mirror of
https://github.com/openssl/openssl.git
synced 2024-12-15 06:01:37 +08:00
7ed6de997f
Reviewed-by: Neil Horman <nhorman@openssl.org> Release: yes
1212 lines
36 KiB
C
1212 lines
36 KiB
C
/*
|
||
* Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
|
||
*
|
||
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
||
* this file except in compliance with the License. You can obtain a copy
|
||
* in the file LICENSE in the source distribution or at
|
||
* https://www.openssl.org/source/license.html
|
||
*/
|
||
|
||
/*
|
||
* RSA low level APIs are deprecated for public use, but still ok for
|
||
* internal use.
|
||
*/
|
||
#include "internal/deprecated.h"
|
||
|
||
#include "internal/cryptlib.h"
|
||
#include "crypto/bn.h"
|
||
#include "rsa_local.h"
|
||
#include "internal/constant_time.h"
|
||
#include <openssl/evp.h>
|
||
#include <openssl/sha.h>
|
||
#include <openssl/hmac.h>
|
||
|
||
static int rsa_ossl_public_encrypt(int flen, const unsigned char *from,
|
||
unsigned char *to, RSA *rsa, int padding);
|
||
static int rsa_ossl_private_encrypt(int flen, const unsigned char *from,
|
||
unsigned char *to, RSA *rsa, int padding);
|
||
static int rsa_ossl_public_decrypt(int flen, const unsigned char *from,
|
||
unsigned char *to, RSA *rsa, int padding);
|
||
static int rsa_ossl_private_decrypt(int flen, const unsigned char *from,
|
||
unsigned char *to, RSA *rsa, int padding);
|
||
static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa,
|
||
BN_CTX *ctx);
|
||
static int rsa_ossl_init(RSA *rsa);
|
||
static int rsa_ossl_finish(RSA *rsa);
|
||
#ifdef S390X_MOD_EXP
|
||
static int rsa_ossl_s390x_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa,
|
||
BN_CTX *ctx);
|
||
static RSA_METHOD rsa_pkcs1_ossl_meth = {
|
||
"OpenSSL PKCS#1 RSA",
|
||
rsa_ossl_public_encrypt,
|
||
rsa_ossl_public_decrypt, /* signature verification */
|
||
rsa_ossl_private_encrypt, /* signing */
|
||
rsa_ossl_private_decrypt,
|
||
rsa_ossl_s390x_mod_exp,
|
||
s390x_mod_exp,
|
||
rsa_ossl_init,
|
||
rsa_ossl_finish,
|
||
RSA_FLAG_FIPS_METHOD, /* flags */
|
||
NULL,
|
||
0, /* rsa_sign */
|
||
0, /* rsa_verify */
|
||
NULL, /* rsa_keygen */
|
||
NULL /* rsa_multi_prime_keygen */
|
||
};
|
||
#else
|
||
static RSA_METHOD rsa_pkcs1_ossl_meth = {
|
||
"OpenSSL PKCS#1 RSA",
|
||
rsa_ossl_public_encrypt,
|
||
rsa_ossl_public_decrypt, /* signature verification */
|
||
rsa_ossl_private_encrypt, /* signing */
|
||
rsa_ossl_private_decrypt,
|
||
rsa_ossl_mod_exp,
|
||
BN_mod_exp_mont, /* XXX probably we should not use Montgomery
|
||
* if e == 3 */
|
||
rsa_ossl_init,
|
||
rsa_ossl_finish,
|
||
RSA_FLAG_FIPS_METHOD, /* flags */
|
||
NULL,
|
||
0, /* rsa_sign */
|
||
0, /* rsa_verify */
|
||
NULL, /* rsa_keygen */
|
||
NULL /* rsa_multi_prime_keygen */
|
||
};
|
||
#endif
|
||
|
||
static const RSA_METHOD *default_RSA_meth = &rsa_pkcs1_ossl_meth;
|
||
|
||
void RSA_set_default_method(const RSA_METHOD *meth)
|
||
{
|
||
default_RSA_meth = meth;
|
||
}
|
||
|
||
const RSA_METHOD *RSA_get_default_method(void)
|
||
{
|
||
return default_RSA_meth;
|
||
}
|
||
|
||
const RSA_METHOD *RSA_PKCS1_OpenSSL(void)
|
||
{
|
||
return &rsa_pkcs1_ossl_meth;
|
||
}
|
||
|
||
const RSA_METHOD *RSA_null_method(void)
|
||
{
|
||
return NULL;
|
||
}
|
||
|
||
static int rsa_ossl_public_encrypt(int flen, const unsigned char *from,
|
||
unsigned char *to, RSA *rsa, int padding)
|
||
{
|
||
BIGNUM *f, *ret;
|
||
int i, num = 0, r = -1;
|
||
unsigned char *buf = NULL;
|
||
BN_CTX *ctx = NULL;
|
||
|
||
if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_MODULUS_TOO_LARGE);
|
||
return -1;
|
||
}
|
||
|
||
if (BN_ucmp(rsa->n, rsa->e) <= 0) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
|
||
return -1;
|
||
}
|
||
|
||
/* for large moduli, enforce exponent limit */
|
||
if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) {
|
||
if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL)
|
||
goto err;
|
||
BN_CTX_start(ctx);
|
||
f = BN_CTX_get(ctx);
|
||
ret = BN_CTX_get(ctx);
|
||
num = BN_num_bytes(rsa->n);
|
||
buf = OPENSSL_malloc(num);
|
||
if (ret == NULL || buf == NULL)
|
||
goto err;
|
||
|
||
switch (padding) {
|
||
case RSA_PKCS1_PADDING:
|
||
i = ossl_rsa_padding_add_PKCS1_type_2_ex(rsa->libctx, buf, num,
|
||
from, flen);
|
||
break;
|
||
case RSA_PKCS1_OAEP_PADDING:
|
||
i = ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(rsa->libctx, buf, num,
|
||
from, flen, NULL, 0,
|
||
NULL, NULL);
|
||
break;
|
||
case RSA_NO_PADDING:
|
||
i = RSA_padding_add_none(buf, num, from, flen);
|
||
break;
|
||
default:
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
||
goto err;
|
||
}
|
||
if (i <= 0)
|
||
goto err;
|
||
|
||
if (BN_bin2bn(buf, num, f) == NULL)
|
||
goto err;
|
||
|
||
#ifdef FIPS_MODULE
|
||
/*
|
||
* See SP800-56Br2, section 7.1.1.1
|
||
* RSAEP: 1 < f < (n – 1).
