mirror of
https://github.com/openssl/openssl.git
synced 2025-01-06 13:26:43 +08:00
22a96c6be4
This is reproducible with my error injection patch. The test vector has been validated on the 1.1.1 branch but the issue is of course identical in all branches. $ ERROR_INJECT=1652710284 ../util/shlib_wrap.sh ./server-test ./corpora/server/4e48da8aecce6b9b58e8e4dbbf0523e6d2dd56dc 140587884632000:error:03078041:bignum routines:bn_expand_internal:malloc failure:crypto/bn/bn_lib.c:282: 140587884632000:error:10103003:elliptic curve routines:ec_key_simple_oct2priv:BN lib:crypto/ec/ec_key.c:662: 140587884632000:error:100DE08E:elliptic curve routines:old_ec_priv_decode:decode error:crypto/ec/ec_ameth.c:464: 140587884632000:error:0D0680A8:asn1 encoding routines:asn1_check_tlen:wrong tag:crypto/asn1/tasn_dec.c:1149: 140587884632000:error:0D07803A:asn1 encoding routines:asn1_item_embed_d2i:nested asn1 error:crypto/asn1/tasn_dec.c:309:Type=X509_ALGOR 140587884632000:error:0D08303A:asn1 encoding routines:asn1_template_noexp_d2i:nested asn1 error:crypto/asn1/tasn_dec.c:646:Field=pkeyalg, Type=PKCS8_PRIV_KEY_INFO 140587884632000:error:0907B00D:PEM routines:PEM_read_bio_PrivateKey:ASN1 lib:crypto/pem/pem_pkey.c:88: ================================================================= ==19676==ERROR: LeakSanitizer: detected memory leaks Direct leak of 24 byte(s) in 1 object(s) allocated from: #0 0x7fdd2a6bb09f in __interceptor_malloc ../../../../gcc-trunk/libsanitizer/asan/asan_malloc_linux.cpp:69 #1 0x7fdd2a2fa430 in CRYPTO_zalloc crypto/mem.c:230 #2 0x7fdd2a15df11 in BN_new crypto/bn/bn_lib.c:246 #3 0x7fdd2a15df88 in BN_secure_new crypto/bn/bn_lib.c:257 #4 0x7fdd2a247390 in ec_key_simple_oct2priv crypto/ec/ec_key.c:655 #5 0x7fdd2a241fc5 in d2i_ECPrivateKey crypto/ec/ec_asn1.c:1030 #6 0x7fdd2a23dac5 in old_ec_priv_decode crypto/ec/ec_ameth.c:463 #7 0x7fdd2a109db7 in d2i_PrivateKey crypto/asn1/d2i_pr.c:46 #8 0x7fdd2a33ab16 in PEM_read_bio_PrivateKey crypto/pem/pem_pkey.c:84 #9 0x7fdd2a3330b6 in PEM_read_bio_ECPrivateKey crypto/pem/pem_all.c:151 #10 0x402dba in FuzzerTestOneInput fuzz/server.c:592 #11 0x40370b in testfile fuzz/test-corpus.c:182 #12 0x402846 in main fuzz/test-corpus.c:226 #13 0x7fdd297b9f44 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21f44) SUMMARY: AddressSanitizer: 24 byte(s) leaked in 1 allocation(s). Reviewed-by: Tomas Mraz <tomas@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/18366)
1028 lines
27 KiB
C
1028 lines
27 KiB
C
/*
|
|
* Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* EC_KEY low level APIs are deprecated for public use, but still ok for
|
|
* internal use.
