openssl/crypto
Cesar Pereida Garcia 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation.
This commit addresses multiple side-channel vulnerabilities present
during RSA key validation.
Private key parameters are re-computed using variable-time functions.

This issue was discovered and reported by the NISEC group at TAU Finland.

Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9779)
2019-09-06 16:11:27 +01:00
..
aes
aria
asn1 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. 2019-09-06 16:11:27 +01:00
async
bf
bio BIO_lookup_ex: Do not retry on EAI_MEMORY 2019-08-13 11:40:55 +02:00
blake2 Move BLAKE2 MACs to the providers 2019-08-15 22:12:25 +02:00
bn New function EVP_MD_free() 2019-09-04 10:38:13 +02:00
buffer
camellia
cast
chacha
cmac Coverty fixes for MACs 2019-08-27 18:55:01 +02:00
cmp
cms
comp
conf
crmf OSSL_PARAM_construct_utf8_string computes the string length. 2019-09-04 19:41:22 +10:00
ct
des Cleanup ciphers and Add 3des ciphers. 2019-08-26 17:05:08 +10:00
dh Fix users of KDFs to use params not ctls 2019-09-06 19:27:57 +10:00
dsa
dso
ec KDF error codes reworked 2019-09-06 19:27:57 +10:00
engine Remove extern declarations of OPENSSL_ia32cap_P 2019-09-01 15:41:58 +02:00
err KDF error codes reworked 2019-09-06 19:27:57 +10:00
ess
evp Clear collected_seed after freeing it 2019-09-06 19:27:57 +10:00
hmac Move HMAC to providers 2019-08-15 22:12:25 +02:00
idea
include/internal KDF/PRF updates to libcrypto 2019-09-06 19:27:57 +10:00
lhash
md2
md4
md5
mdc2
modes OSSL_PARAM_construct_utf8_string computes the string length. 2019-09-04 19:41:22 +10:00
objects
ocsp
pem Fix SCA vulnerability when using PVK and MSBLOB key formats 2019-08-27 09:07:30 +01:00
perlasm
pkcs7
pkcs12
poly1305 Move Poly1305 to providers 2019-08-15 22:12:25 +02:00
property Make sure we pre-initialise properties 2019-08-29 10:50:47 +01:00
rand Cleanup includes in rand_unix.c 2019-09-05 08:31:10 +02:00
rc2
rc4
rc5
ripemd
rsa [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. 2019-09-06 16:11:27 +01:00
seed
sha Directly return from final sha3/keccak_final if no bytes are requested 2019-08-18 21:06:03 +02:00
siphash Move SipHash to providers 2019-08-15 22:12:25 +02:00
sm2 Support parsing of SM2 ID in hexdecimal 2019-08-22 10:29:28 +08:00
sm3
sm4
srp
stack
store
ts
txt_db
ui
whrlpool Remove extern declarations of OPENSSL_ia32cap_P 2019-09-01 15:41:58 +02:00
x509 Fix error handling in x509_lu.c 2019-09-05 08:37:55 +02:00
alphacpuid.pl
arm64cpuid.pl
arm_arch.h
armcap.c
armv4cpuid.pl
asn1_dsa.c
bsearch.c
build.info Cleanse crypto/kdf directory 2019-09-06 19:27:57 +10:00
c64xpluscpuid.pl
context.c Make sure we pre-initialise properties 2019-08-29 10:50:47 +01:00
core_algorithm.c
core_fetch.c Modify ossl_method_store_add() to accept an OSSL_PROVIDER and check for it 2019-08-22 01:50:30 +02:00
core_namemap.c
cpt_err.c Add OPENSSL_hexstr2buf_ex() and OPENSSL_buf2hexstr_ex() 2019-08-12 12:50:41 +02:00
cryptlib.c Remove extern declarations of OPENSSL_ia32cap_P 2019-09-01 15:41:58 +02:00
ctype.c Add missing EBCDIC strings 2019-08-14 10:41:41 +01:00
cversion.c Undeprecate OpenSSL_version_num and OPENSSL_VERSION_NUMBER 2019-09-05 21:48:41 +02:00
dllmain.c
ebcdic.c
ex_data.c Access data after obtaining the lock not before. 2019-08-12 21:37:55 +10:00
getenv.c
ia64cpuid.S
info.c Add CPU info to the speed command summary 2019-09-02 20:46:34 +02:00
init.c Remove old KDF initialisation 2019-09-06 19:27:57 +10:00
initthread.c
LPdir_nyi.c
LPdir_unix.c
LPdir_vms.c
LPdir_win32.c
LPdir_win.c
LPdir_wince.c
mem_clr.c
mem_dbg.c
mem_sec.c
mem.c
mips_arch.h
o_dir.c
o_fips.c
o_fopen.c
o_init.c
o_str.c Add OPENSSL_hexstr2buf_ex() and OPENSSL_buf2hexstr_ex() 2019-08-12 12:50:41 +02:00
o_time.c
packet.c
param_build.c Fix ossl_param_bld_push_{utf8,octet}_string() / param_bld_convert() 2019-08-21 11:18:58 +02:00
params_from_text.c Params from text to allow zero length value fields 2019-09-06 19:27:57 +10:00
params.c OSSL_PARAM_construct_utf8_string computes the string length. 2019-09-04 19:41:22 +10:00
pariscid.pl
ppc_arch.h
ppccap.c
ppccpuid.pl
provider_conf.c
provider_core.c ossl_provider_library_context(NULL) returns NULL. 2019-09-06 19:27:57 +10:00
provider_local.h
provider_predefined.c
provider.c Rename provider and core get_param_types functions 2019-08-15 11:58:25 +02:00
README.sparse_array
s390x_arch.h
s390xcap.c
s390xcpuid.pl s390xcpuid.pl: fix comment 2019-08-15 16:27:38 +02:00
sparc_arch.h
sparccpuid.S
sparcv9cap.c
sparse_array.c
threads_none.c
threads_pthread.c use native atomic increment function on Solaris 2019-08-09 13:16:41 +01:00
threads_win.c
trace.c prevent endless recursion when trace API is used within OPENSSL_init_crypto() 2019-08-20 11:16:41 +08:00
uid.c
vms_rms.h
x86_64cpuid.pl
x86cpuid.pl

The sparse_array.c file contains an implementation of a sparse array that
attempts to be both space and time efficient.