|
||
* (where f is the plaintext).
|
||
*/
|
||
if (padding == RSA_NO_PADDING) {
|
||
BIGNUM *nminus1 = BN_CTX_get(ctx);
|
||
|
||
if (BN_ucmp(f, BN_value_one()) <= 0) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_SMALL);
|
||
goto err;
|
||
}
|
||
if (nminus1 == NULL
|
||
|| BN_copy(nminus1, rsa->n) == NULL
|
||
|| !BN_sub_word(nminus1, 1))
|
||
goto err;
|
||
if (BN_ucmp(f, nminus1) >= 0) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
|
||
goto err;
|
||
}
|
||
} else
|
||
#endif
|
||
{
|
||
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
/* usually the padding functions would catch this */
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
|
||
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock,
|
||
rsa->n, ctx))
|
||
goto err;
|
||
|
||
if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx,
|
||
rsa->_method_mod_n))
|
||
goto err;
|
||
|
||
/*
|
||
* BN_bn2binpad puts in leading 0 bytes if the number is less than
|
||
* the length of the modulus.
|
||
*/
|
||
r = BN_bn2binpad(ret, to, num);
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
BN_CTX_free(ctx);
|
||
OPENSSL_clear_free(buf, num);
|
||
return r;
|
||
}
|
||
|
||
static BN_BLINDING *rsa_get_blinding(RSA *rsa, int *local, BN_CTX *ctx)
|
||
{
|
||
BN_BLINDING *ret;
|
||
|
||
if (!CRYPTO_THREAD_read_lock(rsa->lock))
|
||
return NULL;
|
||
|
||
if (rsa->blinding == NULL) {
|
||
/*
|
||
* This dance with upgrading the lock from read to write will be
|
||
* slower in cases of a single use RSA object, but should be
|
||
* significantly better in multi-thread cases (e.g. servers). It's
|
||
* probably worth it.
|
||
*/
|
||
CRYPTO_THREAD_unlock(rsa->lock);
|
||
if (!CRYPTO_THREAD_write_lock(rsa->lock))
|
||
return NULL;
|
||
if (rsa->blinding == NULL)
|
||
rsa->blinding = RSA_setup_blinding(rsa, ctx);
|
||
}
|
||
|
||
ret = rsa->blinding;
|
||
if (ret == NULL)
|
||
goto err;
|
||
|
||
if (BN_BLINDING_is_current_thread(ret)) {
|
||
/* rsa->blinding is ours! */
|
||
|
||
*local = 1;
|
||
} else {
|
||
/* resort to rsa->mt_blinding instead */
|
||
|
||
/*
|
||
* instructs rsa_blinding_convert(), rsa_blinding_invert() that the
|
||
* BN_BLINDING is shared, meaning that accesses require locks, and
|
||
* that the blinding factor must be stored outside the BN_BLINDING
|
||
*/
|
||
*local = 0;
|
||
|
||
if (rsa->mt_blinding == NULL) {
|
||
CRYPTO_THREAD_unlock(rsa->lock);
|
||
if (!CRYPTO_THREAD_write_lock(rsa->lock))
|
||
return NULL;
|
||
if (rsa->mt_blinding == NULL)
|
||
rsa->mt_blinding = RSA_setup_blinding(rsa, ctx);
|
||
}
|
||
ret = rsa->mt_blinding;
|
||
}
|
||
|
||
err:
|
||
CRYPTO_THREAD_unlock(rsa->lock);
|
||
return ret;
|
||
}
|
||
|
||
static int rsa_blinding_convert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind,
|
||
BN_CTX *ctx)
|
||
{
|
||
if (unblind == NULL) {
|
||
/*
|
||
* Local blinding: store the unblinding factor in BN_BLINDING.
|
||
*/
|
||
return BN_BLINDING_convert_ex(f, NULL, b, ctx);
|
||
} else {
|
||
/*
|
||
* Shared blinding: store the unblinding factor outside BN_BLINDING.
