
|
|
if ((s->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM) != 0)
|
|
stream_mac = 1;
|
|
|
|
if ((s->mac_flags & SSL_MAC_FLAG_READ_MAC_TLSTREE) != 0)
|
|
tlstree = 1;
|
|
} else {
|
|
use_etm = SSL_WRITE_ETM(s) ? 1 : 0;
|
|
if ((s->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) != 0)
|
|
stream_mac = 1;
|
|
|
|
if ((s->mac_flags & SSL_MAC_FLAG_WRITE_MAC_TLSTREE) != 0)
|
|
tlstree = 1;
|
|
}
|
|
|
|
if (use_etm)
|
|
*set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_USE_ETM,
|
|
&use_etm);
|
|
|
|
if (stream_mac)
|
|
*set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_STREAM_MAC,
|
|
&stream_mac);
|
|
|
|
if (tlstree)
|
|
*set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_TLSTREE,
|
|
&tlstree);
|
|
|
|
/*
|
|
* We only need to do this for the read side. The write side should already
|
|
* have the correct value due to the ssl_get_max_send_fragment() call above
|
|
*/
|
|
if (direction == OSSL_RECORD_DIRECTION_READ
|
|
&& s->session != NULL
|
|
&& USE_MAX_FRAGMENT_LENGTH_EXT(s->session))
|
|
maxfrag = GET_MAX_FRAGMENT_LENGTH(s->session);
|
|
|
|
|
|
if (maxfrag != SSL3_RT_MAX_PLAIN_LENGTH)
|
|
*set++ = OSSL_PARAM_construct_uint(OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_FRAG_LEN,
|
|
&maxfrag);
|
|
|
|
/*
|
|
* The record layer must check the amount of early data sent or received
|
|
* using the early keys. A server also needs to worry about rejected early
|
|
* data that might arrive when the handshake keys are in force.
|
|
*/
|
|
if (s->server && direction == OSSL_RECORD_DIRECTION_READ) {
|
|
use_early_data = (level == OSSL_RECORD_PROTECTION_LEVEL_EARLY
|
|
|| level == OSSL_RECORD_PROTECTION_LEVEL_HANDSHAKE);
|
|
} else if (!s->server && direction == OSSL_RECORD_DIRECTION_WRITE) {
|
|
use_early_data = (level == OSSL_RECORD_PROTECTION_LEVEL_EARLY);
|
|
}
|
|
if (use_early_data) {
|
|
max_early_data = ossl_get_max_early_data(s);
|
|
|
|
if (max_early_data != 0)
|
|
*set++ = OSSL_PARAM_construct_uint32(OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_EARLY_DATA,
|
|
&max_early_data);
|
|
}
|
|
|
|
*set = OSSL_PARAM_construct_end();
|
|
|
|
for (;;) {
|
|
int rlret;
|
|
BIO *prev = NULL;
|
|
BIO *next = NULL;
|
|
unsigned int epoch = 0;
|
|
OSSL_DISPATCH rlayer_dispatch_tmp[OSSL_NELEM(rlayer_dispatch)];
|
|
size_t i, j;
|
|
|
|
if (direction == OSSL_RECORD_DIRECTION_READ) {
|
|
prev = s->rlayer.rrlnext;
|
|
if (SSL_CONNECTION_IS_DTLS(s)
|
|
&& level != OSSL_RECORD_PROTECTION_LEVEL_NONE)
|
|
epoch = dtls1_get_epoch(s, SSL3_CC_READ); /* new epoch */
|
|
|
|
#ifndef OPENSSL_NO_DGRAM
|
|
if (SSL_CONNECTION_IS_DTLS(s))
|
|
next = BIO_new(BIO_s_dgram_mem());
|
|
else
|
|
#endif
|
|
next = BIO_new(BIO_s_mem());
|
|
|
|
if (next == NULL) {
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
s->rlayer.rrlnext = next;
|
|
} else {
|
|
if (SSL_CONNECTION_IS_DTLS(s)
|
|
&& level != OSSL_RECORD_PROTECTION_LEVEL_NONE)
|
|
epoch = dtls1_get_epoch(s, SSL3_CC_WRITE); /* new epoch */
|
|
}
|
|
|
|
/*
|
|
* Create a copy of the dispatch array, missing out wrappers for
|
|
* callbacks that we don't need.
|
|
*/
|
|
for (i = 0, j = 0; i < OSSL_NELEM(rlayer_dispatch); i++) {
|
|
switch (rlayer_dispatch[i].function_id) {
|
|
case OSSL_FUNC_RLAYER_MSG_CALLBACK:
|
|
if (s->msg_callback == NULL)
|
|
continue;
|
|
break;
|
|
case OSSL_FUNC_RLAYER_PADDING:
|
|
if (s->rlayer.record_padding_cb == NULL)
|
|
continue;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
rlayer_dispatch_tmp[j++] = rlayer_dispatch[i];
|
|
}
|
|
|
|
rlret = meth->new_record_layer(sctx->libctx, sctx->propq, version,
|
|
s->server, direction, level, epoch,
|
|
secret, secretlen, key, keylen, iv,
|
|
ivlen, mackey, mackeylen, ciph, taglen,
|
|
mactype, md, compm, kdfdigest, prev,
|
|
thisbio, next, NULL, NULL, settings,
|
|
options, rlayer_dispatch_tmp, s,
|
|
s->rlayer.rlarg, &newrl);
|
|
BIO_free(prev);
|
|
switch (rlret) {
|
|
case OSSL_RECORD_RETURN_FATAL:
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_RECORD_LAYER_FAILURE);
|
|
return 0;
|
|
|
|
case OSSL_RECORD_RETURN_NON_FATAL_ERR:
|
|
if (*thismethod != meth && *thismethod != NULL) {
|
|
/*
|
|
* We tried a new record layer method, but it didn't work out,
|
|
* so we fallback to the original method and try again
|
|
*/
|
|
meth = *thismethod;
|
|
continue;
|
|
}
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_NO_SUITABLE_RECORD_LAYER);
|
|
return 0;
|
|
|
|
case OSSL_RECORD_RETURN_SUCCESS:
|
|
break;
|
|
|
|
default:
|
|
/* Should not happen */
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Free the old record layer if we have one except in the case of DTLS when
|
|
* writing and there are still buffered sent messages in our queue. In that
|
|
* case the record layer is still referenced by those buffered messages for
|
|
* potential retransmit. Only when those buffered messages get freed do we
|
|
* free the record layer object (see dtls1_hm_fragment_free)
|
|
*/
|
|
if (!SSL_CONNECTION_IS_DTLS(s)
|
|
|| direction == OSSL_RECORD_DIRECTION_READ
|
|
|| pqueue_peek(s->d1->sent_messages) == NULL) {
|
|
if (*thismethod != NULL && !(*thismethod)->free(*thisrl)) {
|
|
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
*thisrl = newrl;
|
|
*thismethod = meth;
|
|
|
|
return ssl_post_record_layer_select(s, direction);
|
|
}
|
|
|
|
int ssl_set_record_protocol_version(SSL_CONNECTION *s, int vers)
|
|
{
|
|
if (!ossl_assert(s->rlayer.rrlmethod != NULL)
|
|
|| !ossl_assert(s->rlayer.wrlmethod != NULL))
|
|
return 0;
|
|
s->rlayer.rrlmethod->set_protocol_version(s->rlayer.rrl, s->version);
|
|
s->rlayer.wrlmethod->set_protocol_version(s->rlayer.wrl, s->version);
|
|
|
|
return 1;
|
|
}
|