The sparse array is represented using a tree structure.  Each node in the
tree contains a block of pointers to either the user supplied leaf values or
to another node.

There are a number of parameters used to define the block size:

    OPENSSL_SA_BLOCK_BITS   Specifies the number of bits covered by each block
    SA_BLOCK_MAX            Specifies the number of pointers in each block
    SA_BLOCK_MASK           Specifies a bit mask to perform modulo block size
    SA_BLOCK_MAX_LEVELS     Indicates the maximum possible height of the tree

These constants are inter-related:
    SA_BLOCK_MAX        = 2 ^ OPENSSL_SA_BLOCK_BITS
    SA_BLOCK_MASK       = SA_BLOCK_MAX - 1
    SA_BLOCK_MAX_LEVELS = number of bits in size_t divided by
                          OPENSSL_SA_BLOCK_BITS rounded up to the next multiple
                          of OPENSSL_SA_BLOCK_BITS

OPENSSL_SA_BLOCK_BITS can be defined at compile time and this overrides the
built in setting.

As a space and performance optimisation, the height of the tree is usually
less than the maximum possible height.  Only sufficient height is allocated to
accommodate the largest index added to the data structure.

The largest index used to add a value to the array determines the tree height:

        +----------------------+---------------------+
        | Largest Added Index  |   Height of Tree    |
        +----------------------+---------------------+
        | SA_BLOCK_MAX     - 1 |          1          |
        | SA_BLOCK_MAX ^ 2 - 1 |          2          |
        | SA_BLOCK_MAX ^ 3 - 1 |          3          |
        | ...                  |          ...        |
        | size_t max           | SA_BLOCK_MAX_LEVELS |
        +----------------------+---------------------+

The tree height is dynamically increased as needed based on additions.

An empty tree is represented by a NULL root pointer.  Inserting a value at
index 0 results in the allocation of a top level node full of null pointers
except for the single pointer to the user's data (N = SA_BLOCK_MAX for
brevity):

        +----+
        |Root|
        |Node|
        +-+--+
          |
          |
          |
          v
        +-+-+---+---+---+---+
        | 0 | 1 | 2 |...|N-1|
        |   |nil|nil|...|nil|
        +-+-+---+---+---+---+
          |
          |
          |
          v
        +-+--+
        |User|
        |Data|
        +----+
    Index 0


Inserting at element 2N+1 creates a new root node and pushes down the old root
node.  It then creates a second second level node to hold the pointer to the
user's new data:

        +----+
        |Root|
        |Node|
        +-+--+
          |
          |
          |
          v
        +-+-+---+---+---+---+
        | 0 | 1 | 2 |...|N-1|
        |   |nil|   |...|nil|
        +-+-+---+-+-+---+---+
          |       |
          |       +------------------+
          |                          |
          v                          v
        +-+-+---+---+---+---+      +-+-+---+---+---+---+
        | 0 | 1 | 2 |...|N-1|      | 0 | 1 | 2 |...|N-1|
        |nil|   |nil|...|nil|      |nil|   |nil|...|nil|
        +-+-+---+---+---+---+      +---+-+-+---+---+---+
          |                              |
          |                              |
          |                              |
          v                              v
        +-+--+                         +-+--+
        |User|                         |User|
        |Data|                         |Data|
        +----+                         +----+
    Index 0                       Index 2N+1


The nodes themselves are allocated in a sparse manner.  Only nodes which exist
along a path from the root of the tree to an added leaf will be allocated.
The complexity is hidden and nodes are allocated on an as needed basis.
Because the data is expected to be sparse this doesn't result in a large waste
of space.

Values can be removed from the sparse array by setting their index position to
NULL.  The data structure does not attempt to reclaim nodes or reduce the
height of the tree on removal.  For example, now setting index 0 to NULL would
result in:

        +----+
        |Root|
        |Node|
        +-+--+
          |
          |
          |
          v
        +-+-+---+---+---+---+
        | 0 | 1 | 2 |...|N-1|
        |   |nil|   |...|nil|
        +-+-+---+-+-+---+---+
          |       |
          |       +------------------+
          |                          |
          v                          v
        +-+-+---+---+---+---+      +-+-+---+---+---+---+
        | 0 | 1 | 2 |...|N-1|      | 0 | 1 | 2 |...|N-1|
        |nil|nil|nil|...|nil|      |nil|   |nil|...|nil|
        +---+---+---+---+---+      +---+-+-+---+---+---+
                                         |
                                         |
                                         |
                                         v
                                       +-+--+
                                       |User|
                                       |Data|
                                       +----+
                                  Index 2N+1


Accesses to elements in the sparse array take O(log n) time where n is the
largest element.  The base of the logarithm is SA_BLOCK_MAX, so for moderately
small indices (e.g. NIDs), single level (constant time) access is achievable.
Space usage is O(minimum(m, n log(n)) where m is the number of elements in the
array.

Note: sparse arrays only include pointers to types.  Thus, SPARSE_ARRAY_OF(char)
can be used to store a string.