mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
7ed66e2634
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org> GH: #7651
481 lines
13 KiB
C
481 lines
13 KiB
C
/*
|
|
* Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* See SP800-185 "Appendix A - KMAC, .... in Terms of Keccak[c]"
|
|
*
|
|
* Inputs are:
|
|
* K = Key (len(K) < 2^2040 bits)
|
|
* X = Input
|
|
* L = Output length (0 <= L < 2^2040 bits)
|
|
* S = Customization String Default="" (len(S) < 2^2040 bits)
|
|
*
|
|
* KMAC128(K, X, L, S)
|
|
* {
|
|
* newX = bytepad(encode_string(K), 168) || X || right_encode(L).
|
|
* T = bytepad(encode_string("KMAC") || encode_string(S), 168).
|
|
* return KECCAK[256](T || newX || 00, L).
|
|
* }
|
|
*
|
|
* KMAC256(K, X, L, S)
|
|
* {
|
|
* newX = bytepad(encode_string(K), 136) || X || right_encode(L).
|
|
* T = bytepad(encode_string("KMAC") || encode_string(S), 136).
|
|
* return KECCAK[512](T || newX || 00, L).
|
|
* }
|
|
*
|
|
* KMAC128XOF(K, X, L, S)
|
|
* {
|
|
* newX = bytepad(encode_string(K), 168) || X || right_encode(0).
|
|
* T = bytepad(encode_string("KMAC") || encode_string(S), 168).
|
|
* return KECCAK[256](T || newX || 00, L).
|
|
* }
|
|
*
|
|
* KMAC256XOF(K, X, L, S)
|
|
* {
|
|
* newX = bytepad(encode_string(K), 136) || X || right_encode(0).
|
|
* T = bytepad(encode_string("KMAC") || encode_string(S), 136).
|
|
* return KECCAK[512](T || newX || 00, L).
|
|
* }
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <openssl/evp.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/evp_int.h"
|
|
|
|
#define KMAC_MAX_BLOCKSIZE ((1600 - 128*2) / 8) /* 168 */
|
|
#define KMAC_MIN_BLOCKSIZE ((1600 - 256*2) / 8) /* 136 */
|
|
|
|
/* Length encoding will be a 1 byte size + length in bits (2 bytes max) */
|
|
#define KMAC_MAX_ENCODED_HEADER_LEN 3
|
|
|
|
/*
|
|
* Custom string max size is chosen such that:
|
|
* len(encoded_string(custom) + len(kmac_encoded_string) <= KMAC_MIN_BLOCKSIZE
|
|
* i.e: (KMAC_MAX_CUSTOM + KMAC_MAX_ENCODED_LEN) + 6 <= 136
|
|
*/
|
|
#define KMAC_MAX_CUSTOM 127
|
|
|
|
/* Maximum size of encoded custom string */
|
|
#define KMAC_MAX_CUSTOM_ENCODED (KMAC_MAX_CUSTOM + KMAC_MAX_ENCODED_HEADER_LEN)
|
|
|
|
/* Maximum key size in bytes = 2040 / 8 */
|
|
#define KMAC_MAX_KEY 255
|
|
|
|
/*
|
|
* Maximum Encoded Key size will be padded to a multiple of the blocksize
|
|
* i.e KMAC_MAX_KEY + KMAC_MAX_ENCODED_LEN = 258
|
|
* Padded to a multiple of KMAC_MAX_BLOCKSIZE
|
|
*/
|
|
#define KMAC_MAX_KEY_ENCODED (KMAC_MAX_BLOCKSIZE * 2)
|
|
|
|
/* Fixed value of encode_string("KMAC") */
|
|
static const unsigned char kmac_string[] = {
