mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
be5fc053ed
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org> GH: #7651
526 lines
16 KiB
C
526 lines
16 KiB
C
/*
|
||
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
|
||
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
|
||
*
|
||
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
||
* this file except in compliance with the License. You can obtain a copy
|
||
* in the file LICENSE in the source distribution or at
|
||
* https://www.openssl.org/source/license.html
|
||
*/
|
||
|
||
/*
|
||
* Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
|
||
* Section 4.1.
|
||
*
|
||
* The Single Step KDF algorithm is given by:
|
||
*
|
||
* Result(0) = empty bit string (i.e., the null string).
|
||
* For i = 1 to reps, do the following:
|
||
* Increment counter by 1.
|
||
* Result(i) = Result(i – 1) || H(counter || Z || FixedInfo).
|
||
* DKM = LeftmostBits(Result(reps), L))
|
||
*
|
||
* NOTES:
|
||
* Z is a shared secret required to produce the derived key material.
|
||
* counter is a 4 byte buffer.
|
||
* FixedInfo is a bit string containing context specific data.
|
||
* DKM is the output derived key material.
|
||
* L is the required size of the DKM.
|
||
* reps = [L / H_outputBits]
|
||
* H(x) is the auxiliary function that can be either a hash, HMAC or KMAC.
|
||
* H_outputBits is the length of the output of the auxiliary function H(x).
|
||
*
|
||
* Currently there is not a comprehensive list of test vectors for this
|
||
* algorithm, especially for H(x) = HMAC and H(x) = KMAC.
|
||
* Test vectors for H(x) = Hash are indirectly used by CAVS KAS tests.
|
||
*/
|
||
#include <stdlib.h>
|
||
#include <stdarg.h>
|
||
#include <string.h>
|
||
#include <openssl/hmac.h>
|
||
#include <openssl/evp.h>
|
||
#include <openssl/kdf.h>
|
||
#include "internal/cryptlib.h"
|
||
#include "internal/evp_int.h"
|
||
#include "kdf_local.h"
|
||
|
||
struct evp_kdf_impl_st {
|
||
const EVP_MAC *mac; /* H(x) = HMAC_hash OR H(x) = KMAC */
|
||
const EVP_MD *md; /* H(x) = hash OR when H(x) = HMAC_hash */
|
||
unsigned char *secret;
|
||
size_t secret_len;
|
||
unsigned char *info;
|
||
size_t info_len;
|
||
unsigned char *salt;
|
||
size_t salt_len;
|
||
size_t out_len; /* optional KMAC parameter */
|
||
};
|
||
|
||
#define SSKDF_MAX_INLEN (1<<30)
|
||
#define SSKDF_KMAC128_DEFAULT_SALT_SIZE (168 - 4)
|
||
#define SSKDF_KMAC256_DEFAULT_SALT_SIZE (136 - 4)
|
||
|
||
/* KMAC uses a Customisation string of 'KDF' */
|
||
static const unsigned char kmac_custom_str[] = { 0x4B, 0x44, 0x46 };
|
||
|
||
/*
|
||
* Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
|
||
* Section 4. One-Step Key Derivation using H(x) = hash(x)
|
||
* Note: X9.63 also uses this code with the only difference being that the
|
||
* counter is appended to the secret 'z'.
|
||
* i.e.
|
||
* result[i] = Hash(counter || z || info) for One Step OR
|
||
* result[i] = Hash(z || counter || info) for X9.63.