|
||
*/
|
||
int ret;
|
||
|
||
if (!BN_BLINDING_lock(b))
|
||
return 0;
|
||
|
||
ret = BN_BLINDING_convert_ex(f, unblind, b, ctx);
|
||
BN_BLINDING_unlock(b);
|
||
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
static int rsa_blinding_invert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind,
|
||
BN_CTX *ctx)
|
||
{
|
||
/*
|
||
* For local blinding, unblind is set to NULL, and BN_BLINDING_invert_ex
|
||
* will use the unblinding factor stored in BN_BLINDING. If BN_BLINDING
|
||
* is shared between threads, unblind must be non-null:
|
||
* BN_BLINDING_invert_ex will then use the local unblinding factor, and
|
||
* will only read the modulus from BN_BLINDING. In both cases it's safe
|
||
* to access the blinding without a lock.
|
||
*/
|
||
BN_set_flags(f, BN_FLG_CONSTTIME);
|
||
return BN_BLINDING_invert_ex(f, unblind, b, ctx);
|
||
}
|
||
|
||
/* signing */
|
||
static int rsa_ossl_private_encrypt(int flen, const unsigned char *from,
|
||
unsigned char *to, RSA *rsa, int padding)
|
||
{
|
||
BIGNUM *f, *ret, *res;
|
||
int i, num = 0, r = -1;
|
||
unsigned char *buf = NULL;
|
||
BN_CTX *ctx = NULL;
|
||
int local_blinding = 0;
|
||
/*
|
||
* Used only if the blinding structure is shared. A non-NULL unblind
|
||
* instructs rsa_blinding_convert() and rsa_blinding_invert() to store
|
||
* the unblinding factor outside the blinding structure.
|
||
*/
|
||
BIGNUM *unblind = NULL;
|
||
BN_BLINDING *blinding = NULL;
|
||
|
||
if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL)
|
||
goto err;
|
||
BN_CTX_start(ctx);
|
||
f = BN_CTX_get(ctx);
|
||
ret = BN_CTX_get(ctx);
|
||
num = BN_num_bytes(rsa->n);
|
||
buf = OPENSSL_malloc(num);
|
||
if (ret == NULL || buf == NULL)
|
||
goto err;
|
||
|
||
switch (padding) {
|
||
case RSA_PKCS1_PADDING:
|
||
i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen);
|
||
break;
|
||
case RSA_X931_PADDING:
|
||
i = RSA_padding_add_X931(buf, num, from, flen);
|
||
break;
|
||
case RSA_NO_PADDING:
|
||
i = RSA_padding_add_none(buf, num, from, flen);
|
||
break;
|
||
default:
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
||
goto err;
|
||
}
|
||
if (i <= 0)
|
||
goto err;
|
||
|
||
if (BN_bin2bn(buf, num, f) == NULL)
|
||
goto err;
|
||
|
||
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
/* usually the padding functions would catch this */
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
|
||
goto err;
|
||
}
|
||
|
||
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
|
||
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock,
|
||
rsa->n, ctx))
|
||
goto err;
|
||
|
||
if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) {
|
||
blinding = rsa_get_blinding(rsa, &local_blinding, ctx);
|
||
if (blinding == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
if (blinding != NULL) {
|
||
if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
if (!rsa_blinding_convert(blinding, f, unblind, ctx))
|
||
goto err;
|
||
}
|
||
|
||
if ((rsa->flags & RSA_FLAG_EXT_PKEY) ||
|
||
(rsa->version == RSA_ASN1_VERSION_MULTI) ||
|
||
((rsa->p != NULL) &&
|
||
(rsa->q != NULL) &&
|
||
(rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) {
|
||
if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx))
|
||
goto err;
|
||
} else {
|
||
BIGNUM *d = BN_new();
|
||
if (d == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
if (rsa->d == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY);
|
||
BN_free(d);
|
||
goto err;
|
||
}
|
||
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
|
||
|
||
if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx,
|
||
rsa->_method_mod_n)) {
|
||
BN_free(d);
|
||
goto err;
|
||
}
|
||
/* We MUST free d before any further use of rsa->d */
|
||
BN_free(d);
|
||
}
|
||
|
||
if (blinding)
|
||
if (!rsa_blinding_invert(blinding, ret, unblind, ctx))
|
||
goto err;
|
||
|
||
if (padding == RSA_X931_PADDING) {
|
||
if (!BN_sub(f, rsa->n, ret))
|
||
goto err;
|
||
if (BN_cmp(ret, f) > 0)
|
||
res = f;
|
||
else
|
||
res = ret;
|
||
} else {
|
||
res = ret;
|
||
}
|
||
|
||
/*
|
||
* BN_bn2binpad puts in leading 0 bytes if the number is less than
|
||
* the length of the modulus.
