mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
8240d5fa65
Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6652)
387 lines
11 KiB
C
387 lines
11 KiB
C
/*
|
||
* Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
|
||
* Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
|
||
*
|
||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||
* this file except in compliance with the License. You can obtain a copy
|
||
* in the file LICENSE in the source distribution or at
|
||
* https://www.openssl.org/source/license.html
|
||
*/
|
||
|
||
#include <openssl/err.h>
|
||
#include <openssl/bn.h>
|
||
#include "internal/bn_int.h"
|
||
#include "rsa_locl.h"
|
||
|
||
/*
|
||
* Part of the RSA keypair test.
|
||
* Check the Chinese Remainder Theorem components are valid.
|
||
*
|
||
* See SP800-5bBr1
|
||
* 6.4.1.2.3: rsakpv1-crt Step 7
|
||
* 6.4.1.3.3: rsakpv2-crt Step 7
|
||
*/
|
||
int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx)
|
||
{
|
||
int ret = 0;
|
||
BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL;
|
||
|
||
/* check if only some of the crt components are set */
|
||
if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) {
|
||
if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL)
|
||
return 0;
|
||
return 1; /* return ok if all components are NULL */
|
||
}
|
||
|
||
BN_CTX_start(ctx);
|
||
r = BN_CTX_get(ctx);
|
||
p1 = BN_CTX_get(ctx);
|
||
q1 = BN_CTX_get(ctx);
|
||
ret = (q1 != NULL)
|
||
/* p1 = p -1 */
|
||
&& (BN_copy(p1, rsa->p) != NULL)
|
||
&& BN_sub_word(p1, 1)
|
||
/* q1 = q - 1 */
|
||
&& (BN_copy(q1, rsa->q) != NULL)
|
||
&& BN_sub_word(q1, 1)
|
||
/* (a) 1 < dP < (p – 1). */
|
||
&& (BN_cmp(rsa->dmp1, BN_value_one()) > 0)
|
||
&& (BN_cmp(rsa->dmp1, p1) < 0)
|
||
/* (b) 1 < dQ < (q - 1). */
|
||
&& (BN_cmp(rsa->dmq1, BN_value_one()) > 0)
|
||
&& (BN_cmp(rsa->dmq1, q1) < 0)
|
||
/* (c) 1 < qInv < p */
|
||
&& (BN_cmp(rsa->iqmp, BN_value_one()) > 0)
|
||
&& (BN_cmp(rsa->iqmp, rsa->p) < 0)
|
||
/* (d) 1 = (dP . e) mod (p - 1)*/
|
||
&& BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx)
|
||
&& BN_is_one(r)
|
||
/* (e) 1 = (dQ . e) mod (q - 1) */
|
||
&& BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx)
|
||
&& BN_is_one(r)
|
||
/* (f) 1 = (qInv . q) mod p */
|
||
&& BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx)
|
||
&& BN_is_one(r);
|
||
BN_clear(p1);
|
||
BN_clear(q1);
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* Part of the RSA keypair test.
|
||
* Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1
|
||
*
|
||
* See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q.
|
||
*
|
||
* (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2))
|
||
* √2/2 = 0.707106781186547524400 = 0.B504F333F9DE6484597D8
|
||
* 0.B504F334 gives an approximation to 11 decimal places.
|
||
* The range is then from
|
||
* 0xB504F334_0000.......................000 to
|
||
* 0xFFFFFFFF_FFFF.......................FFF
|
||
*/
|
||
int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx)
|
||
{
|
||
int ret = 0;
|
||
BIGNUM *tmp, *low;
|
||
|
||
nbits >>= 1;
|
||
|
||
/* Upper bound check */
|
||
if (BN_num_bits(p) != nbits)
|
||
return 0;
|
||
|
||
BN_CTX_start(ctx);
|
||
tmp = BN_CTX_get(ctx);
|
||
low = BN_CTX_get(ctx);
|
||
|
||
/* set low = (√2)(2^(nbits/2 - 1) */
|
||
if (low == NULL || !BN_set_word(tmp, 0xB504F334))
|
||
goto err;
|
||
|
||
if (nbits >= 32) {
|
||
if (!BN_lshift(low, tmp, nbits - 32))
|
||
goto err;
|
||
} else if (!BN_rshift(low, tmp, 32 - nbits)) {
|
||
goto err;
|
||
}
|
||
if (BN_cmp(p, low) < 0)
|
||
goto err;
|
||
ret = 1;
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* Part of the RSA keypair test.
