mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
98d6016afe
Most of the callers do not actually check for the special -1 return condition because they do not pass NULL to it. It is also extremely improbable that any code depends on this -1 return value in this condition so it can be safely changed to 0 return. Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/22930)
492 lines
12 KiB
C
492 lines
12 KiB
C
/*
|
|
* Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/numbers.h"
|
|
#include "internal/safe_math.h"
|
|
#include <openssl/stack.h>
|
|
#include <errno.h>
|
|
#include <openssl/e_os2.h> /* For ossl_inline */
|
|
|
|
OSSL_SAFE_MATH_SIGNED(int, int)
|
|
|
|
/*
|
|
* The initial number of nodes in the array.
|
|
*/
|
|
static const int min_nodes = 4;
|
|
static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
|
|
? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX;
|
|
|
|
struct stack_st {
|
|
int num;
|
|
const void **data;
|
|
int sorted;
|
|
int num_alloc;
|
|
OPENSSL_sk_compfunc comp;
|
|
};
|
|
|
|
OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
|
|
OPENSSL_sk_compfunc c)
|
|
{
|
|
OPENSSL_sk_compfunc old = sk->comp;
|
|
|
|
if (sk->comp != c)
|
|
sk->sorted = 0;
|
|
sk->comp = c;
|
|
|
|
return old;
|
|
}
|
|
|
|
OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
|
|
{
|
|
OPENSSL_STACK *ret;
|
|
|
|
if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
|
|
goto err;
|
|
|
|
if (sk == NULL) {
|
|
ret->num = 0;
|
|
ret->sorted = 0;
|
|
ret->comp = NULL;
|
|
} else {
|
|
/* direct structure assignment */
|
|
*ret = *sk;
|
|
}
|
|
|
|
if (sk == NULL || sk->num == 0) {
|
|
/* postpone |ret->data| allocation */
|
|
ret->data = NULL;
|
|
ret->num_alloc = 0;
|
|
return ret;
|
|
}
|
|
|
|
/* duplicate |sk->data| content */
|
|
ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc);
|
|
if (ret->data == NULL)
|
|
goto err;
|
|
memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
|
|
return ret;
|
|
|
|
err:
|
|
OPENSSL_sk_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
|
|
OPENSSL_sk_copyfunc copy_func,
|
|
OPENSSL_sk_freefunc free_func)
|
|
{
|
|
OPENSSL_STACK *ret;
|
|
int i;
|
|
|
|
if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
|
|
goto err;
|
|
|
|
if (sk == NULL) {
|
|
ret->num = 0;
|
|
ret->sorted = 0;
|
|
ret->comp = NULL;
|
|
} else {
|
|
/* direct structure assignment */
|
|
*ret = *sk;
|
|
}
|
|
|
|
if (sk == NULL || sk->num == 0) {
|
|
/* postpone |ret| data allocation */
|
|
ret->data = NULL;
|
|
ret->num_alloc = 0;
|
|
return ret;
|
|
}
|
|
|
|
ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
|
|
ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
|
|
if (ret->data == NULL)
|
|
goto err;
|
|
|
|
for (i = 0; i < ret->num; ++i) {
|
|
if (sk->data[i] == NULL)
|
|
continue;
|
|
if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
|
|
while (--i >= 0)
|
|
if (ret->data[i] != NULL)
|
|
free_func((void *)ret->data[i]);
|
|
goto err;
|
|
}
|
|
}
|
|
return ret;
|
|
|
|
err:
|
|
OPENSSL_sk_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_STACK *OPENSSL_sk_new_null(void)
|
|
{
|
|
return OPENSSL_sk_new_reserve(NULL, 0);
|
|
}
|
|
|
|
OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
|
|
{
|
|
return OPENSSL_sk_new_reserve(c, 0);
|
|
}
|
|
|
|
/*
|
|
* Calculate the array growth based on the target size.
|
|
*
|
|
* The growth factor is a rational number and is defined by a numerator
|
|
* and a denominator. According to Andrew Koenig in his paper "Why Are
|
|
* Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
|
|
* than the golden ratio (1.618...).
|
|
*
|
|
* Considering only the Fibonacci ratios less than the golden ratio, the
|
|
* number of steps from the minimum allocation to integer overflow is:
|
|
* factor decimal growths
|
|
* 3/2 1.5 51
|
|
* 8/5 1.6 45
|
|
* 21/13 1.615... 44
|
|
*
|
|
* All larger factors have the same number of growths.
|
|
*
|
|
* 3/2 and 8/5 have nice power of two shifts, so seem like a good choice.