|
||
*/
|
||
static int SSKDF_hash_kdm(const EVP_MD *kdf_md,
|
||
const unsigned char *z, size_t z_len,
|
||
const unsigned char *info, size_t info_len,
|
||
unsigned int append_ctr,
|
||
unsigned char *derived_key, size_t derived_key_len)
|
||
{
|
||
int ret = 0, hlen;
|
||
size_t counter, out_len, len = derived_key_len;
|
||
unsigned char c[4];
|
||
unsigned char mac[EVP_MAX_MD_SIZE];
|
||
unsigned char *out = derived_key;
|
||
EVP_MD_CTX *ctx = NULL, *ctx_init = NULL;
|
||
|
||
if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN
|
||
|| derived_key_len > SSKDF_MAX_INLEN
|
||
|| derived_key_len == 0)
|
||
return 0;
|
||
|
||
hlen = EVP_MD_size(kdf_md);
|
||
if (hlen <= 0)
|
||
return 0;
|
||
out_len = (size_t)hlen;
|
||
|
||
ctx = EVP_MD_CTX_create();
|
||
ctx_init = EVP_MD_CTX_create();
|
||
if (ctx == NULL || ctx_init == NULL)
|
||
goto end;
|
||
|
||
if (!EVP_DigestInit(ctx_init, kdf_md))
|
||
goto end;
|
||
|
||
for (counter = 1;; counter++) {
|
||
c[0] = (unsigned char)((counter >> 24) & 0xff);
|
||
c[1] = (unsigned char)((counter >> 16) & 0xff);
|
||
c[2] = (unsigned char)((counter >> 8) & 0xff);
|
||
c[3] = (unsigned char)(counter & 0xff);
|
||
|
||
if (!(EVP_MD_CTX_copy_ex(ctx, ctx_init)
|
||
&& (append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c)))
|
||
&& EVP_DigestUpdate(ctx, z, z_len)
|
||
&& (!append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c)))
|
||
&& EVP_DigestUpdate(ctx, info, info_len)))
|
||
goto end;
|
||
if (len >= out_len) {
|
||
if (!EVP_DigestFinal_ex(ctx, out, NULL))
|
||
goto end;
|
||
out += out_len;
|
||
len -= out_len;
|
||
if (len == 0)
|
||
break;
|
||
} else {
|
||
if (!EVP_DigestFinal_ex(ctx, mac, NULL))
|
||
goto end;
|
||
memcpy(out, mac, len);
|
||
break;
|
||
}
|
||
}
|
||
ret = 1;
|
||
end:
|
||
EVP_MD_CTX_destroy(ctx);
|
||
EVP_MD_CTX_destroy(ctx_init);
|
||
OPENSSL_cleanse(mac, sizeof(mac));
|
||
return ret;
|
||
}
|
||
|
||
static int kmac_init(EVP_MAC_CTX *ctx, const unsigned char *custom,
|
||
size_t custom_len, size_t kmac_out_len,
|
||
size_t derived_key_len, unsigned char **out)
|
||
{
|
||
/* Only KMAC has custom data - so return if not KMAC */
|
||
if (custom == NULL)
|
||
return 1;
|
||
|
||
if (EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_CUSTOM, custom, custom_len) <= 0)
|
||
return 0;
|
||
|
||
/* By default only do one iteration if kmac_out_len is not specified */
|
||
if (kmac_out_len == 0)
|
||
kmac_out_len = derived_key_len;
|
||
/* otherwise check the size is valid */
|
||
else if (!(kmac_out_len == derived_key_len
|
||
|| kmac_out_len == 20
|
||
|| kmac_out_len == 28
|
||
|| kmac_out_len == 32
|
||
|| kmac_out_len == 48
|
||
|| kmac_out_len == 64))
|
||
return 0;
|
||
|
||
if (EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_SIZE, kmac_out_len) <= 0)
|
||
return 0;
|
||
|
||
/*
|
||
* For kmac the output buffer can be larger than EVP_MAX_MD_SIZE: so
|
||
* alloc a buffer for this case.