|
||
* Check the prime factor (for either p or q)
|
||
* i.e: p is prime AND GCD(p - 1, e) = 1
|
||
*
|
||
* See SP800-5bBr1 6.4.1.2.3 Step 5 (a to d) & (e to h).
|
||
*/
|
||
int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx)
|
||
{
|
||
int checks = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
|
||
int ret = 0;
|
||
BIGNUM *p1 = NULL, *gcd = NULL;
|
||
|
||
/* (Steps 5 a-b) prime test */
|
||
if (BN_is_prime_fasttest_ex(p, checks, ctx, 1, NULL) != 1
|
||
/* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */
|
||
|| rsa_check_prime_factor_range(p, nbits, ctx) != 1)
|
||
return 0;
|
||
|
||
BN_CTX_start(ctx);
|
||
p1 = BN_CTX_get(ctx);
|
||
gcd = BN_CTX_get(ctx);
|
||
ret = (gcd != NULL)
|
||
/* (Step 5d) GCD(p-1, e) = 1 */
|
||
&& (BN_copy(p1, p) != NULL)
|
||
&& BN_sub_word(p1, 1)
|
||
&& BN_gcd(gcd, p1, e, ctx)
|
||
&& BN_is_one(gcd);
|
||
|
||
BN_clear(p1);
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d
|
||
* satisfies:
|
||
* (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1).
|
||
* (Step 6b) 1 = (d*e) mod LCM(p–1, q–1)
|
||
*/
|
||
int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx)
|
||
{
|
||
int ret;
|
||
BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd;
|
||
|
||
/* (Step 6a) 2^(nbits/2) < d */
|
||
if (BN_num_bits(rsa->d) <= (nbits >> 1))
|
||
return 0;
|
||
|
||
BN_CTX_start(ctx);
|
||
r = BN_CTX_get(ctx);
|
||
p1 = BN_CTX_get(ctx);
|
||
q1 = BN_CTX_get(ctx);
|
||
lcm = BN_CTX_get(ctx);
|
||
p1q1 = BN_CTX_get(ctx);
|
||
gcd = BN_CTX_get(ctx);
|
||
ret = (gcd != NULL
|
||
/* LCM(p - 1, q - 1) */
|
||
&& (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1)
|
||
/* (Step 6a) d < LCM(p - 1, q - 1) */
|
||
&& (BN_cmp(rsa->d, lcm) < 0)
|
||
/* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */
|
||
&& BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx)
|
||
&& BN_is_one(r));
|
||
|
||
BN_clear(p1);
|
||
BN_clear(q1);
|
||
BN_clear(lcm);
|
||
BN_clear(gcd);
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
/* Check exponent is odd, and has a bitlen ranging from [17..256] */
|
||
int rsa_check_public_exponent(const BIGNUM *e)
|
||
{
|
||
int bitlen = BN_num_bits(e);
|
||
|
||
return (BN_is_odd(e) && bitlen > 16 && bitlen < 257);
|
||
}
|
||
|
||
/*
|
||
* SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100)
|
||
* i.e- numbits(p-q-1) > (nbits/2 -100)
|
||
*/
|
||
int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,
|
||
int nbits)
|
||
{
|
||
int bitlen = (nbits >> 1) - 100;
|
||
|
||
if (!BN_sub(diff, p, q))
|
||
return -1;
|
||
BN_set_negative(diff, 0);
|
||
|
||
if (BN_is_zero(diff))
|
||
return 0;
|
||
|
||
if (!BN_sub_word(diff, 1))
|
||
return -1;
|
||
return (BN_num_bits(diff) > bitlen);
|
||
}
|
||
|
||
/* return LCM(p-1, q-1) */
|
||
int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
|
||
BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,
|
||
BIGNUM *p1q1)
|
||
{
|
||
return BN_sub(p1, p, BN_value_one()) /* p-1 */
|
||
&& BN_sub(q1, q, BN_value_one()) /* q-1 */
|
||
&& BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */
|
||
&& BN_gcd(gcd, p1, q1, ctx)
|
||
&& BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */
|
||
}
|
||
|
||
/*
|
||
* SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to
|
||
* SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA
|
||
* caveat is that the modulus must be as specified in SP800-56Br1
|
||
*/
|
||
int rsa_sp800_56b_check_public(const RSA *rsa)
|
||
{
|
||
int ret = 0, nbits, iterations, status;
|
||
BN_CTX *ctx = NULL;
|
||
BIGNUM *gcd = NULL;
|
||
|
||
if (rsa->n == NULL || rsa->e == NULL)
|
||
return 0;
|
||
|
||
/*
|
||
* (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1)
|
||
* NOTE: changed to allow keys >= 2048
|
||
*/
|
||
nbits = BN_num_bits(rsa->n);
|
||
if (!rsa_sp800_56b_validate_strength(nbits, -1)) {
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH);
|
||
return 0;
|
||
}
|
||
if (!BN_is_odd(rsa->n)) {
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
|
||
return 0;
|
||
}
|
||
|
||
/* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */
|
||
if (!rsa_check_public_exponent(rsa->e)) {
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC,
|
||
RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
|
||
return 0;
|
||
}
|
||
|
||
ctx = BN_CTX_new();
|
||
gcd = BN_new();
|
||
if (ctx == NULL || gcd == NULL)
|
||
goto err;
|
||
|
||
iterations = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
|
||
/* (Steps d-f):
|
||
* The modulus is composite, but not a power of a prime.