|
|
*/
|
|
static ossl_inline int compute_growth(int target, int current)
|
|
{
|
|
int err = 0;
|
|
|
|
while (current < target) {
|
|
if (current >= max_nodes)
|
|
return 0;
|
|
|
|
current = safe_muldiv_int(current, 8, 5, &err);
|
|
if (err != 0)
|
|
return 0;
|
|
if (current >= max_nodes)
|
|
current = max_nodes;
|
|
}
|
|
return current;
|
|
}
|
|
|
|
/* internal STACK storage allocation */
|
|
static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
|
|
{
|
|
const void **tmpdata;
|
|
int num_alloc;
|
|
|
|
/* Check to see the reservation isn't exceeding the hard limit */
|
|
if (n > max_nodes - st->num) {
|
|
ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
|
|
return 0;
|
|
}
|
|
|
|
/* Figure out the new size */
|
|
num_alloc = st->num + n;
|
|
if (num_alloc < min_nodes)
|
|
num_alloc = min_nodes;
|
|
|
|
/* If |st->data| allocation was postponed */
|
|
if (st->data == NULL) {
|
|
/*
|
|
* At this point, |st->num_alloc| and |st->num| are 0;
|
|
* so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
|
|
*/
|
|
if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL)
|
|
return 0;
|
|
st->num_alloc = num_alloc;
|
|
return 1;
|
|
}
|
|
|
|
if (!exact) {
|
|
if (num_alloc <= st->num_alloc)
|
|
return 1;
|
|
num_alloc = compute_growth(num_alloc, st->num_alloc);
|
|
if (num_alloc == 0) {
|
|
ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
|
|
return 0;
|
|
}
|
|
} else if (num_alloc == st->num_alloc) {
|
|
return 1;
|
|
}
|
|
|
|
tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
|
|
if (tmpdata == NULL)
|
|
return 0;
|
|
|
|
st->data = tmpdata;
|
|
st->num_alloc = num_alloc;
|
|
return 1;
|
|
}
|
|
|
|
OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
|
|
{
|
|
OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
|
|
|
|
if (st == NULL)
|
|
return NULL;
|
|
|
|
st->comp = c;
|
|
|
|
if (n <= 0)
|
|
return st;
|
|
|
|
if (!sk_reserve(st, n, 1)) {
|
|
OPENSSL_sk_free(st);
|
|
return NULL;
|
|
}
|
|
|
|
return st;
|
|
}
|
|
|
|
int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
|
|
{
|
|
if (st == NULL) {
|
|
ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
if (n < 0)
|
|
return 1;
|
|
return sk_reserve(st, n, 1);
|
|
}
|
|
|
|
int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
|
|
{
|
|
if (st == NULL) {
|
|
ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
if (st->num == max_nodes) {
|
|
ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
|
|
return 0;
|
|
}
|
|
|
|
if (!sk_reserve(st, 1, 0))
|
|
return 0;
|
|
|
|
if ((loc >= st->num) || (loc < 0)) {
|
|
st->data[st->num] = data;
|
|
} else {
|
|
memmove(&st->data[loc + 1], &st->data[loc],
|
|
sizeof(st->data[0]) * (st->num - loc));
|
|
st->data[loc] = data;
|
|
}
|
|
st->num++;
|
|
st->sorted = 0;
|
|
return st->num;
|
|
}
|
|
|
|
static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
|
|
{
|
|
const void *ret = st->data[loc];
|
|
|
|
if (loc != st->num - 1)
|
|
memmove(&st->data[loc], &st->data[loc + 1],
|
|
sizeof(st->data[0]) * (st->num - loc - 1));
|
|
st->num--;
|
|
|
|
return (void *)ret;
|
|
}
|
|
|
|
void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
|
|
{
|
|
int i;
|
|
|
|
if (st == NULL)
|
|
return NULL;
|
|
|
|
for (i = 0; i < st->num; i++)
|
|
if (st->data[i] == p)
|
|
return internal_delete(st, i);
|
|
return NULL;
|
|
}
|
|
|
|
void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
|
|
{
|
|
if (st == NULL || loc < 0 || loc >= st->num)
|
|
return NULL;
|
|
|
|
return internal_delete(st, loc);
|
|
}
|
|
|
|
static int internal_find(OPENSSL_STACK *st, const void *data,
|
|
int ret_val_options, int *pnum_matched)
|
|
{
|
|
const void *r;
|
|
int i, count = 0;
|
|
int *pnum = pnum_matched;
|
|
|
|
if (st == NULL || st->num == 0)
|
|