|
|
*/
|
|
#include "internal/deprecated.h"
|
|
|
|
#include "internal/cryptlib.h"
|
|
#include <string.h>
|
|
#include "ec_local.h"
|
|
#include "internal/refcount.h"
|
|
#include <openssl/err.h>
|
|
#ifndef FIPS_MODULE
|
|
# include <openssl/engine.h>
|
|
#endif
|
|
#include <openssl/self_test.h>
|
|
#include "prov/providercommon.h"
|
|
#include "crypto/bn.h"
|
|
|
|
static int ecdsa_keygen_pairwise_test(EC_KEY *eckey, OSSL_CALLBACK *cb,
|
|
void *cbarg);
|
|
|
|
#ifndef FIPS_MODULE
|
|
EC_KEY *EC_KEY_new(void)
|
|
{
|
|
return ossl_ec_key_new_method_int(NULL, NULL, NULL);
|
|
}
|
|
#endif
|
|
|
|
EC_KEY *EC_KEY_new_ex(OSSL_LIB_CTX *ctx, const char *propq)
|
|
{
|
|
return ossl_ec_key_new_method_int(ctx, propq, NULL);
|
|
}
|
|
|
|
EC_KEY *EC_KEY_new_by_curve_name_ex(OSSL_LIB_CTX *ctx, const char *propq,
|
|
int nid)
|
|
{
|
|
EC_KEY *ret = EC_KEY_new_ex(ctx, propq);
|
|
if (ret == NULL)
|
|
return NULL;
|
|
ret->group = EC_GROUP_new_by_curve_name_ex(ctx, propq, nid);
|
|
if (ret->group == NULL) {
|
|
EC_KEY_free(ret);
|
|
return NULL;
|
|
}
|
|
if (ret->meth->set_group != NULL
|
|
&& ret->meth->set_group(ret, ret->group) == 0) {
|
|
EC_KEY_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifndef FIPS_MODULE
|
|
EC_KEY *EC_KEY_new_by_curve_name(int nid)
|
|
{
|
|
return EC_KEY_new_by_curve_name_ex(NULL, NULL, nid);
|
|
}
|
|
#endif
|
|
|
|
void EC_KEY_free(EC_KEY *r)
|
|
{
|
|
int i;
|
|
|
|
if (r == NULL)
|
|
return;
|
|
|
|
CRYPTO_DOWN_REF(&r->references, &i, r->lock);
|
|
REF_PRINT_COUNT("EC_KEY", r);
|
|
if (i > 0)
|
|
return;
|
|
REF_ASSERT_ISNT(i < 0);
|
|
|
|
if (r->meth != NULL && r->meth->finish != NULL)
|
|
r->meth->finish(r);
|
|
|
|
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
|
|
ENGINE_finish(r->engine);
|
|
#endif
|
|
|
|
if (r->group && r->group->meth->keyfinish)
|
|
r->group->meth->keyfinish(r);
|
|
|
|
#ifndef FIPS_MODULE
|
|
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_EC_KEY, r, &r->ex_data);
|
|
#endif
|
|
CRYPTO_THREAD_lock_free(r->lock);
|
|
EC_GROUP_free(r->group);
|
|
EC_POINT_free(r->pub_key);
|
|
BN_clear_free(r->priv_key);
|
|
OPENSSL_free(r->propq);
|
|
|
|
OPENSSL_clear_free((void *)r, sizeof(EC_KEY));
|
|
}
|
|
|
|
EC_KEY *EC_KEY_copy(EC_KEY *dest, const EC_KEY *src)
|
|
{
|
|
if (dest == NULL || src == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
|
|
return NULL;
|
|
}
|
|
if (src->meth != dest->meth) {
|
|
if (dest->meth->finish != NULL)
|
|
dest->meth->finish(dest);
|
|
if (dest->group && dest->group->meth->keyfinish)
|
|
dest->group->meth->keyfinish(dest);
|
|
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
|
|
if (ENGINE_finish(dest->engine) == 0)
|
|
return 0;
|
|
dest->engine = NULL;
|
|
#endif
|
|
}
|
|
dest->libctx = src->libctx;
|
|
/* copy the parameters */
|
|
if (src->group != NULL) {
|
|
/* clear the old group */
|
|
EC_GROUP_free(dest->group);
|
|
dest->group = ossl_ec_group_new_ex(src->libctx, src->propq,
|
|
src->group->meth);
|
|
if (dest->group == NULL)
|
|
return NULL;
|
|
if (!EC_GROUP_copy(dest->group, src->group))
|
|
return NULL;
|
|
|
|
/* copy the public key */
|
|
if (src->pub_key != NULL) {
|
|
EC_POINT_free(dest->pub_key);
|
|
dest->pub_key = EC_POINT_new(src->group);
|
|
if (dest->pub_key == NULL)
|
|
return NULL;
|
|
if (!EC_POINT_copy(dest->pub_key, src->pub_key))
|
|
return NULL;
|
|
}
|
|
/* copy the private key */
|
|
if (src->priv_key != NULL) {
|
|
if (dest->priv_key == NULL) {
|
|
dest->priv_key = BN_new();
|
|
if (dest->priv_key == NULL)
|
|
return NULL;
|
|
}
|
|
if (!BN_copy(dest->priv_key, src->priv_key))
|
|
return NULL;
|
|
if (src->group->meth->keycopy
