openssl/include/internal/ktls.h
Benjamin Kaduk 37322687b0 Retire EVP_CTRL_GET_IV
It is superseded by EVP_CIPHER_CTX_get_iv(), is only present on master,
and had only a couple of in-tree callers that are easy to convert.

Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
2020-08-11 07:07:57 -07:00

441 lines
14 KiB
C

/*
* Copyright 2018-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#if defined(OPENSSL_SYS_LINUX)
# ifndef OPENSSL_NO_KTLS
# include <linux/version.h>
# if LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0)
# define OPENSSL_NO_KTLS
# ifndef PEDANTIC
# warning "KTLS requires Kernel Headers >= 4.13.0"
# warning "Skipping Compilation of KTLS"
# endif
# endif
# endif
#endif
#ifndef OPENSSL_NO_KTLS
# ifndef HEADER_INTERNAL_KTLS
# define HEADER_INTERNAL_KTLS
# if defined(__FreeBSD__)
# include <sys/types.h>
# include <sys/socket.h>
# include <sys/ktls.h>
# include <netinet/in.h>
# include <netinet/tcp.h>
# include <crypto/cryptodev.h>
/*
* Only used by the tests in sslapitest.c.
*/
# define TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE 8
/*
* FreeBSD does not require any additional steps to enable KTLS before
* setting keys.
*/
static ossl_inline int ktls_enable(int fd)
{
return 1;
}
/*
* The TCP_TXTLS_ENABLE socket option marks the outgoing socket buffer
* as using TLS. If successful, then data sent using this socket will
* be encrypted and encapsulated in TLS records using the tls_en.
* provided here.
*/
static ossl_inline int ktls_start(int fd,
void *tls_en,
size_t len, int is_tx)
{
if (is_tx)
return setsockopt(fd, IPPROTO_TCP, TCP_TXTLS_ENABLE,
tls_en, len) ? 0 : 1;
else
return 0;
}
/*
* Send a TLS record using the tls_en provided in ktls_start and use
* record_type instead of the default SSL3_RT_APPLICATION_DATA.
* When the socket is non-blocking, then this call either returns EAGAIN or
* the entire record is pushed to TCP. It is impossible to send a partial
* record using this control message.
*/
static ossl_inline int ktls_send_ctrl_message(int fd, unsigned char record_type,
const void *data, size_t length)
{
struct msghdr msg = { 0 };
int cmsg_len = sizeof(record_type);
struct cmsghdr *cmsg;
char buf[CMSG_SPACE(cmsg_len)];
struct iovec msg_iov; /* Vector of data to send/receive into */
msg.msg_control = buf;
msg.msg_controllen = sizeof(buf);
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = IPPROTO_TCP;
cmsg->cmsg_type = TLS_SET_RECORD_TYPE;
cmsg->cmsg_len = CMSG_LEN(cmsg_len);
*((unsigned char *)CMSG_DATA(cmsg)) = record_type;
msg.msg_controllen = cmsg->cmsg_len;
msg_iov.iov_base = (void *)data;
msg_iov.iov_len = length;
msg.msg_iov = &msg_iov;
msg.msg_iovlen = 1;
return sendmsg(fd, &msg, 0);
}
static ossl_inline int ktls_read_record(int fd, void *data, size_t length)
{
return -1;
}
/*
* KTLS enables the sendfile system call to send data from a file over
* TLS.
*/
static ossl_inline ossl_ssize_t ktls_sendfile(int s, int fd, off_t off,
size_t size, int flags)
{
off_t sbytes;
int ret;
ret = sendfile(fd, s, off, size, NULL, &sbytes, flags);
if (ret == -1) {
if (errno == EAGAIN && sbytes != 0)
return sbytes;
return -1;
}
return sbytes;
}
# endif /* __FreeBSD__ */
# if defined(OPENSSL_SYS_LINUX)
# include <linux/tls.h>
# if LINUX_VERSION_CODE < KERNEL_VERSION(4, 17, 0)
# define OPENSSL_NO_KTLS_RX
# ifndef PEDANTIC
# warning "KTLS requires Kernel Headers >= 4.17.0 for receiving"
# warning "Skipping Compilation of KTLS receive data path"
# endif
# endif
# define OPENSSL_KTLS_AES_GCM_128
# if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 1, 0)
# define OPENSSL_KTLS_AES_GCM_256
# define OPENSSL_KTLS_TLS13
# if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 2, 0)
# define OPENSSL_KTLS_AES_CCM_128
# endif
# endif
# include <sys/sendfile.h>
# include <netinet/tcp.h>
# include <linux/socket.h>
# include "openssl/ssl3.h"
# include "openssl/tls1.h"
# include "openssl/evp.h"
# ifndef SOL_TLS
# define SOL_TLS 282
# endif
# ifndef TCP_ULP
# define TCP_ULP 31
# endif
# ifndef TLS_RX
# define TLS_RX 2
# endif
struct tls_crypto_info_all {
union {
# ifdef OPENSSL_KTLS_AES_GCM_128
struct tls12_crypto_info_aes_gcm_128 gcm128;
# endif
# ifdef OPENSSL_KTLS_AES_GCM_256
struct tls12_crypto_info_aes_gcm_256 gcm256;
# endif
# ifdef OPENSSL_KTLS_AES_CCM_128
struct tls12_crypto_info_aes_ccm_128 ccm128;
# endif
};
size_t tls_crypto_info_len;
};
/*
* When successful, this socket option doesn't change the behaviour of the
* TCP socket, except changing the TCP setsockopt handler to enable the
* processing of SOL_TLS socket options. All other functionality remains the
* same.