|
||
*/
|
||
r = BN_bn2binpad(res, to, num);
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
BN_CTX_free(ctx);
|
||
OPENSSL_clear_free(buf, num);
|
||
return r;
|
||
}
|
||
|
||
static int derive_kdk(int flen, const unsigned char *from, RSA *rsa,
|
||
unsigned char *buf, int num, unsigned char *kdk)
|
||
{
|
||
int ret = 0;
|
||
HMAC_CTX *hmac = NULL;
|
||
EVP_MD *md = NULL;
|
||
unsigned int md_len = SHA256_DIGEST_LENGTH;
|
||
unsigned char d_hash[SHA256_DIGEST_LENGTH] = {0};
|
||
/*
|
||
* because we use d as a handle to rsa->d we need to keep it local and
|
||
* free before any further use of rsa->d
|
||
*/
|
||
BIGNUM *d = BN_new();
|
||
|
||
if (d == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB);
|
||
goto err;
|
||
}
|
||
if (rsa->d == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY);
|
||
BN_free(d);
|
||
goto err;
|
||
}
|
||
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
|
||
if (BN_bn2binpad(d, buf, num) < 0) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
||
BN_free(d);
|
||
goto err;
|
||
}
|
||
BN_free(d);
|
||
|
||
/*
|
||
* we use hardcoded hash so that migrating between versions that use
|
||
* different hash doesn't provide a Bleichenbacher oracle:
|
||
* if the attacker can see that different versions return different
|
||
* messages for the same ciphertext, they'll know that the message is
|
||
* synthetically generated, which means that the padding check failed
|
||
*/
|
||
md = EVP_MD_fetch(rsa->libctx, "sha256", NULL);
|
||
if (md == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_FETCH_FAILED);
|
||
goto err;
|
||
}
|
||
|
||
if (EVP_Digest(buf, num, d_hash, NULL, md, NULL) <= 0) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
|
||
hmac = HMAC_CTX_new();
|
||
if (hmac == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB);
|
||
goto err;
|
||
}
|
||
|
||
if (HMAC_Init_ex(hmac, d_hash, sizeof(d_hash), md, NULL) <= 0) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
|
||
if (flen < num) {
|
||
memset(buf, 0, num - flen);
|
||
if (HMAC_Update(hmac, buf, num - flen) <= 0) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
}
|
||
if (HMAC_Update(hmac, from, flen) <= 0) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
|
||
md_len = SHA256_DIGEST_LENGTH;
|
||
if (HMAC_Final(hmac, kdk, &md_len) <= 0) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
ret = 1;
|
||
|
||
err:
|
||
HMAC_CTX_free(hmac);
|
||
EVP_MD_free(md);
|
||
return ret;
|
||
}
|
||
|
||
static int rsa_ossl_private_decrypt(int flen, const unsigned char *from,
|
||
unsigned char *to, RSA *rsa, int padding)
|
||
{
|
||
BIGNUM *f, *ret;
|
||
int j, num = 0, r = -1;
|
||
unsigned char *buf = NULL;
|
||
unsigned char kdk[SHA256_DIGEST_LENGTH] = {0};
|
||
BN_CTX *ctx = NULL;
|
||
int local_blinding = 0;
|
||
/*
|
||
* Used only if the blinding structure is shared. A non-NULL unblind
|
||
* instructs rsa_blinding_convert() and rsa_blinding_invert() to store
|
||
* the unblinding factor outside the blinding structure.
|
||
*/
|
||
BIGNUM *unblind = NULL;
|
||
BN_BLINDING *blinding = NULL;
|
||
|
||
/*
|
||
* we need the value of the private exponent to perform implicit rejection
|
||
*/
|
||
if ((rsa->flags & RSA_FLAG_EXT_PKEY) && (padding == RSA_PKCS1_PADDING))
|
||
padding = RSA_PKCS1_NO_IMPLICIT_REJECT_PADDING;
|
||
|
||
if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL)
|
||
goto err;
|
||
BN_CTX_start(ctx);
|
||
f = BN_CTX_get(ctx);
|
||
ret = BN_CTX_get(ctx);
|
||
if (ret == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
num = BN_num_bytes(rsa->n);
|
||
buf = OPENSSL_malloc(num);
|
||
if (buf == NULL)
|
||
goto err;
|
||
|
||
/*
|
||
* This check was for equality but PGP does evil things and chops off the
|
||
* top '0' bytes
|
||
*/
|
||
if (flen > num) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_GREATER_THAN_MOD_LEN);
|
||
goto err;
|
||
}
|
||
|
||
if (flen < 1) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_SMALL);
|
||
goto err;
|
||
}
|
||
|
||
/* make data into a big number */
|
||
if (BN_bin2bn(from, (int)flen, f) == NULL)
|
||
goto err;
|
||
|
||
#ifdef FIPS_MODULE
|
||
/*
|
||
* See SP800-56Br2, section 7.1.2.1
|
||
* RSADP: 1 < f < (n – 1)
|
||
* (where f is the ciphertext).