|
|
&& src->group->meth->keycopy(dest, src) == 0)
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/* copy the rest */
|
|
dest->enc_flag = src->enc_flag;
|
|
dest->conv_form = src->conv_form;
|
|
dest->version = src->version;
|
|
dest->flags = src->flags;
|
|
#ifndef FIPS_MODULE
|
|
if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_EC_KEY,
|
|
&dest->ex_data, &src->ex_data))
|
|
return NULL;
|
|
#endif
|
|
|
|
if (src->meth != dest->meth) {
|
|
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
|
|
if (src->engine != NULL && ENGINE_init(src->engine) == 0)
|
|
return NULL;
|
|
dest->engine = src->engine;
|
|
#endif
|
|
dest->meth = src->meth;
|
|
}
|
|
|
|
if (src->meth->copy != NULL && src->meth->copy(dest, src) == 0)
|
|
return NULL;
|
|
|
|
dest->dirty_cnt++;
|
|
|
|
return dest;
|
|
}
|
|
|
|
EC_KEY *EC_KEY_dup(const EC_KEY *ec_key)
|
|
{
|
|
return ossl_ec_key_dup(ec_key, OSSL_KEYMGMT_SELECT_ALL);
|
|
}
|
|
|
|
int EC_KEY_up_ref(EC_KEY *r)
|
|
{
|
|
int i;
|
|
|
|
if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0)
|
|
return 0;
|
|
|
|
REF_PRINT_COUNT("EC_KEY", r);
|
|
REF_ASSERT_ISNT(i < 2);
|
|
return ((i > 1) ? 1 : 0);
|
|
}
|
|
|
|
ENGINE *EC_KEY_get0_engine(const EC_KEY *eckey)
|
|
{
|
|
return eckey->engine;
|
|
}
|
|
|
|
int EC_KEY_generate_key(EC_KEY *eckey)
|
|
{
|
|
if (eckey == NULL || eckey->group == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
if (eckey->meth->keygen != NULL) {
|
|
int ret;
|
|
|
|
ret = eckey->meth->keygen(eckey);
|
|
if (ret == 1)
|
|
eckey->dirty_cnt++;
|
|
|
|
return ret;
|
|
}
|
|
ERR_raise(ERR_LIB_EC, EC_R_OPERATION_NOT_SUPPORTED);
|
|
return 0;
|
|
}
|
|
|
|
int ossl_ec_key_gen(EC_KEY *eckey)
|
|
{
|
|
int ret;
|
|
|
|
ret = eckey->group->meth->keygen(eckey);
|
|
|
|
if (ret == 1)
|
|
eckey->dirty_cnt++;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ECC Key generation.
|
|
* See SP800-56AR3 5.6.1.2.2 "Key Pair Generation by Testing Candidates"
|
|
*
|
|
* Params:
|
|
* libctx A context containing an optional self test callback.
|
|
* eckey An EC key object that contains domain params. The generated keypair
|
|
* is stored in this object.
|
|
* pairwise_test Set to non zero to perform a pairwise test. If the test
|
|
* fails then the keypair is not generated,
|
|
* Returns 1 if the keypair was generated or 0 otherwise.
|
|
*/
|
|
static int ec_generate_key(EC_KEY *eckey, int pairwise_test)
|
|
{
|
|
int ok = 0;
|
|
BIGNUM *priv_key = NULL;
|
|
const BIGNUM *tmp = NULL;
|
|
BIGNUM *order = NULL;
|
|
EC_POINT *pub_key = NULL;
|
|
const EC_GROUP *group = eckey->group;
|
|
BN_CTX *ctx = BN_CTX_secure_new_ex(eckey->libctx);
|
|
int sm2 = EC_KEY_get_flags(eckey) & EC_FLAG_SM2_RANGE ? 1 : 0;
|
|
|
|
if (ctx == NULL)
|
|
goto err;
|
|
|
|
if (eckey->priv_key == NULL) {
|
|
priv_key = BN_secure_new();
|
|
if (priv_key == NULL)
|
|
goto err;
|
|
} else
|
|
priv_key = eckey->priv_key;
|
|
|
|
/*
|
|
* Steps (1-2): Check domain parameters and security strength.
|
|
* These steps must be done by the user. This would need to be
|
|
* stated in the security policy.
|
|
*/
|
|
|
|
tmp = EC_GROUP_get0_order(group);
|
|
if (tmp == NULL)
|
|
goto err;
|
|
|
|
/*
|
|
* Steps (3-7): priv_key = DRBG_RAND(order_n_bits) (range [1, n-1]).
|
|
* Although this is slightly different from the standard, it is effectively
|
|
* equivalent as it gives an unbiased result ranging from 1..n-1. It is also
|
|
* faster as the standard needs to retry more often. Also doing
|
|
* 1 + rand[0..n-2] would effect the way that tests feed dummy entropy into
|
|
* rand so the simpler backward compatible method has been used here.
