mirror of
https://github.com/openssl/openssl.git
synced 2025-01-06 13:26:43 +08:00
a598ed0dc4
[skip ci] Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/7816)
552 lines
16 KiB
Raku
Executable File
552 lines
16 KiB
Raku
Executable File
#!/usr/bin/env perl
|
|
# Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# Keccak-1600 for AVX-512F.
|
|
#
|
|
# July 2017.
|
|
#
|
|
# Below code is KECCAK_1X_ALT implementation (see sha/keccak1600.c).
|
|
# Pretty straightforward, the only "magic" is data layout in registers.
|
|
# It's impossible to have one that is optimal for every step, hence
|
|
# it's changing as algorithm progresses. Data is saved in linear order,
|
|
# but in-register order morphs between rounds. Even rounds take in
|
|
# linear layout, and odd rounds - transposed, or "verticaly-shaped"...
|
|
#
|
|
########################################################################
|
|
# Numbers are cycles per processed byte out of large message.
|
|
#
|
|
# r=1088(*)
|
|
#
|
|
# Knights Landing 7.6
|
|
# Skylake-X 5.7
|
|
#
|
|
# (*) Corresponds to SHA3-256.
|
|
|
|
########################################################################
|
|
# Below code is combination of two ideas. One is taken from Keccak Code
|
|
# Package, hereafter KCP, and another one from initial version of this
|
|
# module. What is common is observation that Pi's input and output are
|
|
# "mostly transposed", i.e. if input is aligned by x coordinate, then
|
|
# output is [mostly] aligned by y. Both versions, KCP and predecessor,
|
|
# were trying to use one of them from round to round, which resulted in
|
|
# some kind of transposition in each round. This version still does
|
|
# transpose data, but only every second round. Another essential factor
|
|
# is that KCP transposition has to be performed with instructions that
|
|
# turned to be rather expensive on Knights Landing, both latency- and
|
|
# throughput-wise. Not to mention that some of them have to depend on
|
|
# each other. On the other hand initial version of this module was
|
|
# relying heavily on blend instructions. There were lots of them,
|
|
# resulting in higher instruction count, yet it performed better on
|
|
# Knights Landing, because processor can execute pair of them each
|
|
# cycle and they have minimal latency. This module is an attempt to
|
|
# bring best parts together:-)
|
|
#
|
|
# Coordinates below correspond to those in sha/keccak1600.c. Input
|
|
# layout is straight linear:
|
|
#
|
|
# [0][4] [0][3] [0][2] [0][1] [0][0]
|