*/
static ossl_inline int ktls_enable(int fd)
{
return setsockopt(fd, SOL_TCP, TCP_ULP, "tls", sizeof("tls")) ? 0 : 1;
}
/*
* The TLS_TX socket option changes the send/sendmsg handlers of the TCP socket.
* If successful, then data sent using this socket will be encrypted and
* encapsulated in TLS records using the crypto_info provided here.
* The TLS_RX socket option changes the recv/recvmsg handlers of the TCP socket.
* If successful, then data received using this socket will be decrypted,
* authenticated and decapsulated using the crypto_info provided here.
*/
static ossl_inline int ktls_start(int fd, void *crypto_info,
size_t len, int is_tx)
{
return setsockopt(fd, SOL_TLS, is_tx ? TLS_TX : TLS_RX,
crypto_info, len) ? 0 : 1;
}
/*
* Send a TLS record using the crypto_info provided in ktls_start and use
* record_type instead of the default SSL3_RT_APPLICATION_DATA.
* When the socket is non-blocking, then this call either returns EAGAIN or
* the entire record is pushed to TCP. It is impossible to send a partial
* record using this control message.
*/
static ossl_inline int ktls_send_ctrl_message(int fd, unsigned char record_type,
const void *data, size_t length)
{
struct msghdr msg;
int cmsg_len = sizeof(record_type);
struct cmsghdr *cmsg;
union {
struct cmsghdr hdr;
char buf[CMSG_SPACE(sizeof(unsigned char))];
} cmsgbuf;
struct iovec msg_iov; /* Vector of data to send/receive into */
memset(&msg, 0, sizeof(msg));
msg.msg_control = cmsgbuf.buf;
msg.msg_controllen = sizeof(cmsgbuf.buf);
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_TLS;
cmsg->cmsg_type = TLS_SET_RECORD_TYPE;
cmsg->cmsg_len = CMSG_LEN(cmsg_len);
*((unsigned char *)CMSG_DATA(cmsg)) = record_type;
msg.msg_controllen = cmsg->cmsg_len;
msg_iov.iov_base = (void *)data;
msg_iov.iov_len = length;
msg.msg_iov = &msg_iov;
msg.msg_iovlen = 1;
return sendmsg(fd, &msg, 0);
}
/*
* KTLS enables the sendfile system call to send data from a file over TLS.
* @flags are ignored on Linux. (placeholder for FreeBSD sendfile)
* */
static ossl_inline ossl_ssize_t ktls_sendfile(int s, int fd, off_t off, size_t size, int flags)
{
return sendfile(s, fd, &off, size);
}
# ifdef OPENSSL_NO_KTLS_RX
static ossl_inline int ktls_read_record(int fd, void *data, size_t length)
{
return -1;
}
# else /* !defined(OPENSSL_NO_KTLS_RX) */
/*
* Receive a TLS record using the crypto_info provided in ktls_start.
* The kernel strips the TLS record header, IV and authentication tag,
* returning only the plaintext data or an error on failure.
* We add the TLS record header here to satisfy routines in rec_layer_s3.c
*/
static ossl_inline int ktls_read_record(int fd, void *data, size_t length)
{
struct msghdr msg;
struct cmsghdr *cmsg;
union {
struct cmsghdr hdr;
char buf[CMSG_SPACE(sizeof(unsigned char))];
} cmsgbuf;
struct iovec msg_iov;
int ret;
unsigned char *p = data;
const size_t prepend_length = SSL3_RT_HEADER_LENGTH;
if (length < prepend_length + EVP_GCM_TLS_TAG_LEN) {
errno = EINVAL;
return -1;
}
memset(&msg, 0, sizeof(msg));
msg.msg_control = cmsgbuf.buf;
msg.msg_controllen = sizeof(cmsgbuf.buf);
msg_iov.iov_base = p + prepend_length;
msg_iov.iov_len = length - prepend_length - EVP_GCM_TLS_TAG_LEN;
msg.msg_iov = &msg_iov;
msg.msg_iovlen = 1;
ret = recvmsg(fd, &msg, 0);
if (ret < 0)
return ret;
if (msg.msg_controllen > 0) {
cmsg = CMSG_FIRSTHDR(&msg);
if (cmsg->cmsg_type == TLS_GET_RECORD_TYPE) {
p[0] = *((unsigned char *)CMSG_DATA(cmsg));
p[1] = TLS1_2_VERSION_MAJOR;
p[2] = TLS1_2_VERSION_MINOR;
/* returned length is limited to msg_iov.iov_len above */
p[3] = (ret >> 8) & 0xff;
p[4] = ret & 0xff;
ret += prepend_length;
}
}
return ret;
}
# endif /* OPENSSL_NO_KTLS_RX */
/* Function to check supported ciphers in Linux */