|
||
* The modulus has no factors smaller than 752.
|
||
*/
|
||
if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) {
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
|
||
goto err;
|
||
}
|
||
|
||
ret = bn_miller_rabin_is_prime(rsa->n, iterations, ctx, NULL, 1, &status);
|
||
if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) {
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
|
||
ret = 0;
|
||
goto err;
|
||
}
|
||
|
||
ret = 1;
|
||
err:
|
||
BN_free(gcd);
|
||
BN_CTX_free(ctx);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* Perform validation of the RSA private key to check that 0 < D < N.
|
||
*/
|
||
int rsa_sp800_56b_check_private(const RSA *rsa)
|
||
{
|
||
if (rsa->d == NULL || rsa->n == NULL)
|
||
return 0;
|
||
return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0;
|
||
}
|
||
|
||
/*
|
||
* RSA key pair validation.
|
||
*
|
||
* SP800-56Br1.
|
||
* 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent"
|
||
* 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent"
|
||
*
|
||
* It uses:
|
||
* 6.4.1.2.3 "rsakpv1 - crt"
|
||
* 6.4.1.3.3 "rsakpv2 - crt"
|
||
*/
|
||
int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,
|
||
int strength, int nbits)
|
||
{
|
||
int ret = 0;
|
||
BN_CTX *ctx = NULL;
|
||
BIGNUM *r = NULL;
|
||
|
||
if (rsa->p == NULL
|
||
|| rsa->q == NULL
|
||
|| rsa->e == NULL
|
||
|| rsa->d == NULL
|
||
|| rsa->n == NULL) {
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
|
||
return 0;
|
||
}
|
||
/* (Step 1): Check Ranges */
|
||
if (!rsa_sp800_56b_validate_strength(nbits, strength))
|
||
return 0;
|
||
|
||
/* If the exponent is known */
|
||
if (efixed != NULL) {
|
||
/* (2): Check fixed exponent matches public exponent. */
|
||
if (BN_cmp(efixed, rsa->e) != 0) {
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
|
||
return 0;
|
||
}
|
||
}
|
||
/* (Step 1.c): e is odd integer 65537 <= e < 2^256 */
|
||
if (!rsa_check_public_exponent(rsa->e)) {
|
||
/* exponent out of range */
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR,
|
||
RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
|
||
return 0;
|
||
}
|
||
/* (Step 3.b): check the modulus */
|
||
if (nbits != BN_num_bits(rsa->n)) {
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
|
||
return 0;
|
||
}
|
||
|
||
ctx = BN_CTX_new();
|
||
if (ctx == NULL)
|
||
return 0;
|
||
|
||
BN_CTX_start(ctx);
|
||
r = BN_CTX_get(ctx);
|
||
if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx))
|
||
goto err;
|
||
/* (Step 4.c): Check n = pq */
|
||
if (BN_cmp(rsa->n, r) != 0) {
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
|
||
goto err;
|
||
}
|
||
|
||
/* (Step 5): check prime factors p & q */
|
||
ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx)
|
||
&& rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx)
|
||
&& (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0)
|
||
/* (Step 6): Check the private exponent d */
|
||
&& rsa_check_private_exponent(rsa, nbits, ctx)
|
||
/* 6.4.1.2.3 (Step 7): Check the CRT components */
|
||
&& rsa_check_crt_components(rsa, ctx);
|
||
if (ret != 1)
|
||
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
|
||
|
||
err:
|
||
BN_clear(r);
|
||
BN_CTX_end(ctx);
|
||
BN_CTX_free(ctx);
|
||
return ret;
|
||
}
|