|
|
*/
|
|
|
|
/* range of SM2 private key is [1, n-1) */
|
|
if (sm2) {
|
|
order = BN_new();
|
|
if (order == NULL || !BN_sub(order, tmp, BN_value_one()))
|
|
goto err;
|
|
} else {
|
|
order = BN_dup(tmp);
|
|
if (order == NULL)
|
|
goto err;
|
|
}
|
|
|
|
do
|
|
if (!BN_priv_rand_range_ex(priv_key, order, 0, ctx))
|
|
goto err;
|
|
while (BN_is_zero(priv_key)) ;
|
|
|
|
if (eckey->pub_key == NULL) {
|
|
pub_key = EC_POINT_new(group);
|
|
if (pub_key == NULL)
|
|
goto err;
|
|
} else
|
|
pub_key = eckey->pub_key;
|
|
|
|
/* Step (8) : pub_key = priv_key * G (where G is a point on the curve) */
|
|
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
|
|
goto err;
|
|
|
|
eckey->priv_key = priv_key;
|
|
eckey->pub_key = pub_key;
|
|
priv_key = NULL;
|
|
pub_key = NULL;
|
|
|
|
eckey->dirty_cnt++;
|
|
|
|
#ifdef FIPS_MODULE
|
|
pairwise_test = 1;
|
|
#endif /* FIPS_MODULE */
|
|
|
|
ok = 1;
|
|
if (pairwise_test) {
|
|
OSSL_CALLBACK *cb = NULL;
|
|
void *cbarg = NULL;
|
|
|
|
OSSL_SELF_TEST_get_callback(eckey->libctx, &cb, &cbarg);
|
|
ok = ecdsa_keygen_pairwise_test(eckey, cb, cbarg);
|
|
}
|
|
err:
|
|
/* Step (9): If there is an error return an invalid keypair. */
|
|
if (!ok) {
|
|
ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);
|
|
BN_clear(eckey->priv_key);
|
|
if (eckey->pub_key != NULL)
|
|
EC_POINT_set_to_infinity(group, eckey->pub_key);
|
|
}
|
|
|
|
EC_POINT_free(pub_key);
|
|
BN_clear_free(priv_key);
|
|
BN_CTX_free(ctx);
|
|
BN_free(order);
|
|
return ok;
|
|
}
|
|
|
|
int ossl_ec_key_simple_generate_key(EC_KEY *eckey)
|
|
{
|
|
return ec_generate_key(eckey, 0);
|
|
}
|
|
|
|
int ossl_ec_key_simple_generate_public_key(EC_KEY *eckey)
|
|
{
|
|
int ret;
|
|
BN_CTX *ctx = BN_CTX_new_ex(eckey->libctx);
|
|
|
|
if (ctx == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* See SP800-56AR3 5.6.1.2.2: Step (8)
|
|
* pub_key = priv_key * G (where G is a point on the curve)
|
|
*/
|
|
ret = EC_POINT_mul(eckey->group, eckey->pub_key, eckey->priv_key, NULL,
|
|
NULL, ctx);
|
|
|
|
BN_CTX_free(ctx);
|
|
if (ret == 1)
|
|
eckey->dirty_cnt++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int EC_KEY_check_key(const EC_KEY *eckey)
|
|
{
|
|
if (eckey == NULL || eckey->group == NULL || eckey->pub_key == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
if (eckey->group->meth->keycheck == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
|
|
return eckey->group->meth->keycheck(eckey);
|
|
}
|
|
|
|
/*
|
|
* Check the range of the EC public key.
|
|
* See SP800-56A R3 Section 5.6.2.3.3 (Part 2)
|
|
* i.e.
|
|
* - If q = odd prime p: Verify that xQ and yQ are integers in the
|
|
* interval[0, p - 1], OR
|
|
* - If q = 2m: Verify that xQ and yQ are bit strings of length m bits.
|
|
* Returns 1 if the public key has a valid range, otherwise it returns 0.
|
|
*/
|
|
static int ec_key_public_range_check(BN_CTX *ctx, const EC_KEY *key)
|
|
{
|
|
int ret = 0;
|
|
BIGNUM *x, *y;
|
|
|
|
BN_CTX_start(ctx);
|
|
x = BN_CTX_get(ctx);
|
|
y = BN_CTX_get(ctx);
|
|
if (y == NULL)
|
|
goto err;
|
|
|
|
if (!EC_POINT_get_affine_coordinates(key->group, key->pub_key, x, y, ctx))
|
|
goto err;
|
|
|
|
if (EC_GROUP_get_field_type(key->group) == NID_X9_62_prime_field) {
|
|
if (BN_is_negative(x)
|
|
|| BN_cmp(x, key->group->field) >= 0
|
|
|| BN_is_negative(y)
|
|
|| BN_cmp(y, key->group->field) >= 0) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
int m = EC_GROUP_get_degree(key->group);
|
|
if (BN_num_bits(x) > m || BN_num_bits(y) > m) {
|
|
goto err;
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ECC Partial Public-Key Validation as specified in SP800-56A R3
|
|
* Section 5.6.2.3.4 ECC Partial Public-Key Validation Routine.
|
|
*/
|
|
int ossl_ec_key_public_check_quick(const EC_KEY *eckey, BN_CTX *ctx)
|
|
{
|
|
if (eckey == NULL || eckey->group == NULL || eckey->pub_key == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
/* 5.6.2.3.3 (Step 1): Q != infinity */
|
|
if (EC_POINT_is_at_infinity(eckey->group, eckey->pub_key)) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
|
|
return 0;
|
|
}
|
|
|
|
/* 5.6.2.3.3 (Step 2) Test if the public key is in range */
|
|
if (!ec_key_public_range_check(ctx, eckey)) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
|
|
return 0;
|
|
}
|
|
|
|
/* 5.6.2.3.3 (Step 3) is the pub_key on the elliptic curve */
|
|
if (EC_POINT_is_on_curve(eckey->group, eckey->pub_key, ctx) <= 0) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_POINT_IS_NOT_ON_CURVE);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* ECC Key validation as specified in SP800-56A R3.