|
# [1][4] [1][3] [1][2] [1][1] [1][0]
|
|
# [2][4] [2][3] [2][2] [2][1] [2][0]
|
|
# [3][4] [3][3] [3][2] [3][1] [3][0]
|
|
# [4][4] [4][3] [4][2] [4][1] [4][0]
|
|
#
|
|
# It's perfect for Theta, while Pi is reduced to intra-register
|
|
# permutations which yield layout perfect for Chi:
|
|
#
|
|
# [4][0] [3][0] [2][0] [1][0] [0][0]
|
|
# [4][1] [3][1] [2][1] [1][1] [0][1]
|
|
# [4][2] [3][2] [2][2] [1][2] [0][2]
|
|
# [4][3] [3][3] [2][3] [1][3] [0][3]
|
|
# [4][4] [3][4] [2][4] [1][4] [0][4]
|
|
#
|
|
# Now instead of performing full transposition and feeding it to next
|
|
# identical round, we perform kind of diagonal transposition to layout
|
|
# from initial version of this module, and make it suitable for Theta:
|
|
#
|
|
# [4][4] [3][3] [2][2] [1][1] [0][0]>4.3.2.1.0>[4][4] [3][3] [2][2] [1][1] [0][0]
|
|
# [4][0] [3][4] [2][3] [1][2] [0][1]>3.2.1.0.4>[3][4] [2][3] [1][2] [0][1] [4][0]
|
|
# [4][1] [3][0] [2][4] [1][3] [0][2]>2.1.0.4.3>[2][4] [1][3] [0][2] [4][1] [3][0]
|
|
# [4][2] [3][1] [2][0] [1][4] [0][3]>1.0.4.3.2>[1][4] [0][3] [4][2] [3][1] [2][0]
|
|
# [4][3] [3][2] [2][1] [1][0] [0][4]>0.4.3.2.1>[0][4] [4][3] [3][2] [2][1] [1][0]
|
|
#
|
|
# Now intra-register permutations yield initial [almost] straight
|
|
# linear layout:
|
|
#
|
|
# [4][4] [3][3] [2][2] [1][1] [0][0]
|
|
##[0][4] [0][3] [0][2] [0][1] [0][0]
|
|
# [3][4] [2][3] [1][2] [0][1] [4][0]
|
|
##[2][3] [2][2] [2][1] [2][0] [2][4]
|
|
# [2][4] [1][3] [0][2] [4][1] [3][0]
|
|
##[4][2] [4][1] [4][0] [4][4] [4][3]
|
|
# [1][4] [0][3] [4][2] [3][1] [2][0]
|
|
##[1][1] [1][0] [1][4] [1][3] [1][2]
|
|
# [0][4] [4][3] [3][2] [2][1] [1][0]
|
|
##[3][0] [3][4] [3][3] [3][2] [3][1]
|
|
#
|
|
# This means that odd round Chi is performed in less suitable layout,
|
|
# with a number of additional permutations. But overall it turned to be
|
|
# a win. Permutations are fastest possible on Knights Landing and they
|
|
# are laid down to be independent of each other. In the essence I traded
|
|
# 20 blend instructions for 3 permutations. The result is 13% faster
|
|
# than KCP on Skylake-X, and >40% on Knights Landing.
|
|
#
|
|
# As implied, data is loaded in straight linear order. Digits in
|
|
# variables' names represent coordinates of right-most element of
|
|
# loaded data chunk:
|
|
|
|
my ($A00, # [0][4] [0][3] [0][2] [0][1] [0][0]
|
|
$A10, # [1][4] [1][3] [1][2] [1][1] [1][0]
|
|
$A20, # [2][4] [2][3] [2][2] [2][1] [2][0]
|
|
$A30, # [3][4] [3][3] [3][2] [3][1] [3][0]
|
|