|
||
*/
|
||
if (kmac_out_len > EVP_MAX_MD_SIZE) {
|
||
*out = OPENSSL_zalloc(kmac_out_len);
|
||
if (*out == NULL)
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
* Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
|
||
* Section 4. One-Step Key Derivation using MAC: i.e either
|
||
* H(x) = HMAC-hash(salt, x) OR
|
||
* H(x) = KMAC#(salt, x, outbits, CustomString='KDF')
|
||
*/
|
||
static int SSKDF_mac_kdm(const EVP_MAC *kdf_mac, const EVP_MD *hmac_md,
|
||
const unsigned char *kmac_custom,
|
||
size_t kmac_custom_len, size_t kmac_out_len,
|
||
const unsigned char *salt, size_t salt_len,
|
||
const unsigned char *z, size_t z_len,
|
||
const unsigned char *info, size_t info_len,
|
||
unsigned char *derived_key, size_t derived_key_len)
|
||
{
|
||
int ret = 0;
|
||
size_t counter, out_len, len;
|
||
unsigned char c[4];
|
||
unsigned char mac_buf[EVP_MAX_MD_SIZE];
|
||
unsigned char *out = derived_key;
|
||
EVP_MAC_CTX *ctx = NULL, *ctx_init = NULL;
|
||
unsigned char *mac = mac_buf, *kmac_buffer = NULL;
|
||
|
||
if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN
|
||
|| derived_key_len > SSKDF_MAX_INLEN
|
||
|| derived_key_len == 0)
|
||
return 0;
|
||
|
||
ctx_init = EVP_MAC_CTX_new(kdf_mac);
|
||
if (ctx_init == NULL)
|
||
goto end;
|
||
if (hmac_md != NULL &&
|
||
EVP_MAC_ctrl(ctx_init, EVP_MAC_CTRL_SET_MD, hmac_md) <= 0)
|
||
goto end;
|
||
|
||
if (EVP_MAC_ctrl(ctx_init, EVP_MAC_CTRL_SET_KEY, salt, salt_len) <= 0)
|
||
goto end;
|
||
|
||
if (!kmac_init(ctx_init, kmac_custom, kmac_custom_len, kmac_out_len,
|
||
derived_key_len, &kmac_buffer))
|
||
goto end;
|
||
if (kmac_buffer != NULL)
|
||
mac = kmac_buffer;
|
||
|
||
if (!EVP_MAC_init(ctx_init))
|
||
goto end;
|
||
|
||
out_len = EVP_MAC_size(ctx_init); /* output size */
|
||
if (out_len <= 0)
|
||
goto end;
|
||
len = derived_key_len;
|
||
|
||
for (counter = 1;; counter++) {
|
||
c[0] = (unsigned char)((counter >> 24) & 0xff);
|
||
c[1] = (unsigned char)((counter >> 16) & 0xff);
|
||
c[2] = (unsigned char)((counter >> 8) & 0xff);
|
||
c[3] = (unsigned char)(counter & 0xff);
|
||
|
||
ctx = EVP_MAC_CTX_dup(ctx_init);
|
||
if (!(ctx != NULL
|
||
&& EVP_MAC_update(ctx, c, sizeof(c))
|
||
&& EVP_MAC_update(ctx, z, z_len)
|
||
&& EVP_MAC_update(ctx, info, info_len)))
|
||
goto end;
|
||
if (len >= out_len) {
|
||
if (!EVP_MAC_final(ctx, out, NULL))
|
||
goto end;
|
||
out += out_len;
|
||
len -= out_len;
|
||
if (len == 0)
|
||
break;
|
||
} else {
|
||
if (!EVP_MAC_final(ctx, mac, NULL))
|
||
goto end;
|
||
memcpy(out, mac, len);
|
||
break;
|
||
}
|
||
EVP_MAC_CTX_free(ctx);
|
||
ctx = NULL;
|
||
}
|
||
ret = 1;
|
||
end:
|
||
if (kmac_buffer != NULL)
|
||
OPENSSL_clear_free(kmac_buffer, kmac_out_len);
|
||
else
|
||
OPENSSL_cleanse(mac_buf, sizeof(mac_buf));
|
||
|
||
EVP_MAC_CTX_free(ctx);
|
||
EVP_MAC_CTX_free(ctx_init);
|
||
return ret;
|
||
}
|
||
|
||
static EVP_KDF_IMPL *sskdf_new(void)
|
||
{
|
||
EVP_KDF_IMPL *impl;
|
||
|
||
if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
|
||
KDFerr(KDF_F_SSKDF_NEW, ERR_R_MALLOC_FAILURE);
|
||
return impl;
|
||
}
|
||
|
||
static void sskdf_reset(EVP_KDF_IMPL *impl)
|
||
{
|
||
OPENSSL_clear_free(impl->secret, impl->secret_len);
|
||
OPENSSL_clear_free(impl->info, impl->info_len);
|
||
OPENSSL_clear_free(impl->salt, impl->salt_len);
|
||