|
|
* Section 5.6.2.3.3 ECC Full Public-Key Validation Routine.
|
|
*/
|
|
int ossl_ec_key_public_check(const EC_KEY *eckey, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
EC_POINT *point = NULL;
|
|
const BIGNUM *order = NULL;
|
|
|
|
if (!ossl_ec_key_public_check_quick(eckey, ctx))
|
|
return 0;
|
|
|
|
point = EC_POINT_new(eckey->group);
|
|
if (point == NULL)
|
|
return 0;
|
|
|
|
order = eckey->group->order;
|
|
if (BN_is_zero(order)) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_GROUP_ORDER);
|
|
goto err;
|
|
}
|
|
/* 5.6.2.3.3 (Step 4) : pub_key * order is the point at infinity. */
|
|
if (!EC_POINT_mul(eckey->group, point, NULL, eckey->pub_key, order, ctx)) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
|
|
goto err;
|
|
}
|
|
if (!EC_POINT_is_at_infinity(eckey->group, point)) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_WRONG_ORDER);
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
err:
|
|
EC_POINT_free(point);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ECC Key validation as specified in SP800-56A R3.
|
|
* Section 5.6.2.1.2 Owner Assurance of Private-Key Validity
|
|
* The private key is in the range [1, order-1]
|
|
*/
|
|
int ossl_ec_key_private_check(const EC_KEY *eckey)
|
|
{
|
|
if (eckey == NULL || eckey->group == NULL || eckey->priv_key == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
if (BN_cmp(eckey->priv_key, BN_value_one()) < 0
|
|
|| BN_cmp(eckey->priv_key, eckey->group->order) >= 0) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_PRIVATE_KEY);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* ECC Key validation as specified in SP800-56A R3.
|
|
* Section 5.6.2.1.4 Owner Assurance of Pair-wise Consistency (b)
|
|
* Check if generator * priv_key = pub_key
|
|
*/
|
|
int ossl_ec_key_pairwise_check(const EC_KEY *eckey, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
EC_POINT *point = NULL;
|
|
|
|
if (eckey == NULL
|
|
|| eckey->group == NULL
|
|
|| eckey->pub_key == NULL
|
|
|| eckey->priv_key == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
point = EC_POINT_new(eckey->group);
|
|
if (point == NULL)
|
|
goto err;
|
|
|
|
|
|
if (!EC_POINT_mul(eckey->group, point, eckey->priv_key, NULL, NULL, ctx)) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
|
|
goto err;
|
|
}
|
|
if (EC_POINT_cmp(eckey->group, point, eckey->pub_key, ctx) != 0) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_INVALID_PRIVATE_KEY);
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
err:
|
|
EC_POINT_free(point);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* ECC Key validation as specified in SP800-56A R3.
|
|
* Section 5.6.2.3.3 ECC Full Public-Key Validation
|
|
* Section 5.6.2.1.2 Owner Assurance of Private-Key Validity
|
|
* Section 5.6.2.1.4 Owner Assurance of Pair-wise Consistency
|
|
* NOTES:
|
|
* Before calling this method in fips mode, there should be an assurance that
|
|
* an approved elliptic-curve group is used.
|
|
* Returns 1 if the key is valid, otherwise it returns 0.
|
|
*/
|
|
int ossl_ec_key_simple_check_key(const EC_KEY *eckey)
|
|
{
|
|
int ok = 0;
|
|
BN_CTX *ctx = NULL;
|
|
|
|
if (eckey == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
if ((ctx = BN_CTX_new_ex(eckey->libctx)) == NULL)
|
|
return 0;
|
|
|
|
if (!ossl_ec_key_public_check(eckey, ctx))
|
|
goto err;
|
|
|
|
if (eckey->priv_key != NULL) {
|
|
if (!ossl_ec_key_private_check(eckey)
|
|
|| !ossl_ec_key_pairwise_check(eckey, ctx))
|
|
goto err;
|
|
}
|
|
ok = 1;
|
|
err:
|
|
BN_CTX_free(ctx);
|
|
return ok;
|
|
}
|
|
|
|
int EC_KEY_set_public_key_affine_coordinates(EC_KEY *key, BIGNUM *x,
|
|
BIGNUM *y)
|
|
{
|
|
BN_CTX *ctx = NULL;
|
|
BIGNUM *tx, *ty;
|
|
EC_POINT *point = NULL;
|
|
int ok = 0;
|
|
|
|
if (key == NULL || key->group == NULL || x == NULL || y == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
ctx = BN_CTX_new_ex(key->libctx);
|
|
if (ctx == NULL)
|
|
return 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
point = EC_POINT_new(key->group);
|
|
|
|
if (point == NULL)
|
|
goto err;
|
|
|
|
tx = BN_CTX_get(ctx);
|
|
ty = BN_CTX_get(ctx);
|
|
if (ty == NULL)
|
|
goto err;
|
|
|
|
if (!EC_POINT_set_affine_coordinates(key->group, point, x, y, ctx))
|
|
goto err;
|
|
if (!EC_POINT_get_affine_coordinates(key->group, point, tx, ty, ctx))
|
|
goto err;
|
|
|
|
/*
|
|
* Check if retrieved coordinates match originals. The range check is done
|
|
* inside EC_KEY_check_key().