|
||
*/
|
||
if (padding == RSA_NO_PADDING) {
|
||
BIGNUM *nminus1 = BN_CTX_get(ctx);
|
||
|
||
if (BN_ucmp(f, BN_value_one()) <= 0) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_SMALL);
|
||
goto err;
|
||
}
|
||
if (nminus1 == NULL
|
||
|| BN_copy(nminus1, rsa->n) == NULL
|
||
|| !BN_sub_word(nminus1, 1))
|
||
goto err;
|
||
if (BN_ucmp(f, nminus1) >= 0) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
|
||
goto err;
|
||
}
|
||
} else
|
||
#endif
|
||
{
|
||
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
|
||
goto err;
|
||
}
|
||
}
|
||
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
|
||
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock,
|
||
rsa->n, ctx))
|
||
goto err;
|
||
|
||
if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) {
|
||
blinding = rsa_get_blinding(rsa, &local_blinding, ctx);
|
||
if (blinding == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
if (blinding != NULL) {
|
||
if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
if (!rsa_blinding_convert(blinding, f, unblind, ctx))
|
||
goto err;
|
||
}
|
||
|
||
/* do the decrypt */
|
||
if ((rsa->flags & RSA_FLAG_EXT_PKEY) ||
|
||
(rsa->version == RSA_ASN1_VERSION_MULTI) ||
|
||
((rsa->p != NULL) &&
|
||
(rsa->q != NULL) &&
|
||
(rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) {
|
||
if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx))
|
||
goto err;
|
||
} else {
|
||
BIGNUM *d = BN_new();
|
||
if (d == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
if (rsa->d == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY);
|
||
BN_free(d);
|
||
goto err;
|
||
}
|
||
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
|
||
if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx,
|
||
rsa->_method_mod_n)) {
|
||
BN_free(d);
|
||
goto err;
|
||
}
|
||
/* We MUST free d before any further use of rsa->d */
|
||
BN_free(d);
|
||
}
|
||
|
||
if (blinding)
|
||
if (!rsa_blinding_invert(blinding, ret, unblind, ctx))
|
||
goto err;
|
||
|
||
/*
|
||
* derive the Key Derivation Key from private exponent and public
|
||
* ciphertext
|
||
*/
|
||
if (padding == RSA_PKCS1_PADDING) {
|
||
if (derive_kdk(flen, from, rsa, buf, num, kdk) == 0)
|
||
goto err;
|
||
}
|
||
|
||
j = BN_bn2binpad(ret, buf, num);
|
||
if (j < 0)
|
||
goto err;
|
||
|
||
switch (padding) {
|
||
case RSA_PKCS1_NO_IMPLICIT_REJECT_PADDING:
|
||
r = RSA_padding_check_PKCS1_type_2(to, num, buf, j, num);
|
||
break;
|
||
case RSA_PKCS1_PADDING:
|
||
r = ossl_rsa_padding_check_PKCS1_type_2(rsa->libctx, to, num, buf, j, num, kdk);
|
||
break;
|
||
case RSA_PKCS1_OAEP_PADDING:
|
||
r = RSA_padding_check_PKCS1_OAEP(to, num, buf, j, num, NULL, 0);
|
||
break;
|
||
case RSA_NO_PADDING:
|
||
memcpy(to, buf, (r = j));
|
||
break;
|
||
default:
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
||
goto err;
|
||
}
|
||
#ifndef FIPS_MODULE
|
||
/*
|
||
* This trick doesn't work in the FIPS provider because libcrypto manages
|
||
* the error stack. Instead we opt not to put an error on the stack at all
|
||
* in case of padding failure in the FIPS provider.
|
||
*/
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_PADDING_CHECK_FAILED);
|
||
err_clear_last_constant_time(1 & ~constant_time_msb(r));
|
||
#endif
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
BN_CTX_free(ctx);
|
||
OPENSSL_clear_free(buf, num);
|
||
return r;
|
||
}
|
||
|
||
/* signature verification */
|
||
static int rsa_ossl_public_decrypt(int flen, const unsigned char *from,
|
||
unsigned char *to, RSA *rsa, int padding)
|
||
{
|
||
BIGNUM *f, *ret;
|
||
int i, num = 0, r = -1;
|
||
unsigned char *buf = NULL;
|
||
BN_CTX *ctx = NULL;
|
||
|
||
if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_MODULUS_TOO_LARGE);
|
||
return -1;
|
||
}
|
||
|
||
if (BN_ucmp(rsa->n, rsa->e) <= 0) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
|
||
return -1;
|
||
}
|
||
|
||
/* for large moduli, enforce exponent limit */
|
||
if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) {
|
||
if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL)
|
||
goto err;
|
||
BN_CTX_start(ctx);
|
||
f = BN_CTX_get(ctx);
|
||
ret = BN_CTX_get(ctx);
|
||
if (ret == NULL) {
|
||
ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
num = BN_num_bytes(rsa->n);
|
||
buf = OPENSSL_malloc(num);
|
||
if (buf == NULL)
|
||
goto err;
|
||
|
||
/*
|
||
* This check was for equality but PGP does evil things and chops off the
|
||
* top '0' bytes
|
||
*/
|
||
if (flen > num) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_GREATER_THAN_MOD_LEN);
|
||
goto err;
|
||
}
|
||
|
||
if (BN_bin2bn(from, flen, f) == NULL)
|
||
goto err;