|
|
0x01, 0x20, 0x4B, 0x4D, 0x41, 0x43
|
|
};
|
|
|
|
|
|
#define KMAC_FLAG_XOF_MODE 1
|
|
|
|
/* typedef EVP_MAC_IMPL */
|
|
struct evp_mac_impl_st {
|
|
EVP_MD_CTX *ctx;
|
|
const EVP_MD *md;
|
|
size_t out_len;
|
|
int key_len;
|
|
int custom_len;
|
|
/* If xof_mode = 1 then we use right_encode(0) */
|
|
int xof_mode;
|
|
/* key and custom are stored in encoded form */
|
|
unsigned char key[KMAC_MAX_KEY_ENCODED];
|
|
unsigned char custom[KMAC_MAX_CUSTOM_ENCODED];
|
|
};
|
|
|
|
static int encode_string(unsigned char *out, int *out_len,
|
|
const unsigned char *in, int in_len);
|
|
static int right_encode(unsigned char *out, int *out_len, size_t bits);
|
|
static int bytepad(unsigned char *out, int *out_len,
|
|
const unsigned char *in1, int in1_len,
|
|
const unsigned char *in2, int in2_len,
|
|
int w);
|
|
static int kmac_bytepad_encode_key(unsigned char *out, int *out_len,
|
|
const unsigned char *in, int in_len,
|
|
int w);
|
|
static int kmac_ctrl_str(EVP_MAC_IMPL *kctx, const char *type,
|
|
const char *value);
|
|
|
|
|
|
static void kmac_free(EVP_MAC_IMPL *kctx)
|
|
{
|
|
if (kctx != NULL) {
|
|
EVP_MD_CTX_free(kctx->ctx);
|
|
OPENSSL_cleanse(kctx->key, kctx->key_len);
|
|
OPENSSL_cleanse(kctx->custom, kctx->custom_len);
|
|
OPENSSL_free(kctx);
|
|
}
|
|
}
|
|
|
|
static EVP_MAC_IMPL *kmac_new(const EVP_MD *md)
|
|
{
|
|
EVP_MAC_IMPL *kctx = NULL;
|
|
|
|
if ((kctx = OPENSSL_zalloc(sizeof(*kctx))) == NULL
|
|
|| (kctx->ctx = EVP_MD_CTX_new()) == NULL) {
|
|
kmac_free(kctx);
|
|
return NULL;
|
|
}
|
|
kctx->md = md;
|
|
kctx->out_len = md->md_size;
|
|
return kctx;
|
|
}
|
|
|
|
static EVP_MAC_IMPL *kmac128_new(void)
|
|
{
|
|
return kmac_new(evp_keccak_kmac128());
|
|
}
|
|
|
|
static EVP_MAC_IMPL *kmac256_new(void)
|
|
{
|
|
return kmac_new(evp_keccak_kmac256());
|
|
}
|
|
|
|
static EVP_MAC_IMPL *kmac_dup(const EVP_MAC_IMPL *gsrc)
|
|
{
|
|
EVP_MAC_IMPL *gdst;
|
|
|
|
gdst = kmac_new(gsrc->md);
|
|
if (gdst == NULL)
|
|
return NULL;
|
|
|
|
if (!EVP_MD_CTX_copy(gdst->ctx, gsrc->ctx)) {
|
|
kmac_free(gdst);
|
|
return NULL;
|
|
}
|
|
|
|
gdst->md = gsrc->md;
|
|
gdst->out_len = gsrc->out_len;
|
|
gdst->key_len = gsrc->key_len;
|
|
gdst->custom_len = gsrc->custom_len;
|
|
gdst->xof_mode = gsrc->xof_mode;
|
|
memcpy(gdst->key, gsrc->key, gsrc->key_len);
|
|
memcpy(gdst->custom, gsrc->custom, gdst->custom_len);
|
|
|
|
return gdst;
|
|
}
|
|
|
|
/*
|
|
* The init() assumes that any ctrl methods are set beforehand for
|
|
* md, key and custom. Setting the fields afterwards will have no
|
|
* effect on the output mac.