|
|
*/
|
|
if (BN_cmp(x, tx) || BN_cmp(y, ty)) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
|
|
goto err;
|
|
}
|
|
|
|
/* EC_KEY_set_public_key updates dirty_cnt */
|
|
if (!EC_KEY_set_public_key(key, point))
|
|
goto err;
|
|
|
|
if (EC_KEY_check_key(key) == 0)
|
|
goto err;
|
|
|
|
ok = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
EC_POINT_free(point);
|
|
return ok;
|
|
|
|
}
|
|
|
|
OSSL_LIB_CTX *ossl_ec_key_get_libctx(const EC_KEY *key)
|
|
{
|
|
return key->libctx;
|
|
}
|
|
|
|
const char *ossl_ec_key_get0_propq(const EC_KEY *key)
|
|
{
|
|
return key->propq;
|
|
}
|
|
|
|
void ossl_ec_key_set0_libctx(EC_KEY *key, OSSL_LIB_CTX *libctx)
|
|
{
|
|
key->libctx = libctx;
|
|
/* Do we need to propagate this to the group? */
|
|
}
|
|
|
|
const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key)
|
|
{
|
|
return key->group;
|
|
}
|
|
|
|
int EC_KEY_set_group(EC_KEY *key, const EC_GROUP *group)
|
|
{
|
|
if (key->meth->set_group != NULL && key->meth->set_group(key, group) == 0)
|
|
return 0;
|
|
EC_GROUP_free(key->group);
|
|
key->group = EC_GROUP_dup(group);
|
|
if (key->group != NULL && EC_GROUP_get_curve_name(key->group) == NID_sm2)
|
|
EC_KEY_set_flags(key, EC_FLAG_SM2_RANGE);
|
|
|
|
key->dirty_cnt++;
|
|
return (key->group == NULL) ? 0 : 1;
|
|
}
|
|
|
|
const BIGNUM *EC_KEY_get0_private_key(const EC_KEY *key)
|
|
{
|
|
return key->priv_key;
|
|
}
|
|
|
|
int EC_KEY_set_private_key(EC_KEY *key, const BIGNUM *priv_key)
|
|
{
|
|
int fixed_top;
|
|
const BIGNUM *order = NULL;
|
|
BIGNUM *tmp_key = NULL;
|
|
|
|
if (key->group == NULL || key->group->meth == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* Not only should key->group be set, but it should also be in a valid
|
|
* fully initialized state.
|
|
*
|
|
* Specifically, to operate in constant time, we need that the group order
|
|
* is set, as we use its length as the fixed public size of any scalar used
|
|
* as an EC private key.
|
|
*/
|
|
order = EC_GROUP_get0_order(key->group);
|
|
if (order == NULL || BN_is_zero(order))
|
|
return 0; /* This should never happen */
|
|
|
|
if (key->group->meth->set_private != NULL
|
|
&& key->group->meth->set_private(key, priv_key) == 0)
|
|
return 0;
|
|
if (key->meth->set_private != NULL
|
|
&& key->meth->set_private(key, priv_key) == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* We should never leak the bit length of the secret scalar in the key,
|
|
* so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM`
|
|
* holding the secret scalar.
|
|
*
|
|
* This is important also because `BN_dup()` (and `BN_copy()`) do not
|
|
* propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and
|
|
* this brings an extra risk of inadvertently losing the flag, even when
|
|
* the caller specifically set it.
|
|
*
|
|
* The propagation has been turned on and off a few times in the past
|
|
* years because in some conditions has shown unintended consequences in
|
|
* some code paths, so at the moment we can't fix this in the BN layer.
|
|
*
|
|
* In `EC_KEY_set_private_key()` we can work around the propagation by
|
|
* manually setting the flag after `BN_dup()` as we know for sure that
|
|
* inside the EC module the `BN_FLG_CONSTTIME` is always treated
|
|
* correctly and should not generate unintended consequences.
|
|
*
|
|
* Setting the BN_FLG_CONSTTIME flag alone is never enough, we also have
|
|
* to preallocate the BIGNUM internal buffer to a fixed public size big
|
|
* enough that operations performed during the processing never trigger
|
|
* a realloc which would leak the size of the scalar through memory
|
|
* accesses.
|
|
*
|
|
* Fixed Length
|
|
* ------------
|
|
*
|
|
* The order of the large prime subgroup of the curve is our choice for
|
|
* a fixed public size, as that is generally the upper bound for
|
|
* generating a private key in EC cryptosystems and should fit all valid
|
|
* secret scalars.