memset(impl, 0, sizeof(*impl));
|
||
}
|
||
|
||
static void sskdf_free(EVP_KDF_IMPL *impl)
|
||
{
|
||
sskdf_reset(impl);
|
||
OPENSSL_free(impl);
|
||
}
|
||
|
||
static int sskdf_set_buffer(va_list args, unsigned char **out, size_t *out_len)
|
||
{
|
||
const unsigned char *p;
|
||
size_t len;
|
||
|
||
p = va_arg(args, const unsigned char *);
|
||
len = va_arg(args, size_t);
|
||
if (len == 0 || p == NULL)
|
||
return 1;
|
||
|
||
OPENSSL_free(*out);
|
||
*out = OPENSSL_memdup(p, len);
|
||
if (*out == NULL)
|
||
return 0;
|
||
|
||
*out_len = len;
|
||
return 1;
|
||
}
|
||
|
||
static int sskdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
|
||
{
|
||
const EVP_MD *md;
|
||
const EVP_MAC *mac;
|
||
|
||
switch (cmd) {
|
||
case EVP_KDF_CTRL_SET_KEY:
|
||
return sskdf_set_buffer(args, &impl->secret, &impl->secret_len);
|
||
|
||
case EVP_KDF_CTRL_SET_SSKDF_INFO:
|
||
return sskdf_set_buffer(args, &impl->info, &impl->info_len);
|
||
|
||
case EVP_KDF_CTRL_SET_MD:
|
||
md = va_arg(args, const EVP_MD *);
|
||
if (md == NULL)
|
||
return 0;
|
||
|
||
impl->md = md;
|
||
return 1;
|
||
|
||
case EVP_KDF_CTRL_SET_MAC:
|
||
mac = va_arg(args, const EVP_MAC *);
|
||
if (mac == NULL)
|
||
return 0;
|
||
|
||
impl->mac = mac;
|
||
return 1;
|
||
|
||
case EVP_KDF_CTRL_SET_SALT:
|
||
return sskdf_set_buffer(args, &impl->salt, &impl->salt_len);
|
||
|
||
case EVP_KDF_CTRL_SET_MAC_SIZE:
|
||
impl->out_len = va_arg(args, size_t);
|
||
return 1;
|
||
|
||
default:
|
||
return -2;
|
||
}
|
||
}
|
||
|
||
/* Pass a mac to a ctrl */
|
||
static int sskdf_mac2ctrl(EVP_KDF_IMPL *impl,
|
||
int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
|
||
int cmd, const char *mac_name)
|
||
{
|
||
const EVP_MAC *mac;
|
||
|
||
if (mac_name == NULL || (mac = EVP_get_macbyname(mac_name)) == NULL) {
|
||
KDFerr(KDF_F_SSKDF_MAC2CTRL, KDF_R_INVALID_MAC_TYPE);
|
||
return 0;
|
||
}
|
||
return call_ctrl(ctrl, impl, cmd, mac);
|
||
}
|
||
|
||
static int sskdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
|
||
const char *value)
|
||
{
|
||
if (strcmp(type, "secret") == 0 || strcmp(type, "key") == 0)
|
||
return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY,
|
||
value);
|
||
|
||
if (strcmp(type, "hexsecret") == 0 || strcmp(type, "hexkey") == 0)
|
||
return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY,
|
||
value);
|
||
|
||
if (strcmp(type, "info") == 0)
|
||
return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO,
|
||
value);
|
||
|
||
if (strcmp(type, "hexinfo") == 0)
|
||
return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO,
|
||
value);
|
||
|
||
if (strcmp(type, "digest") == 0)
|
||
return kdf_md2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
|
||
|
||
if (strcmp(type, "mac") == 0)
|
||
return sskdf_mac2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MAC, value);
|
||
|
||
if (strcmp(type, "salt") == 0)
|
||
return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
|
||
|
||
if (strcmp(type, "hexsalt") == 0)
|
||
return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
|
||
|
||
|
||
if (strcmp(type, "maclen") == 0) {
|
||
int val = atoi(value);
|
||
if (val < 0) {
|
||
KDFerr(KDF_F_SSKDF_CTRL_STR, KDF_R_VALUE_ERROR);
|
||
return 0;
|
||
}
|
||
return call_ctrl(sskdf_ctrl, impl, EVP_KDF_CTRL_SET_MAC_SIZE,
|
||
(size_t)val);
|
||
}
|
||