$A40) = # [4][4] [4][3] [4][2] [4][1] [4][0]
|
|
map("%zmm$_",(0..4));
|
|
|
|
# We also need to map the magic order into offsets within structure:
|
|
|
|
my @A_jagged = ([0,0], [0,1], [0,2], [0,3], [0,4],
|
|
[1,0], [1,1], [1,2], [1,3], [1,4],
|
|
[2,0], [2,1], [2,2], [2,3], [2,4],
|
|
[3,0], [3,1], [3,2], [3,3], [3,4],
|
|
[4,0], [4,1], [4,2], [4,3], [4,4]);
|
|
@A_jagged = map(8*($$_[0]*8+$$_[1]), @A_jagged); # ... and now linear
|
|
|
|
my @T = map("%zmm$_",(5..12));
|
|
my @Theta = map("%zmm$_",(33,13..16)); # invalid @Theta[0] is not typo
|
|
my @Pi0 = map("%zmm$_",(17..21));
|
|
my @Rhotate0 = map("%zmm$_",(22..26));
|
|
my @Rhotate1 = map("%zmm$_",(27..31));
|
|
|
|
my ($C00,$D00) = @T[0..1];
|
|
my ($k00001,$k00010,$k00100,$k01000,$k10000,$k11111) = map("%k$_",(1..6));
|
|
|
|
$code.=<<___;
|
|
.text
|
|
|
|
.type __KeccakF1600,\@function
|
|
.align 32
|
|
__KeccakF1600:
|
|
lea iotas(%rip),%r10
|
|
mov \$12,%eax
|
|
jmp .Loop_avx512
|
|
|
|
.align 32
|
|
.Loop_avx512:
|
|
######################################### Theta, even round
|
|
vmovdqa64 $A00,@T[0] # put aside original A00
|
|
vpternlogq \$0x96,$A20,$A10,$A00 # and use it as "C00"
|
|
vpternlogq \$0x96,$A40,$A30,$A00
|
|
|
|
vprolq \$1,$A00,$D00
|
|
vpermq $A00,@Theta[1],$A00
|
|
vpermq $D00,@Theta[4],$D00
|
|
|
|
vpternlogq \$0x96,$A00,$D00,@T[0] # T[0] is original A00
|
|
vpternlogq \$0x96,$A00,$D00,$A10
|
|
vpternlogq \$0x96,$A00,$D00,$A20
|
|
vpternlogq \$0x96,$A00,$D00,$A30
|
|
vpternlogq \$0x96,$A00,$D00,$A40
|
|
|
|
######################################### Rho
|
|
vprolvq @Rhotate0[0],@T[0],$A00 # T[0] is original A00
|
|
vprolvq @Rhotate0[1],$A10,$A10
|
|
vprolvq @Rhotate0[2],$A20,$A20
|
|
vprolvq @Rhotate0[3],$A30,$A30
|
|
vprolvq @Rhotate0[4],$A40,$A40
|
|
|
|
######################################### Pi
|
|
vpermq $A00,@Pi0[0],$A00
|
|
vpermq $A10,@Pi0[1],$A10
|
|
vpermq $A20,@Pi0[2],$A20
|
|
vpermq $A30,@Pi0[3],$A30
|
|
vpermq $A40,@Pi0[4],$A40
|
|
|
|
######################################### Chi
|
|
vmovdqa64 $A00,@T[0]
|
|
vmovdqa64 $A10,@T[1]
|
|
vpternlogq \$0xD2,$A20,$A10,$A00
|
|
vpternlogq \$0xD2,$A30,$A20,$A10
|
|
vpternlogq \$0xD2,$A40,$A30,$A20
|
|
vpternlogq \$0xD2,@T[0],$A40,$A30
|
|
vpternlogq \$0xD2,@T[1],@T[0],$A40
|
|
|
|
######################################### Iota
|
|
vpxorq (%r10),$A00,${A00}{$k00001}
|
|
lea 16(%r10),%r10
|
|
|
|
######################################### Harmonize rounds
|
|
vpblendmq $A20,$A10,@{T[1]}{$k00010}
|
|
vpblendmq $A30,$A20,@{T[2]}{$k00010}
|
|