return -1;
|
|
|
|
if (pnum == NULL)
|
|
pnum = &count;
|
|
|
|
if (st->comp == NULL) {
|
|
for (i = 0; i < st->num; i++)
|
|
if (st->data[i] == data) {
|
|
*pnum = 1;
|
|
return i;
|
|
}
|
|
*pnum = 0;
|
|
return -1;
|
|
}
|
|
|
|
if (data == NULL)
|
|
return -1;
|
|
|
|
if (!st->sorted) {
|
|
int res = -1;
|
|
|
|
for (i = 0; i < st->num; i++)
|
|
if (st->comp(&data, st->data + i) == 0) {
|
|
if (res == -1)
|
|
res = i;
|
|
++*pnum;
|
|
/* Check if only one result is wanted and exit if so */
|
|
if (pnum_matched == NULL)
|
|
return i;
|
|
}
|
|
if (res == -1)
|
|
*pnum = 0;
|
|
return res;
|
|
}
|
|
|
|
if (pnum_matched != NULL)
|
|
ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH;
|
|
r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp,
|
|
ret_val_options);
|
|
|
|
if (pnum_matched != NULL) {
|
|
*pnum = 0;
|
|
if (r != NULL) {
|
|
const void **p = (const void **)r;
|
|
|
|
while (p < st->data + st->num) {
|
|
if (st->comp(&data, p) != 0)
|
|
break;
|
|
++*pnum;
|
|
++p;
|
|
}
|
|
}
|
|
}
|
|
|
|
return r == NULL ? -1 : (int)((const void **)r - st->data);
|
|
}
|
|
|
|
int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
|
|
{
|
|
return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL);
|
|
}
|
|
|
|
int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
|
|
{
|
|
return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL);
|
|
}
|
|
|
|
int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum)
|
|
{
|
|
return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum);
|
|
}
|
|
|
|
int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
|
|
{
|
|
if (st == NULL)
|
|
return 0;
|
|
return OPENSSL_sk_insert(st, data, st->num);
|
|
}
|
|
|
|
int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
|
|
{
|
|
return OPENSSL_sk_insert(st, data, 0);
|
|
}
|
|
|
|
void *OPENSSL_sk_shift(OPENSSL_STACK *st)
|
|
{
|
|
if (st == NULL || st->num == 0)
|
|
return NULL;
|
|
return internal_delete(st, 0);
|
|
}
|
|
|
|
void *OPENSSL_sk_pop(OPENSSL_STACK *st)
|
|
{
|
|
if (st == NULL || st->num == 0)
|
|
return NULL;
|
|
return internal_delete(st, st->num - 1);
|
|
}
|
|
|
|
void OPENSSL_sk_zero(OPENSSL_STACK *st)
|
|
{
|
|
if (st == NULL || st->num == 0)
|
|
return;
|
|
memset(st->data, 0, sizeof(*st->data) * st->num);
|
|
st->num = 0;
|
|
}
|
|
|
|
void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
|
|
{
|
|
int i;
|
|
|
|
if (st == NULL)
|
|
return;
|
|
for (i = 0; i < st->num; i++)
|
|
if (st->data[i] != NULL)
|
|
func((char *)st->data[i]);
|
|
OPENSSL_sk_free(st);
|
|
}
|
|
|
|
void OPENSSL_sk_free(OPENSSL_STACK *st)
|
|
{
|
|
if (st == NULL)
|
|
return;
|
|
OPENSSL_free(st->data);
|
|
OPENSSL_free(st);
|
|
}
|
|
|
|
int OPENSSL_sk_num(const OPENSSL_STACK *st)
|
|
{
|
|
return st == NULL ? -1 : st->num;
|
|
}
|
|
|
|
void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
|
|
{
|
|
if (st == NULL || i < 0 || i >= st->num)
|
|
return NULL;
|
|
return (void *)st->data[i];
|
|
}
|
|
|
|
void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
|
|
{
|
|
if (st == NULL) {
|
|
ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
|
|
return NULL;
|
|
}
|
|
if (i < 0 || i >= st->num) {
|
|
ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT,
|
|
"i=%d", i);
|
|
return NULL;
|
|
}
|
|
st->data[i] = data;
|
|
st->sorted = 0;
|
|
return (void *)st->data[i];
|
|
}
|
|
|
|
void OPENSSL_sk_sort(OPENSSL_STACK *st)
|
|
{
|
|
if (st != NULL && !st->sorted && st->comp != NULL) {
|
|
if (st->num > 1)
|
|
qsort(st->data, st->num, sizeof(void *), st->comp);
|
|
st->sorted = 1; /* empty or single-element stack is considered sorted */
|
|
}
|
|
}
|
|
|
|
int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
|
|
{
|
|
return st == NULL ? 1 : st->sorted;
|
|
}
|