return -2;
|
||
}
|
||
|
||
static size_t sskdf_size(EVP_KDF_IMPL *impl)
|
||
{
|
||
int len;
|
||
|
||
if (impl->md == NULL) {
|
||
KDFerr(KDF_F_SSKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST);
|
||
return 0;
|
||
}
|
||
len = EVP_MD_size(impl->md);
|
||
return (len <= 0) ? 0 : (size_t)len;
|
||
}
|
||
|
||
static int sskdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
|
||
{
|
||
if (impl->secret == NULL) {
|
||
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_SECRET);
|
||
return 0;
|
||
}
|
||
|
||
if (impl->mac != NULL) {
|
||
/* H(x) = KMAC or H(x) = HMAC */
|
||
int ret;
|
||
const unsigned char *custom = NULL;
|
||
size_t custom_len = 0;
|
||
int nid;
|
||
int default_salt_len;
|
||
|
||
nid = EVP_MAC_nid(impl->mac);
|
||
if (nid == EVP_MAC_HMAC) {
|
||
/* H(x) = HMAC(x, salt, hash) */
|
||
if (impl->md == NULL) {
|
||
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
|
||
return 0;
|
||
}
|
||
default_salt_len = EVP_MD_block_size(impl->md);
|
||
if (default_salt_len <= 0)
|
||
return 0;
|
||
} else if (nid == EVP_MAC_KMAC128 || nid == EVP_MAC_KMAC256) {
|
||
/* H(x) = KMACzzz(x, salt, custom) */
|
||
custom = kmac_custom_str;
|
||
custom_len = sizeof(kmac_custom_str);
|
||
if (nid == EVP_MAC_KMAC128)
|
||
default_salt_len = SSKDF_KMAC128_DEFAULT_SALT_SIZE;
|
||
else
|
||
default_salt_len = SSKDF_KMAC256_DEFAULT_SALT_SIZE;
|
||
} else {
|
||
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_UNSUPPORTED_MAC_TYPE);
|
||
return 0;
|
||
}
|
||
/* If no salt is set then use a default_salt of zeros */
|
||
if (impl->salt == NULL || impl->salt_len <= 0) {
|
||
impl->salt = OPENSSL_zalloc(default_salt_len);
|
||
if (impl->salt == NULL) {
|
||
KDFerr(KDF_F_SSKDF_DERIVE, ERR_R_MALLOC_FAILURE);
|
||
return 0;
|
||
}
|
||
impl->salt_len = default_salt_len;
|
||
}
|
||
ret = SSKDF_mac_kdm(impl->mac, impl->md,
|
||
custom, custom_len, impl->out_len,
|
||
impl->salt, impl->salt_len,
|
||
impl->secret, impl->secret_len,
|
||
impl->info, impl->info_len, key, keylen);
|
||
return ret;
|
||
} else {
|
||
/* H(x) = hash */
|
||
if (impl->md == NULL) {
|
||
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
|
||
return 0;
|
||
}
|
||
return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len,
|
||
impl->info, impl->info_len, 0, key, keylen);
|
||
}
|
||
}
|
||
|
||
static int x963kdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
|
||
{
|
||
if (impl->secret == NULL) {
|
||
KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_MISSING_SECRET);
|
||
return 0;
|
||
}
|
||
|
||
if (impl->mac != NULL) {
|
||
KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_NOT_SUPPORTED);
|
||
return 0;
|
||
} else {
|
||
/* H(x) = hash */
|
||
if (impl->md == NULL) {
|
||
KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
|
||
return 0;
|
||
}
|
||
return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len,
|
||
impl->info, impl->info_len, 1, key, keylen);
|
||
}
|
||
}
|
||
|
||
const EVP_KDF ss_kdf_meth = {
|
||
EVP_KDF_SS,
|
||
sskdf_new,
|
||
sskdf_free,
|
||
sskdf_reset,
|
||
sskdf_ctrl,
|
||
sskdf_ctrl_str,
|
||
sskdf_size,
|
||
sskdf_derive
|
||
};
|
||
|
||
const EVP_KDF x963_kdf_meth = {
|
||
EVP_KDF_X963,
|
||
sskdf_new,
|
||
sskdf_free,
|
||
sskdf_reset,
|
||
sskdf_ctrl,
|
||
sskdf_ctrl_str,
|
||
sskdf_size,
|
||
x963kdf_derive
|
||
};
|