vpblendmq $A40,$A30,@{T[3]}{$k00010}
|
|
vpblendmq $A10,$A00,@{T[0]}{$k00010}
|
|
vpblendmq $A00,$A40,@{T[4]}{$k00010}
|
|
|
|
vpblendmq $A30,@T[1],@{T[1]}{$k00100}
|
|
vpblendmq $A40,@T[2],@{T[2]}{$k00100}
|
|
vpblendmq $A20,@T[0],@{T[0]}{$k00100}
|
|
vpblendmq $A00,@T[3],@{T[3]}{$k00100}
|
|
vpblendmq $A10,@T[4],@{T[4]}{$k00100}
|
|
|
|
vpblendmq $A40,@T[1],@{T[1]}{$k01000}
|
|
vpblendmq $A30,@T[0],@{T[0]}{$k01000}
|
|
vpblendmq $A00,@T[2],@{T[2]}{$k01000}
|
|
vpblendmq $A10,@T[3],@{T[3]}{$k01000}
|
|
vpblendmq $A20,@T[4],@{T[4]}{$k01000}
|
|
|
|
vpblendmq $A40,@T[0],@{T[0]}{$k10000}
|
|
vpblendmq $A00,@T[1],@{T[1]}{$k10000}
|
|
vpblendmq $A10,@T[2],@{T[2]}{$k10000}
|
|
vpblendmq $A20,@T[3],@{T[3]}{$k10000}
|
|
vpblendmq $A30,@T[4],@{T[4]}{$k10000}
|
|
|
|
#vpermq @T[0],@Theta[0],$A00 # doesn't actually change order
|
|
vpermq @T[1],@Theta[1],$A10
|
|
vpermq @T[2],@Theta[2],$A20
|
|
vpermq @T[3],@Theta[3],$A30
|
|
vpermq @T[4],@Theta[4],$A40
|
|
|
|
######################################### Theta, odd round
|
|
vmovdqa64 $T[0],$A00 # real A00
|
|
vpternlogq \$0x96,$A20,$A10,$C00 # C00 is @T[0]'s alias
|
|
vpternlogq \$0x96,$A40,$A30,$C00
|
|
|
|
vprolq \$1,$C00,$D00
|
|
vpermq $C00,@Theta[1],$C00
|
|
vpermq $D00,@Theta[4],$D00
|
|
|
|
vpternlogq \$0x96,$C00,$D00,$A00
|
|
vpternlogq \$0x96,$C00,$D00,$A30
|
|
vpternlogq \$0x96,$C00,$D00,$A10
|
|
vpternlogq \$0x96,$C00,$D00,$A40
|
|
vpternlogq \$0x96,$C00,$D00,$A20
|
|
|
|
######################################### Rho
|
|
vprolvq @Rhotate1[0],$A00,$A00
|
|
vprolvq @Rhotate1[3],$A30,@T[1]
|
|
vprolvq @Rhotate1[1],$A10,@T[2]
|
|
vprolvq @Rhotate1[4],$A40,@T[3]
|
|
vprolvq @Rhotate1[2],$A20,@T[4]
|
|
|
|
vpermq $A00,@Theta[4],@T[5]
|
|
vpermq $A00,@Theta[3],@T[6]
|
|
|
|
######################################### Iota
|
|
vpxorq -8(%r10),$A00,${A00}{$k00001}
|
|
|
|
######################################### Pi
|
|
vpermq @T[1],@Theta[2],$A10
|
|
vpermq @T[2],@Theta[4],$A20
|
|
vpermq @T[3],@Theta[1],$A30
|
|
vpermq @T[4],@Theta[3],$A40
|
|
|
|
######################################### Chi
|
|
vpternlogq \$0xD2,@T[6],@T[5],$A00
|
|
|
|
vpermq @T[1],@Theta[1],@T[7]
|
|
#vpermq @T[1],@Theta[0],@T[1]
|
|
vpternlogq \$0xD2,@T[1],@T[7],$A10
|
|
|
|
vpermq @T[2],@Theta[3],@T[0]
|
|
vpermq @T[2],@Theta[2],@T[2]
|
|
vpternlogq \$0xD2,@T[2],@T[0],$A20
|
|
|
|
#vpermq @T[3],@Theta[0],@T[3]
|
|
vpermq @T[3],@Theta[4],@T[1]
|
|
vpternlogq \$0xD2,@T[1],@T[3],$A30
|
|
|
|
vpermq @T[4],@Theta[2],@T[0]
|
|
vpermq @T[4],@Theta[1],@T[4]
|
|
vpternlogq \$0xD2,@T[4],@T[0],$A40