|
|
*/
|
|
static int kmac_init(EVP_MAC_IMPL *kctx)
|
|
{
|
|
EVP_MD_CTX *ctx = kctx->ctx;
|
|
unsigned char out[KMAC_MAX_BLOCKSIZE];
|
|
int out_len, block_len;
|
|
|
|
/* Check key has been set */
|
|
if (kctx->key_len == 0) {
|
|
EVPerr(EVP_F_KMAC_INIT, EVP_R_NO_KEY_SET);
|
|
return 0;
|
|
}
|
|
if (!EVP_DigestInit_ex(kctx->ctx, kctx->md, NULL))
|
|
return 0;
|
|
|
|
block_len = EVP_MD_block_size(kctx->md);
|
|
|
|
/* Set default custom string if it is not already set */
|
|
if (kctx->custom_len == 0)
|
|
(void)kmac_ctrl_str(kctx, "custom", "");
|
|
|
|
return bytepad(out, &out_len, kmac_string, sizeof(kmac_string),
|
|
kctx->custom, kctx->custom_len, block_len)
|
|
&& EVP_DigestUpdate(ctx, out, out_len)
|
|
&& EVP_DigestUpdate(ctx, kctx->key, kctx->key_len);
|
|
}
|
|
|
|
static size_t kmac_size(EVP_MAC_IMPL *kctx)
|
|
{
|
|
return kctx->out_len;
|
|
}
|
|
|
|
static int kmac_update(EVP_MAC_IMPL *kctx, const unsigned char *data,
|
|
size_t datalen)
|
|
{
|
|
return EVP_DigestUpdate(kctx->ctx, data, datalen);
|
|
}
|
|
|
|
static int kmac_final(EVP_MAC_IMPL *kctx, unsigned char *out)
|
|
{
|
|
EVP_MD_CTX *ctx = kctx->ctx;
|
|
int lbits, len;
|
|
unsigned char encoded_outlen[KMAC_MAX_ENCODED_HEADER_LEN];
|
|
|
|
/* KMAC XOF mode sets the encoded length to 0 */
|
|
lbits = (kctx->xof_mode ? 0 : (kctx->out_len * 8));
|
|
|
|
return right_encode(encoded_outlen, &len, lbits)
|
|
&& EVP_DigestUpdate(ctx, encoded_outlen, len)
|
|
&& EVP_DigestFinalXOF(ctx, out, kctx->out_len);
|
|
}
|
|
|
|
/*
|
|
* The following Ctrl functions can be set any time before final():
|
|
* - EVP_MAC_CTRL_SET_SIZE: The requested output length.
|
|
* - EVP_MAC_CTRL_SET_XOF: If set, this indicates that right_encoded(0) is
|
|
* part of the digested data, otherwise it uses
|
|
* right_encoded(requested output length).
|
|
|
|
* All other Ctrl functions should be set before init().
|
|
*/
|
|
static int kmac_ctrl(EVP_MAC_IMPL *kctx, int cmd, va_list args)
|
|
{
|
|
const unsigned char *p;
|
|
size_t len;
|
|
size_t size;
|
|
|
|
switch (cmd) {
|
|
case EVP_MAC_CTRL_SET_XOF:
|
|
kctx->xof_mode = va_arg(args, int);
|
|
return 1;
|
|
|
|
case EVP_MAC_CTRL_SET_SIZE:
|
|
size = va_arg(args, size_t);
|
|
kctx->out_len = size;
|
|
return 1;
|
|
|
|
case EVP_MAC_CTRL_SET_KEY:
|
|
p = va_arg(args, const unsigned char *);
|
|
len = va_arg(args, size_t);
|
|
if (len < 4 || len > KMAC_MAX_KEY) {
|
|
EVPerr(EVP_F_KMAC_CTRL, EVP_R_INVALID_KEY_LENGTH);
|
|
return 0;
|
|
}
|
|
return kmac_bytepad_encode_key(kctx->key, &kctx->key_len, p, len,
|
|
EVP_MD_block_size(kctx->md));
|
|
|
|
case EVP_MAC_CTRL_SET_CUSTOM:
|
|
p = va_arg(args, const unsigned char *);
|
|
len = va_arg(args, size_t);
|
|
if (len > KMAC_MAX_CUSTOM) {
|
|
EVPerr(EVP_F_KMAC_CTRL, EVP_R_INVALID_CUSTOM_LENGTH);
|
|
return 0;
|
|
}
|
|
return encode_string(kctx->custom, &kctx->custom_len, p, len);
|
|
|
|
default:
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
static int kmac_ctrl_int(EVP_MAC_IMPL *kctx, int cmd, ...)