static ossl_inline int ktls_check_supported_cipher(const EVP_CIPHER *c,
const EVP_CIPHER_CTX *dd)
{
/* check that cipher is AES_GCM_128, AES_GCM_256, AES_CCM_128 */
switch (EVP_CIPHER_nid(c))
{
# ifdef OPENSSL_KTLS_AES_CCM_128
case NID_aes_128_ccm:
if (EVP_CIPHER_CTX_tag_length(dd) != EVP_CCM_TLS_TAG_LEN)
return 0;
# endif
# ifdef OPENSSL_KTLS_AES_GCM_128
case NID_aes_128_gcm:
# endif
# ifdef OPENSSL_KTLS_AES_GCM_256
case NID_aes_256_gcm:
# endif
return 1;
default:
return 0;
}
}
/* Function to configure kernel TLS structure */
static ossl_inline int ktls_configure_crypto(const EVP_CIPHER *c, int tls_version,
EVP_CIPHER_CTX *dd, void *rl_sequence,
struct tls_crypto_info_all *crypto_info,
unsigned char **rec_seq, unsigned char *iv,
unsigned char *key)
{
unsigned char geniv[12];
unsigned char *iiv = iv;
if (tls_version == TLS1_2_VERSION &&
EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) {
if (!EVP_CIPHER_CTX_get_iv_state(dd, geniv,
EVP_GCM_TLS_FIXED_IV_LEN
+ EVP_GCM_TLS_EXPLICIT_IV_LEN))
return 0;
iiv = geniv;
}
memset(crypto_info, 0, sizeof(*crypto_info));
switch (EVP_CIPHER_nid(c))
{
# ifdef OPENSSL_KTLS_AES_GCM_128
case NID_aes_128_gcm:
crypto_info->gcm128.info.cipher_type = TLS_CIPHER_AES_GCM_128;
crypto_info->gcm128.info.version = tls_version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->gcm128);
memcpy(crypto_info->gcm128.iv, iiv + EVP_GCM_TLS_FIXED_IV_LEN,
TLS_CIPHER_AES_GCM_128_IV_SIZE);
memcpy(crypto_info->gcm128.salt, iiv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
memcpy(crypto_info->gcm128.key, key, EVP_CIPHER_key_length(c));
memcpy(crypto_info->gcm128.rec_seq, rl_sequence,
TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
if (rec_seq != NULL)
*rec_seq = crypto_info->gcm128.rec_seq;
return 1;
# endif
# ifdef OPENSSL_KTLS_AES_GCM_256
case NID_aes_256_gcm:
crypto_info->gcm256.info.cipher_type = TLS_CIPHER_AES_GCM_256;
crypto_info->gcm256.info.version = tls_version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->gcm256);
memcpy(crypto_info->gcm256.iv, iiv + EVP_GCM_TLS_FIXED_IV_LEN,
TLS_CIPHER_AES_GCM_256_IV_SIZE);
memcpy(crypto_info->gcm256.salt, iiv, TLS_CIPHER_AES_GCM_256_SALT_SIZE);
memcpy(crypto_info->gcm256.key, key, EVP_CIPHER_key_length(c));
memcpy(crypto_info->gcm256.rec_seq, rl_sequence,
TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
if (rec_seq != NULL)
*rec_seq = crypto_info->gcm256.rec_seq;
return 1;
# endif
# ifdef OPENSSL_KTLS_AES_CCM_128
case NID_aes_128_ccm:
crypto_info->ccm128.info.cipher_type = TLS_CIPHER_AES_CCM_128;
crypto_info->ccm128.info.version = tls_version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->ccm128);
memcpy(crypto_info->ccm128.iv, iiv + EVP_CCM_TLS_FIXED_IV_LEN,
TLS_CIPHER_AES_CCM_128_IV_SIZE);
memcpy(crypto_info->ccm128.salt, iiv, TLS_CIPHER_AES_CCM_128_SALT_SIZE);
memcpy(crypto_info->ccm128.key, key, EVP_CIPHER_key_length(c));
memcpy(crypto_info->ccm128.rec_seq, rl_sequence,
TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
if (rec_seq != NULL)
*rec_seq = crypto_info->ccm128.rec_seq;
return 1;
# endif
default:
return 0;
}
}
# endif /* OPENSSL_SYS_LINUX */
# endif /* HEADER_INTERNAL_KTLS */
#else /* defined(OPENSSL_NO_KTLS) */
/* Dummy functions here */
static ossl_inline int ktls_enable(int fd)
{
return 0;
}
static ossl_inline int ktls_start(int fd, void *crypto_info,
size_t len, int is_tx)
{
return 0;
}
static ossl_inline int ktls_send_ctrl_message(int fd, unsigned char record_type,
const void *data, size_t length)
{
return -1;
}
static ossl_inline int ktls_read_record(int fd, void *data, size_t length)
{
return -1;
}
static ossl_inline ossl_ssize_t ktls_sendfile(int s, int fd, off_t off, size_t size, int flags)
{
return -1;
}
#endif