|
|
*
|
|
* For preallocating the BIGNUM storage we look at the number of "words"
|
|
* required for the internal representation of the order, and we
|
|
* preallocate 2 extra "words" in case any of the subsequent processing
|
|
* might temporarily overflow the order length.
|
|
*/
|
|
tmp_key = BN_dup(priv_key);
|
|
if (tmp_key == NULL)
|
|
return 0;
|
|
|
|
BN_set_flags(tmp_key, BN_FLG_CONSTTIME);
|
|
|
|
fixed_top = bn_get_top(order) + 2;
|
|
if (bn_wexpand(tmp_key, fixed_top) == NULL) {
|
|
BN_clear_free(tmp_key);
|
|
return 0;
|
|
}
|
|
|
|
BN_clear_free(key->priv_key);
|
|
key->priv_key = tmp_key;
|
|
key->dirty_cnt++;
|
|
|
|
return 1;
|
|
}
|
|
|
|
const EC_POINT *EC_KEY_get0_public_key(const EC_KEY *key)
|
|
{
|
|
return key->pub_key;
|
|
}
|
|
|
|
int EC_KEY_set_public_key(EC_KEY *key, const EC_POINT *pub_key)
|
|
{
|
|
if (key->meth->set_public != NULL
|
|
&& key->meth->set_public(key, pub_key) == 0)
|
|
return 0;
|
|
EC_POINT_free(key->pub_key);
|
|
key->pub_key = EC_POINT_dup(pub_key, key->group);
|
|
key->dirty_cnt++;
|
|
return (key->pub_key == NULL) ? 0 : 1;
|
|
}
|
|
|
|
unsigned int EC_KEY_get_enc_flags(const EC_KEY *key)
|
|
{
|
|
return key->enc_flag;
|
|
}
|
|
|
|
void EC_KEY_set_enc_flags(EC_KEY *key, unsigned int flags)
|
|
{
|
|
key->enc_flag = flags;
|
|
}
|
|
|
|
point_conversion_form_t EC_KEY_get_conv_form(const EC_KEY *key)
|
|
{
|
|
return key->conv_form;
|
|
}
|
|
|
|
void EC_KEY_set_conv_form(EC_KEY *key, point_conversion_form_t cform)
|
|
{
|
|
key->conv_form = cform;
|
|
if (key->group != NULL)
|
|
EC_GROUP_set_point_conversion_form(key->group, cform);
|
|
}
|
|
|
|
void EC_KEY_set_asn1_flag(EC_KEY *key, int flag)
|
|
{
|
|
if (key->group != NULL)
|
|
EC_GROUP_set_asn1_flag(key->group, flag);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
int EC_KEY_precompute_mult(EC_KEY *key, BN_CTX *ctx)
|
|
{
|
|
if (key->group == NULL)
|
|
return 0;
|
|
return EC_GROUP_precompute_mult(key->group, ctx);
|
|
}
|
|
#endif
|
|
|
|
int EC_KEY_get_flags(const EC_KEY *key)
|
|
{
|
|
return key->flags;
|
|
}
|
|
|
|
void EC_KEY_set_flags(EC_KEY *key, int flags)
|
|
{
|
|
key->flags |= flags;
|
|
key->dirty_cnt++;
|
|
}
|
|
|
|
void EC_KEY_clear_flags(EC_KEY *key, int flags)
|
|
{
|
|
key->flags &= ~flags;
|
|
key->dirty_cnt++;
|
|
}
|
|
|
|
int EC_KEY_decoded_from_explicit_params(const EC_KEY *key)
|
|
{
|
|
if (key == NULL || key->group == NULL)
|
|
return -1;
|
|
return key->group->decoded_from_explicit_params;
|
|
}
|
|
|
|
size_t EC_KEY_key2buf(const EC_KEY *key, point_conversion_form_t form,
|
|
unsigned char **pbuf, BN_CTX *ctx)
|
|
{
|
|
if (key == NULL || key->pub_key == NULL || key->group == NULL)
|
|
return 0;
|
|
return EC_POINT_point2buf(key->group, key->pub_key, form, pbuf, ctx);
|
|
}
|
|
|
|
int EC_KEY_oct2key(EC_KEY *key, const unsigned char *buf, size_t len,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (key == NULL || key->group == NULL)
|
|
return 0;
|
|
if (key->pub_key == NULL)
|
|
key->pub_key = EC_POINT_new(key->group);
|
|
if (key->pub_key == NULL)
|
|
return 0;
|
|
if (EC_POINT_oct2point(key->group, key->pub_key, buf, len, ctx) == 0)
|
|
return 0;
|
|
key->dirty_cnt++;
|
|
/*
|
|
* Save the point conversion form.
|
|
* For non-custom curves the first octet of the buffer (excluding
|
|
* the last significant bit) contains the point conversion form.
|
|
* EC_POINT_oct2point() has already performed sanity checking of
|
|
* the buffer so we know it is valid.