|
|
|
|
dec %eax
|
|
jnz .Loop_avx512
|
|
|
|
ret
|
|
.size __KeccakF1600,.-__KeccakF1600
|
|
___
|
|
|
|
my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx");
|
|
my $out = $inp; # in squeeze
|
|
|
|
$code.=<<___;
|
|
.globl SHA3_absorb
|
|
.type SHA3_absorb,\@function
|
|
.align 32
|
|
SHA3_absorb:
|
|
mov %rsp,%r11
|
|
|
|
lea -320(%rsp),%rsp
|
|
and \$-64,%rsp
|
|
|
|
lea 96($A_flat),$A_flat
|
|
lea 96($inp),$inp
|
|
lea 128(%rsp),%r9
|
|
|
|
lea theta_perm(%rip),%r8
|
|
|
|
kxnorw $k11111,$k11111,$k11111
|
|
kshiftrw \$15,$k11111,$k00001
|
|
kshiftrw \$11,$k11111,$k11111
|
|
kshiftlw \$1,$k00001,$k00010
|
|
kshiftlw \$2,$k00001,$k00100
|
|
kshiftlw \$3,$k00001,$k01000
|
|
kshiftlw \$4,$k00001,$k10000
|
|
|
|
#vmovdqa64 64*0(%r8),@Theta[0]
|
|
vmovdqa64 64*1(%r8),@Theta[1]
|
|
vmovdqa64 64*2(%r8),@Theta[2]
|
|
vmovdqa64 64*3(%r8),@Theta[3]
|
|
vmovdqa64 64*4(%r8),@Theta[4]
|
|
|
|
vmovdqa64 64*5(%r8),@Rhotate1[0]
|
|
vmovdqa64 64*6(%r8),@Rhotate1[1]
|
|
vmovdqa64 64*7(%r8),@Rhotate1[2]
|
|
vmovdqa64 64*8(%r8),@Rhotate1[3]
|
|
vmovdqa64 64*9(%r8),@Rhotate1[4]
|
|
|
|
vmovdqa64 64*10(%r8),@Rhotate0[0]
|
|
vmovdqa64 64*11(%r8),@Rhotate0[1]
|
|
vmovdqa64 64*12(%r8),@Rhotate0[2]
|
|
vmovdqa64 64*13(%r8),@Rhotate0[3]
|
|
vmovdqa64 64*14(%r8),@Rhotate0[4]
|
|
|
|
vmovdqa64 64*15(%r8),@Pi0[0]
|
|
vmovdqa64 64*16(%r8),@Pi0[1]
|
|
vmovdqa64 64*17(%r8),@Pi0[2]
|
|
vmovdqa64 64*18(%r8),@Pi0[3]
|
|
vmovdqa64 64*19(%r8),@Pi0[4]
|
|
|
|
vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z}
|
|
vpxorq @T[0],@T[0],@T[0]
|
|
vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z}
|
|
vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z}
|
|
vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z}
|
|
vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z}
|
|
|
|
vmovdqa64 @T[0],0*64-128(%r9) # zero transfer area on stack
|
|
vmovdqa64 @T[0],1*64-128(%r9)
|
|
vmovdqa64 @T[0],2*64-128(%r9)
|
|
vmovdqa64 @T[0],3*64-128(%r9)
|
|
vmovdqa64 @T[0],4*64-128(%r9)
|
|
jmp .Loop_absorb_avx512
|
|
|
|
.align 32
|
|
.Loop_absorb_avx512:
|
|
mov $bsz,%rax
|
|
sub $bsz,$len
|
|
jc .Ldone_absorb_avx512
|
|
|
|
shr \$3,%eax
|
|
___
|
|
for(my $i=0; $i<25; $i++) {
|
|
$code.=<<___
|
|
mov 8*$i-96($inp),%r8
|
|
mov %r8,$A_jagged[$i]-128(%r9)
|
|
dec %eax
|
|
jz .Labsorved_avx512
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
.Labsorved_avx512:
|
|
lea ($inp,$bsz),$inp
|
|
|
|
vpxorq 64*0-128(%r9),$A00,$A00
|
|
vpxorq 64*1-128(%r9),$A10,$A10
|
|
vpxorq 64*2-128(%r9),$A20,$A20