|
|
{
|
|
int rv;
|
|
va_list args;
|
|
|
|
va_start(args, cmd);
|
|
rv = kmac_ctrl(kctx, cmd, args);
|
|
va_end(args);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int kmac_ctrl_str_cb(void *kctx, int cmd, void *buf, size_t buflen)
|
|
{
|
|
return kmac_ctrl_int(kctx, cmd, buf, buflen);
|
|
}
|
|
|
|
static int kmac_ctrl_str(EVP_MAC_IMPL *kctx, const char *type,
|
|
const char *value)
|
|
{
|
|
if (value == NULL)
|
|
return 0;
|
|
|
|
if (strcmp(type, "outlen") == 0)
|
|
return kmac_ctrl_int(kctx, EVP_MAC_CTRL_SET_SIZE, (size_t)atoi(value));
|
|
if (strcmp(type, "xof") == 0)
|
|
return kmac_ctrl_int(kctx, EVP_MAC_CTRL_SET_XOF, atoi(value));
|
|
if (strcmp(type, "key") == 0)
|
|
return EVP_str2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_KEY,
|
|
value);
|
|
if (strcmp(type, "hexkey") == 0)
|
|
return EVP_hex2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_KEY,
|
|
value);
|
|
if (strcmp(type, "custom") == 0)
|
|
return EVP_str2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_CUSTOM,
|
|
value);
|
|
if (strcmp(type, "hexcustom") == 0)
|
|
return EVP_hex2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_CUSTOM,
|
|
value);
|
|
return -2;
|
|
}
|
|
|
|
/*
|
|
* Encoding/Padding Methods.
|
|
*/
|
|
|
|
/* Returns the number of bytes required to store 'bits' into a byte array */
|
|
static unsigned int get_encode_size(size_t bits)
|
|
{
|
|
unsigned int cnt = 0, sz = sizeof(size_t);
|
|
|
|
while (bits && (cnt < sz)) {
|
|
++cnt;
|
|
bits >>= 8;
|
|
}
|
|
/* If bits is zero 1 byte is required */
|
|
if (cnt == 0)
|
|
cnt = 1;
|
|
return cnt;
|
|
}
|
|
|
|
/*
|
|
* Convert an integer into bytes . The number of bytes is appended
|
|
* to the end of the buffer. Returns an array of bytes 'out' of size
|
|
* *out_len.
|
|
*
|
|
* e.g if bits = 32, out[2] = { 0x20, 0x01 }
|
|
*
|
|
*/
|
|
static int right_encode(unsigned char *out, int *out_len, size_t bits)
|
|
{
|
|
unsigned int len = get_encode_size(bits);
|
|
int i;
|
|
|
|
/* The length is constrained to a single byte: 2040/8 = 255 */
|
|
if (len > 0xFF)
|
|
return 0;
|
|
|
|
/* MSB's are at the start of the bytes array */
|
|
for (i = len - 1; i >= 0; --i) {
|
|
out[i] = (unsigned char)(bits & 0xFF);
|
|
bits >>= 8;
|
|
}
|
|
/* Tack the length onto the end */
|
|
out[len] = (unsigned char)len;
|
|
|
|
/* The Returned length includes the tacked on byte */
|
|
*out_len = len + 1;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Encodes a string with a left encoded length added. Note that the
|
|
* in_len is converted to bits (*8).