|
|
*/
|
|
if ((key->group->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0)
|
|
key->conv_form = (point_conversion_form_t)(buf[0] & ~0x01);
|
|
return 1;
|
|
}
|
|
|
|
size_t EC_KEY_priv2oct(const EC_KEY *eckey,
|
|
unsigned char *buf, size_t len)
|
|
{
|
|
if (eckey->group == NULL || eckey->group->meth == NULL)
|
|
return 0;
|
|
if (eckey->group->meth->priv2oct == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
|
|
return eckey->group->meth->priv2oct(eckey, buf, len);
|
|
}
|
|
|
|
size_t ossl_ec_key_simple_priv2oct(const EC_KEY *eckey,
|
|
unsigned char *buf, size_t len)
|
|
{
|
|
size_t buf_len;
|
|
|
|
buf_len = (EC_GROUP_order_bits(eckey->group) + 7) / 8;
|
|
if (eckey->priv_key == NULL)
|
|
return 0;
|
|
if (buf == NULL)
|
|
return buf_len;
|
|
else if (len < buf_len)
|
|
return 0;
|
|
|
|
/* Octetstring may need leading zeros if BN is to short */
|
|
|
|
if (BN_bn2binpad(eckey->priv_key, buf, buf_len) == -1) {
|
|
ERR_raise(ERR_LIB_EC, EC_R_BUFFER_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
return buf_len;
|
|
}
|
|
|
|
int EC_KEY_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len)
|
|
{
|
|
int ret;
|
|
|
|
if (eckey->group == NULL || eckey->group->meth == NULL)
|
|
return 0;
|
|
if (eckey->group->meth->oct2priv == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
ret = eckey->group->meth->oct2priv(eckey, buf, len);
|
|
if (ret == 1)
|
|
eckey->dirty_cnt++;
|
|
return ret;
|
|
}
|
|
|
|
int ossl_ec_key_simple_oct2priv(EC_KEY *eckey, const unsigned char *buf,
|
|
size_t len)
|
|
{
|
|
if (eckey->priv_key == NULL)
|
|
eckey->priv_key = BN_secure_new();
|
|
if (eckey->priv_key == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
if (BN_bin2bn(buf, len, eckey->priv_key) == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
|
return 0;
|
|
}
|
|
eckey->dirty_cnt++;
|
|
return 1;
|
|
}
|
|
|
|
size_t EC_KEY_priv2buf(const EC_KEY *eckey, unsigned char **pbuf)
|
|
{
|
|
size_t len;
|
|
unsigned char *buf;
|
|
|
|
len = EC_KEY_priv2oct(eckey, NULL, 0);
|
|
if (len == 0)
|
|
return 0;
|
|
if ((buf = OPENSSL_malloc(len)) == NULL) {
|
|
ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
len = EC_KEY_priv2oct(eckey, buf, len);
|
|
if (len == 0) {
|
|
OPENSSL_free(buf);
|
|
return 0;
|
|
}
|
|
*pbuf = buf;
|
|
return len;
|
|
}
|
|
|
|
int EC_KEY_can_sign(const EC_KEY *eckey)
|
|
{
|
|
if (eckey->group == NULL || eckey->group->meth == NULL
|
|
|| (eckey->group->meth->flags & EC_FLAGS_NO_SIGN))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* FIPS 140-2 IG 9.9 AS09.33
|
|
* Perform a sign/verify operation.
|
|
*
|
|
* NOTE: When generating keys for key-agreement schemes - FIPS 140-2 IG 9.9
|
|
* states that no additional pairwise tests are required (apart from the tests
|
|
* specified in SP800-56A) when generating keys. Hence pairwise ECDH tests are
|
|
* omitted here.
|
|
*/
|
|
static int ecdsa_keygen_pairwise_test(EC_KEY *eckey, OSSL_CALLBACK *cb,
|
|
void *cbarg)
|
|
{
|
|
int ret = 0;
|
|
unsigned char dgst[16] = {0};
|
|
int dgst_len = (int)sizeof(dgst);
|
|
ECDSA_SIG *sig = NULL;
|
|
OSSL_SELF_TEST *st = NULL;
|
|
|
|
st = OSSL_SELF_TEST_new(cb, cbarg);
|
|
if (st == NULL)
|
|
return 0;
|
|
|
|
OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
|
|
OSSL_SELF_TEST_DESC_PCT_ECDSA);
|
|
|
|
sig = ECDSA_do_sign(dgst, dgst_len, eckey);
|
|
if (sig == NULL)
|
|
goto err;
|
|
|
|
OSSL_SELF_TEST_oncorrupt_byte(st, dgst);
|
|
|
|
if (ECDSA_do_verify(dgst, dgst_len, sig, eckey) != 1)
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
OSSL_SELF_TEST_onend(st, ret);
|
|
OSSL_SELF_TEST_free(st);
|
|
ECDSA_SIG_free(sig);
|
|
return ret;
|
|
}
|