|
|
vpxorq 64*3-128(%r9),$A30,$A30
|
|
vpxorq 64*4-128(%r9),$A40,$A40
|
|
|
|
call __KeccakF1600
|
|
|
|
jmp .Loop_absorb_avx512
|
|
|
|
.align 32
|
|
.Ldone_absorb_avx512:
|
|
vmovdqu64 $A00,40*0-96($A_flat){$k11111}
|
|
vmovdqu64 $A10,40*1-96($A_flat){$k11111}
|
|
vmovdqu64 $A20,40*2-96($A_flat){$k11111}
|
|
vmovdqu64 $A30,40*3-96($A_flat){$k11111}
|
|
vmovdqu64 $A40,40*4-96($A_flat){$k11111}
|
|
|
|
vzeroupper
|
|
|
|
lea (%r11),%rsp
|
|
lea ($len,$bsz),%rax # return value
|
|
ret
|
|
.size SHA3_absorb,.-SHA3_absorb
|
|
|
|
.globl SHA3_squeeze
|
|
.type SHA3_squeeze,\@function
|
|
.align 32
|
|
SHA3_squeeze:
|
|
mov %rsp,%r11
|
|
|
|
lea 96($A_flat),$A_flat
|
|
cmp $bsz,$len
|
|
jbe .Lno_output_extension_avx512
|
|
|
|
lea theta_perm(%rip),%r8
|
|
|
|
kxnorw $k11111,$k11111,$k11111
|
|
kshiftrw \$15,$k11111,$k00001
|
|
kshiftrw \$11,$k11111,$k11111
|
|
kshiftlw \$1,$k00001,$k00010
|
|
kshiftlw \$2,$k00001,$k00100
|
|
kshiftlw \$3,$k00001,$k01000
|
|
kshiftlw \$4,$k00001,$k10000
|
|
|
|
#vmovdqa64 64*0(%r8),@Theta[0]
|
|
vmovdqa64 64*1(%r8),@Theta[1]
|
|
vmovdqa64 64*2(%r8),@Theta[2]
|
|
vmovdqa64 64*3(%r8),@Theta[3]
|
|
vmovdqa64 64*4(%r8),@Theta[4]
|
|
|
|
vmovdqa64 64*5(%r8),@Rhotate1[0]
|
|
vmovdqa64 64*6(%r8),@Rhotate1[1]
|
|
vmovdqa64 64*7(%r8),@Rhotate1[2]
|
|
vmovdqa64 64*8(%r8),@Rhotate1[3]
|
|
vmovdqa64 64*9(%r8),@Rhotate1[4]
|
|
|
|
vmovdqa64 64*10(%r8),@Rhotate0[0]
|
|
vmovdqa64 64*11(%r8),@Rhotate0[1]
|
|
vmovdqa64 64*12(%r8),@Rhotate0[2]
|
|
vmovdqa64 64*13(%r8),@Rhotate0[3]
|
|
vmovdqa64 64*14(%r8),@Rhotate0[4]
|
|
|
|
vmovdqa64 64*15(%r8),@Pi0[0]
|
|
vmovdqa64 64*16(%r8),@Pi0[1]
|
|
vmovdqa64 64*17(%r8),@Pi0[2]
|
|
vmovdqa64 64*18(%r8),@Pi0[3]
|
|
vmovdqa64 64*19(%r8),@Pi0[4]
|
|
|
|
vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z}
|
|
vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z}
|
|
vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z}
|
|
vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z}
|
|
vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z}
|
|
|
|
.Lno_output_extension_avx512:
|
|
shr \$3,$bsz
|
|
lea -96($A_flat),%r9
|
|
mov $bsz,%rax
|
|
jmp .Loop_squeeze_avx512
|
|
|
|
.align 32
|
|
.Loop_squeeze_avx512:
|
|
cmp \$8,$len
|
|
jb .Ltail_squeeze_avx512
|
|
|
|
mov (%r9),%r8
|
|
lea 8(%r9),%r9
|
|
mov %r8,($out)
|
|
lea 8($out),$out
|
|
sub \$8,$len # len -= 8
|
|
jz .Ldone_squeeze_avx512
|
|
|
|
sub \$1,%rax # bsz--
|
|
jnz .Loop_squeeze_avx512
|
|
|
|
#vpermq @Theta[4],@Theta[4],@Theta[3]
|
|