|
|
*
|
|
* e.g- in="KMAC" gives out[6] = { 0x01, 0x20, 0x4B, 0x4D, 0x41, 0x43 }
|
|
* len bits K M A C
|
|
*/
|
|
static int encode_string(unsigned char *out, int *out_len,
|
|
const unsigned char *in, int in_len)
|
|
{
|
|
if (in == NULL) {
|
|
*out_len = 0;
|
|
} else {
|
|
int i, bits, len;
|
|
|
|
bits = 8 * in_len;
|
|
len = get_encode_size(bits);
|
|
if (len > 0xFF)
|
|
return 0;
|
|
|
|
out[0] = len;
|
|
for (i = len; i > 0; --i) {
|
|
out[i] = (bits & 0xFF);
|
|
bits >>= 8;
|
|
}
|
|
memcpy(out + len + 1, in, in_len);
|
|
*out_len = (1 + len + in_len);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Returns a zero padded encoding of the inputs in1 and an optional
|
|
* in2 (can be NULL). The padded output must be a multiple of the blocksize 'w'.
|
|
* The value of w is in bytes (< 256).
|
|
*
|
|
* The returned output is:
|
|
* zero_padded(multiple of w, (left_encode(w) || in1 [|| in2])
|
|
*/
|
|
static int bytepad(unsigned char *out, int *out_len,
|
|
const unsigned char *in1, int in1_len,
|
|
const unsigned char *in2, int in2_len, int w)
|
|
{
|
|
int len;
|
|
unsigned char *p = out;
|
|
int sz = w;
|
|
|
|
/* Left encoded w */
|
|
*p++ = 1;
|
|
*p++ = w;
|
|
/* || in1 */
|
|
memcpy(p, in1, in1_len);
|
|
p += in1_len;
|
|
/* [ || in2 ] */
|
|
if (in2 != NULL && in2_len > 0) {
|
|
memcpy(p, in2, in2_len);
|
|
p += in2_len;
|
|
}
|
|
/* Figure out the pad size (divisible by w) */
|
|
len = p - out;
|
|
while (len > sz) {
|
|
sz += w;
|
|
}
|
|
/* zero pad the end of the buffer */
|
|
memset(p, 0, sz - len);
|
|
*out_len = sz;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Returns out = bytepad(encode_string(in), w)
|
|
*/
|
|
static int kmac_bytepad_encode_key(unsigned char *out, int *out_len,
|
|
const unsigned char *in, int in_len,
|
|
int w)
|
|
{
|
|
unsigned char tmp[KMAC_MAX_KEY + KMAC_MAX_ENCODED_HEADER_LEN];
|
|
int tmp_len;
|
|
|
|
if (!encode_string(tmp, &tmp_len, in, in_len))
|
|
return 0;
|
|
|
|
return bytepad(out, out_len, tmp, tmp_len, NULL, 0, w);
|
|
}
|
|
|
|
const EVP_MAC kmac128_meth = {
|
|
EVP_MAC_KMAC128,
|
|
kmac128_new,
|
|
kmac_dup,
|
|
kmac_free,
|
|
kmac_size,
|
|
kmac_init,
|
|
kmac_update,
|
|
kmac_final,
|
|
kmac_ctrl,
|
|
kmac_ctrl_str
|
|
};
|
|
|
|
const EVP_MAC kmac256_meth = {
|
|
EVP_MAC_KMAC256,
|
|
kmac256_new,
|
|
kmac_dup,
|
|
kmac_free,
|
|
kmac_size,
|
|
kmac_init,
|
|
kmac_update,
|
|
kmac_final,
|
|
kmac_ctrl,
|
|
kmac_ctrl_str
|
|
};
|
|
|