|
||
|
||
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
|
||
goto err;
|
||
}
|
||
|
||
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
|
||
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock,
|
||
rsa->n, ctx))
|
||
goto err;
|
||
|
||
if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx,
|
||
rsa->_method_mod_n))
|
||
goto err;
|
||
|
||
/* For X9.31: Assuming e is odd it does a 12 mod 16 test */
|
||
if ((padding == RSA_X931_PADDING) && ((bn_get_words(ret)[0] & 0xf) != 12))
|
||
if (!BN_sub(ret, rsa->n, ret))
|
||
goto err;
|
||
|
||
i = BN_bn2binpad(ret, buf, num);
|
||
if (i < 0)
|
||
goto err;
|
||
|
||
switch (padding) {
|
||
case RSA_PKCS1_PADDING:
|
||
r = RSA_padding_check_PKCS1_type_1(to, num, buf, i, num);
|
||
break;
|
||
case RSA_X931_PADDING:
|
||
r = RSA_padding_check_X931(to, num, buf, i, num);
|
||
break;
|
||
case RSA_NO_PADDING:
|
||
memcpy(to, buf, (r = i));
|
||
break;
|
||
default:
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
||
goto err;
|
||
}
|
||
if (r < 0)
|
||
ERR_raise(ERR_LIB_RSA, RSA_R_PADDING_CHECK_FAILED);
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
BN_CTX_free(ctx);
|
||
OPENSSL_clear_free(buf, num);
|
||
return r;
|
||
}
|
||
|
||
static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
|
||
{
|
||
BIGNUM *r1, *m1, *vrfy;
|
||
int ret = 0, smooth = 0;
|
||
#ifndef FIPS_MODULE
|
||
BIGNUM *r2, *m[RSA_MAX_PRIME_NUM - 2];
|
||
int i, ex_primes = 0;
|
||
RSA_PRIME_INFO *pinfo;
|
||
#endif
|
||
|
||
BN_CTX_start(ctx);
|
||
|
||
r1 = BN_CTX_get(ctx);
|
||
#ifndef FIPS_MODULE
|
||
r2 = BN_CTX_get(ctx);
|
||
#endif
|
||
m1 = BN_CTX_get(ctx);
|
||
vrfy = BN_CTX_get(ctx);
|
||
if (vrfy == NULL)
|
||
goto err;
|
||
|
||
#ifndef FIPS_MODULE
|
||
if (rsa->version == RSA_ASN1_VERSION_MULTI
|
||
&& ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0
|
||
|| ex_primes > RSA_MAX_PRIME_NUM - 2))
|
||
goto err;
|
||
#endif
|
||
|
||
if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
|
||
BIGNUM *factor = BN_new();
|
||
|
||
if (factor == NULL)
|
||
goto err;
|
||
|
||
/*
|
||
* Make sure BN_mod_inverse in Montgomery initialization uses the
|
||
* BN_FLG_CONSTTIME flag
|
||
*/
|
||
if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME),
|
||
BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock,
|
||
factor, ctx))
|
||
|| !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME),
|
||
BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock,
|
||
factor, ctx))) {
|
||
BN_free(factor);
|
||
goto err;
|
||
}
|
||
#ifndef FIPS_MODULE
|
||
for (i = 0; i < ex_primes; i++) {
|
||
pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i);
|
||
BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME);
|
||
if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) {
|
||
BN_free(factor);
|
||
goto err;
|
||
}
|
||
}
|
||
#endif
|
||
/*
|
||
* We MUST free |factor| before any further use of the prime factors
|
||
*/
|
||
BN_free(factor);
|
||
|
||
smooth = (rsa->meth->bn_mod_exp == BN_mod_exp_mont)
|
||
#ifndef FIPS_MODULE
|
||
&& (ex_primes == 0)
|
||
#endif
|
||
&& (BN_num_bits(rsa->q) == BN_num_bits(rsa->p));
|
||
}
|
||
|
||
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
|
||
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock,
|
||
rsa->n, ctx))
|
||
goto err;
|
||
|
||
if (smooth) {
|
||
/*
|
||
* Conversion from Montgomery domain, a.k.a. Montgomery reduction,
|
||
* accepts values in [0-m*2^w) range. w is m's bit width rounded up
|
||
* to limb width. So that at the very least if |I| is fully reduced,
|
||
* i.e. less than p*q, we can count on from-to round to perform
|
||
* below modulo operations on |I|. Unlike BN_mod it's constant time.
|
||
*/
|
||
if (/* m1 = I moq q */
|
||
!bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx)
|
||
|| !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx)
|
||
/* r1 = I mod p */
|
||
|| !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx)
|
||
|| !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx)
|
||
/*
|
||
* Use parallel exponentiations optimization if possible,
|
||
* otherwise fallback to two sequential exponentiations:
|
||
* m1 = m1^dmq1 mod q
|
||
* r1 = r1^dmp1 mod p
|
||
*/
|
||
|| !BN_mod_exp_mont_consttime_x2(m1, m1, rsa->dmq1, rsa->q,
|
||
rsa->_method_mod_q,
|
||
r1, r1, rsa->dmp1, rsa->p,
|
||
rsa->_method_mod_p,
|
||
ctx)
|
||
/* r1 = (r1 - m1) mod p */
|
||
/*
|
||
* bn_mod_sub_fixed_top is not regular modular subtraction,
|
||
* it can tolerate subtrahend to be larger than modulus, but
|
||
* not bit-wise wider. This makes up for uncommon q>p case,
|
||
* when |m1| can be larger than |rsa->p|.