#vpermq @Theta[3],@Theta[4],@Theta[2]
|
|
#vpermq @Theta[3],@Theta[3],@Theta[1]
|
|
|
|
call __KeccakF1600
|
|
|
|
vmovdqu64 $A00,40*0-96($A_flat){$k11111}
|
|
vmovdqu64 $A10,40*1-96($A_flat){$k11111}
|
|
vmovdqu64 $A20,40*2-96($A_flat){$k11111}
|
|
vmovdqu64 $A30,40*3-96($A_flat){$k11111}
|
|
vmovdqu64 $A40,40*4-96($A_flat){$k11111}
|
|
|
|
lea -96($A_flat),%r9
|
|
mov $bsz,%rax
|
|
jmp .Loop_squeeze_avx512
|
|
|
|
.Ltail_squeeze_avx512:
|
|
mov $out,%rdi
|
|
mov %r9,%rsi
|
|
mov $len,%rcx
|
|
.byte 0xf3,0xa4 # rep movsb
|
|
|
|
.Ldone_squeeze_avx512:
|
|
vzeroupper
|
|
|
|
lea (%r11),%rsp
|
|
ret
|
|
.size SHA3_squeeze,.-SHA3_squeeze
|
|
|
|
.align 64
|
|
theta_perm:
|
|
.quad 0, 1, 2, 3, 4, 5, 6, 7 # [not used]
|
|
.quad 4, 0, 1, 2, 3, 5, 6, 7
|
|
.quad 3, 4, 0, 1, 2, 5, 6, 7
|
|
.quad 2, 3, 4, 0, 1, 5, 6, 7
|
|
.quad 1, 2, 3, 4, 0, 5, 6, 7
|
|
|
|
rhotates1:
|
|
.quad 0, 44, 43, 21, 14, 0, 0, 0 # [0][0] [1][1] [2][2] [3][3] [4][4]
|
|
.quad 18, 1, 6, 25, 8, 0, 0, 0 # [4][0] [0][1] [1][2] [2][3] [3][4]
|
|
.quad 41, 2, 62, 55, 39, 0, 0, 0 # [3][0] [4][1] [0][2] [1][3] [2][4]
|
|
.quad 3, 45, 61, 28, 20, 0, 0, 0 # [2][0] [3][1] [4][2] [0][3] [1][4]
|
|
.quad 36, 10, 15, 56, 27, 0, 0, 0 # [1][0] [2][1] [3][2] [4][3] [0][4]
|
|
|
|
rhotates0:
|
|
.quad 0, 1, 62, 28, 27, 0, 0, 0
|
|
.quad 36, 44, 6, 55, 20, 0, 0, 0
|
|
.quad 3, 10, 43, 25, 39, 0, 0, 0
|
|
.quad 41, 45, 15, 21, 8, 0, 0, 0
|
|
.quad 18, 2, 61, 56, 14, 0, 0, 0
|
|
|
|
pi0_perm:
|
|
.quad 0, 3, 1, 4, 2, 5, 6, 7
|
|
.quad 1, 4, 2, 0, 3, 5, 6, 7
|
|
.quad 2, 0, 3, 1, 4, 5, 6, 7
|
|
.quad 3, 1, 4, 2, 0, 5, 6, 7
|
|
.quad 4, 2, 0, 3, 1, 5, 6, 7
|
|
|
|
|
|
iotas:
|
|
.quad 0x0000000000000001
|
|
.quad 0x0000000000008082
|
|
.quad 0x800000000000808a
|
|
.quad 0x8000000080008000
|
|
.quad 0x000000000000808b
|
|
.quad 0x0000000080000001
|
|
.quad 0x8000000080008081
|
|
.quad 0x8000000000008009
|
|
.quad 0x000000000000008a
|
|
.quad 0x0000000000000088
|
|
.quad 0x0000000080008009
|
|
.quad 0x000000008000000a
|
|
.quad 0x000000008000808b
|
|
.quad 0x800000000000008b
|
|
.quad 0x8000000000008089
|
|
.quad 0x8000000000008003
|
|
.quad 0x8000000000008002
|
|
.quad 0x8000000000000080
|
|
.quad 0x000000000000800a
|
|
.quad 0x800000008000000a
|
|
.quad 0x8000000080008081
|
|
.quad 0x8000000000008080
|
|
.quad 0x0000000080000001
|
|
.quad 0x8000000080008008
|
|
|
|
.asciz "Keccak-1600 absorb and squeeze for AVX-512F, CRYPTOGAMS by <appro\@openssl.org>"
|
|
___
|
|
|
|
$output=pop;
|
|
open STDOUT,">$output";
|
|
print $code;
|
|
close STDOUT;
|