|
||
*/
|
||
|| !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p)
|
||
|
||
/* r1 = r1 * iqmp mod p */
|
||
|| !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx)
|
||
|| !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p,
|
||
ctx)
|
||
/* r0 = r1 * q + m1 */
|
||
|| !bn_mul_fixed_top(r0, r1, rsa->q, ctx)
|
||
|| !bn_mod_add_fixed_top(r0, r0, m1, rsa->n))
|
||
goto err;
|
||
|
||
goto tail;
|
||
}
|
||
|
||
/* compute I mod q */
|
||
{
|
||
BIGNUM *c = BN_new();
|
||
if (c == NULL)
|
||
goto err;
|
||
BN_with_flags(c, I, BN_FLG_CONSTTIME);
|
||
|
||
if (!BN_mod(r1, c, rsa->q, ctx)) {
|
||
BN_free(c);
|
||
goto err;
|
||
}
|
||
|
||
{
|
||
BIGNUM *dmq1 = BN_new();
|
||
if (dmq1 == NULL) {
|
||
BN_free(c);
|
||
goto err;
|
||
}
|
||
BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
|
||
|
||
/* compute r1^dmq1 mod q */
|
||
if (!rsa->meth->bn_mod_exp(m1, r1, dmq1, rsa->q, ctx,
|
||
rsa->_method_mod_q)) {
|
||
BN_free(c);
|
||
BN_free(dmq1);
|
||
goto err;
|
||
}
|
||
/* We MUST free dmq1 before any further use of rsa->dmq1 */
|
||
BN_free(dmq1);
|
||
}
|
||
|
||
/* compute I mod p */
|
||
if (!BN_mod(r1, c, rsa->p, ctx)) {
|
||
BN_free(c);
|
||
goto err;
|
||
}
|
||
/* We MUST free c before any further use of I */
|
||
BN_free(c);
|
||
}
|
||
|
||
{
|
||
BIGNUM *dmp1 = BN_new();
|
||
if (dmp1 == NULL)
|
||
goto err;
|
||
BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
|
||
|
||
/* compute r1^dmp1 mod p */
|
||
if (!rsa->meth->bn_mod_exp(r0, r1, dmp1, rsa->p, ctx,
|
||
rsa->_method_mod_p)) {
|
||
BN_free(dmp1);
|
||
goto err;
|
||
}
|
||
/* We MUST free dmp1 before any further use of rsa->dmp1 */
|
||
BN_free(dmp1);
|
||
}
|
||
|
||
#ifndef FIPS_MODULE
|
||
if (ex_primes > 0) {
|
||
BIGNUM *di = BN_new(), *cc = BN_new();
|
||
|
||
if (cc == NULL || di == NULL) {
|
||
BN_free(cc);
|
||
BN_free(di);
|
||
goto err;
|
||
}
|
||
|
||
for (i = 0; i < ex_primes; i++) {
|
||
/* prepare m_i */
|
||
if ((m[i] = BN_CTX_get(ctx)) == NULL) {
|
||
BN_free(cc);
|
||
BN_free(di);
|
||
goto err;
|
||
}
|
||
|
||
pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i);
|
||
|
||
/* prepare c and d_i */
|
||
BN_with_flags(cc, I, BN_FLG_CONSTTIME);
|
||
BN_with_flags(di, pinfo->d, BN_FLG_CONSTTIME);
|
||
|
||
if (!BN_mod(r1, cc, pinfo->r, ctx)) {
|
||
BN_free(cc);
|
||
BN_free(di);
|
||
goto err;
|
||
}
|
||
/* compute r1 ^ d_i mod r_i */
|
||
if (!rsa->meth->bn_mod_exp(m[i], r1, di, pinfo->r, ctx, pinfo->m)) {
|
||
BN_free(cc);
|
||
BN_free(di);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
BN_free(cc);
|
||
BN_free(di);
|
||
}
|
||
#endif
|
||
|
||
if (!BN_sub(r0, r0, m1))
|
||
goto err;
|
||
/*
|
||
* This will help stop the size of r0 increasing, which does affect the
|
||
* multiply if it optimised for a power of 2 size
|
||
*/
|
||
if (BN_is_negative(r0))
|
||
if (!BN_add(r0, r0, rsa->p))
|
||
goto err;
|
||
|
||
if (!BN_mul(r1, r0, rsa->iqmp, ctx))
|
||
goto err;
|
||
|
||
{
|
||
BIGNUM *pr1 = BN_new();
|
||
if (pr1 == NULL)
|
||
goto err;
|
||
BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
|
||
|
||
if (!BN_mod(r0, pr1, rsa->p, ctx)) {
|
||
BN_free(pr1);
|
||
goto err;
|
||
}
|
||
/* We MUST free pr1 before any further use of r1 */
|
||
BN_free(pr1);
|
||
}
|
||
|
||
/*
|
||
* If p < q it is occasionally possible for the correction of adding 'p'
|
||
* if r0 is negative above to leave the result still negative. This can
|
||
* break the private key operations: the following second correction
|
||
* should *always* correct this rare occurrence. This will *never* happen
|
||
* with OpenSSL generated keys because they ensure p > q [steve]
|
||
*/
|
||
if (BN_is_negative(r0))
|
||
if (!BN_add(r0, r0, rsa->p))
|
||
goto err;
|
||
if (!BN_mul(r1, r0, rsa->q, ctx))
|
||
goto err;
|
||
if (!BN_add(r0, r1, m1))
|
||
goto err;
|
||
|
||
#ifndef FIPS_MODULE
|
||
/* add m_i to m in multi-prime case */
|
||
if (ex_primes > 0) {
|
||
BIGNUM *pr2 = BN_new();
|
||
|
||
if (pr2 == NULL)
|
||
goto err;
|
||
|
||
for (i = 0; i < ex_primes; i++) {
|
||
pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i);
|
||
if (!BN_sub(r1, m[i], r0)) {
|
||
BN_free(pr2);
|
||
goto err;
|
||
}
|
||
|
||
if (!BN_mul(r2, r1, pinfo->t, ctx)) {
|
||
BN_free(pr2);
|
||
goto err;
|
||
}
|
||
|
||
BN_with_flags(pr2, r2, BN_FLG_CONSTTIME);
|
||
|
||
if (!BN_mod(r1, pr2, pinfo->r, ctx)) {
|
||
BN_free(pr2);
|
||
goto err;
|
||
}
|
||
|
||
if (BN_is_negative(r1))
|
||
if (!BN_add(r1, r1, pinfo->r)) {
|
||
BN_free(pr2);
|
||
goto err;
|
||
}
|
||
if (!BN_mul(r1, r1, pinfo->pp, ctx)) {
|
||
BN_free(pr2);
|
||
goto err;
|
||
}
|
||
if (!BN_add(r0, r0, r1)) {
|
||
BN_free(pr2);
|
||
goto err;
|
||
}
|
||
}
|
||
BN_free(pr2);
|
||
}
|
||
#endif
|
||
|
||
tail:
|
||
if (rsa->e && rsa->n) {
|
||
if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) {
|
||
if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx,
|
||
rsa->_method_mod_n))
|
||
goto err;
|
||
} else {
|
||
bn_correct_top(r0);
|
||
if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx,
|
||
rsa->_method_mod_n))
|
||
goto err;
|
||
}
|
||
/*
|
||
* If 'I' was greater than (or equal to) rsa->n, the operation will
|
||
* be equivalent to using 'I mod n'. However, the result of the
|
||
* verify will *always* be less than 'n' so we don't check for
|
||
* absolute equality, just congruency.
|
||
*/
|
||
if (!BN_sub(vrfy, vrfy, I))
|
||
goto err;
|
||
if (BN_is_zero(vrfy)) {
|
||
bn_correct_top(r0);
|
||
ret = 1;
|
||
goto err; /* not actually error */
|
||
}
|
||
if (!BN_mod(vrfy, vrfy, rsa->n, ctx))
|
||
goto err;
|
||
if (BN_is_negative(vrfy))
|
||
if (!BN_add(vrfy, vrfy, rsa->n))
|
||
goto err;
|
||
if (!BN_is_zero(vrfy)) {
|
||
/*
|
||
* 'I' and 'vrfy' aren't congruent mod n. Don't leak
|
||
* miscalculated CRT output, just do a raw (slower) mod_exp and
|
||
* return that instead.
|
||
*/
|
||
|
||
BIGNUM *d = BN_new();
|
||
if (d == NULL)
|
||
goto err;
|
||
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
|
||
|
||
if (!rsa->meth->bn_mod_exp(r0, I, d, rsa->n, ctx,
|
||
rsa->_method_mod_n)) {
|
||
BN_free(d);
|
||
goto err;
|
||
}
|
||
/* We MUST free d before any further use of rsa->d */
|
||
BN_free(d);
|
||
}
|
||
}
|
||
/*
|
||
* It's unfortunate that we have to bn_correct_top(r0). What hopefully
|
||
* saves the day is that correction is highly unlike, and private key
|
||
* operations are customarily performed on blinded message. Which means
|
||
* that attacker won't observe correlation with chosen plaintext.
|
||
* Secondly, remaining code would still handle it in same computational
|
||
* time and even conceal memory access pattern around corrected top.
|
||
*/
|
||
bn_correct_top(r0);
|
||
ret = 1;
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
static int rsa_ossl_init(RSA *rsa)
|
||
{
|
||
rsa->flags |= RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE;
|
||
return 1;
|
||
}
|
||
|
||
static int rsa_ossl_finish(RSA *rsa)
|
||
{
|
||
#ifndef FIPS_MODULE
|
||
int i;
|
||
RSA_PRIME_INFO *pinfo;
|
||
|
||
for (i = 0; i < sk_RSA_PRIME_INFO_num(rsa->prime_infos); i++) {
|
||
pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i);
|
||
BN_MONT_CTX_free(pinfo->m);
|
||
}
|
||
#endif
|
||
|
||
BN_MONT_CTX_free(rsa->_method_mod_n);
|
||
BN_MONT_CTX_free(rsa->_method_mod_p);
|
||
BN_MONT_CTX_free(rsa->_method_mod_q);
|
||
return 1;
|
||
}
|
||
|
||
#ifdef S390X_MOD_EXP
|
||
static int rsa_ossl_s390x_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa,
|
||
BN_CTX *ctx)
|
||
{
|
||
if (rsa->version != RSA_ASN1_VERSION_MULTI) {
|
||
if (s390x_crt(r0, i, rsa->p, rsa->q, rsa->dmp1, rsa->dmq1, rsa->iqmp) == 1)
|
||
return 1;
|
||
}
|
||
return rsa_ossl_mod_exp(r0, i, rsa, ctx);
|
||
}
|
||
|
||
#endif
|