openssl/crypto/sha/asm/sha1-sparcv9.pl
Matt Caswell 33388b44b6 Update copyright year
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11616)
2020-04-23 13:55:52 +01:00

434 lines
9.2 KiB
Raku

#! /usr/bin/env perl
# Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
#
# Hardware SPARC T4 support by David S. Miller
# ====================================================================
# Performance improvement is not really impressive on pre-T1 CPU: +8%
# over Sun C and +25% over gcc [3.3]. While on T1, a.k.a. Niagara, it
# turned to be 40% faster than 64-bit code generated by Sun C 5.8 and
# >2x than 64-bit code generated by gcc 3.4. And there is a gimmick.
# X[16] vector is packed to 8 64-bit registers and as result nothing
# is spilled on stack. In addition input data is loaded in compact
# instruction sequence, thus minimizing the window when the code is
# subject to [inter-thread] cache-thrashing hazard. The goal is to
# ensure scalability on UltraSPARC T1, or rather to avoid decay when
# amount of active threads exceeds the number of physical cores.
# SPARC T4 SHA1 hardware achieves 3.72 cycles per byte, which is 3.1x
# faster than software. Multi-process benchmark saturates at 11x
# single-process result on 8-core processor, or ~9GBps per 2.85GHz
# socket.
$output=pop and open STDOUT,">$output";
@X=("%o0","%o1","%o2","%o3","%o4","%o5","%g1","%o7");
$rot1m="%g2";
$tmp64="%g3";
$Xi="%g4";
$A="%l0";
$B="%l1";
$C="%l2";
$D="%l3";
$E="%l4";
@V=($A,$B,$C,$D,$E);
$K_00_19="%l5";
$K_20_39="%l6";
$K_40_59="%l7";
$K_60_79="%g5";
@K=($K_00_19,$K_20_39,$K_40_59,$K_60_79);
$ctx="%i0";
$inp="%i1";
$len="%i2";
$tmp0="%i3";
$tmp1="%i4";
$tmp2="%i5";
sub BODY_00_15 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $xi=($i&1)?@X[($i/2)%8]:$Xi;
$code.=<<___;
sll $a,5,$tmp0 !! $i
add @K[$i/20],$e,$e
srl $a,27,$tmp1
add $tmp0,$e,$e
and $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
andn $d,$b,$tmp1
srl $b,2,$b
or $tmp1,$tmp0,$tmp1
or $tmp2,$b,$b
add $xi,$e,$e
___
if ($i&1 && $i<15) {
$code.=
" srlx @X[(($i+1)/2)%8],32,$Xi\n";
}
$code.=<<___;
add $tmp1,$e,$e
___
}
sub Xupdate {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i/2;
if ($i&1) {
$code.=<<___;
sll $a,5,$tmp0 !! $i
add @K[$i/20],$e,$e
srl $a,27,$tmp1
___
} else {
$code.=<<___;
sllx @X[($j+6)%8],32,$Xi ! Xupdate($i)
xor @X[($j+1)%8],@X[$j%8],@X[$j%8]
srlx @X[($j+7)%8],32,$tmp1
xor @X[($j+4)%8],@X[$j%8],@X[$j%8]
sll $a,5,$tmp0 !! $i
or $tmp1,$Xi,$Xi
add @K[$i/20],$e,$e !!
xor $Xi,@X[$j%8],@X[$j%8]
srlx @X[$j%8],31,$Xi
add @X[$j%8],@X[$j%8],@X[$j%8]
and $Xi,$rot1m,$Xi
andn @X[$j%8],$rot1m,@X[$j%8]
srl $a,27,$tmp1 !!
or $Xi,@X[$j%8],@X[$j%8]
___
}
}
sub BODY_16_19 {
my ($i,$a,$b,$c,$d,$e)=@_;
&Xupdate(@_);
if ($i&1) {
$xi=@X[($i/2)%8];
} else {
$xi=$Xi;
$code.="\tsrlx @X[($i/2)%8],32,$xi\n";
}
$code.=<<___;
add $tmp0,$e,$e !!
and $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
add $xi,$e,$e
andn $d,$b,$tmp1
srl $b,2,$b
or $tmp1,$tmp0,$tmp1
or $tmp2,$b,$b
add $tmp1,$e,$e
___
}
sub BODY_20_39 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $xi;
&Xupdate(@_);
if ($i&1) {
$xi=@X[($i/2)%8];
} else {
$xi=$Xi;
$code.="\tsrlx @X[($i/2)%8],32,$xi\n";
}
$code.=<<___;
add $tmp0,$e,$e !!
xor $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
xor $d,$tmp0,$tmp1
srl $b,2,$b
add $tmp1,$e,$e
or $tmp2,$b,$b
add $xi,$e,$e
___
}
sub BODY_40_59 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $xi;
&Xupdate(@_);
if ($i&1) {
$xi=@X[($i/2)%8];
} else {
$xi=$Xi;
$code.="\tsrlx @X[($i/2)%8],32,$xi\n";
}
$code.=<<___;
add $tmp0,$e,$e !!
and $c,$b,$tmp0
add $tmp1,$e,$e
sll $b,30,$tmp2
or $c,$b,$tmp1
srl $b,2,$b
and $d,$tmp1,$tmp1
add $xi,$e,$e
or $tmp1,$tmp0,$tmp1
or $tmp2,$b,$b
add $tmp1,$e,$e
___
}
$code.=<<___;
#include "sparc_arch.h"
#ifdef __arch64__
.register %g2,#scratch
.register %g3,#scratch
#endif
.section ".text",#alloc,#execinstr
#ifdef __PIC__
SPARC_PIC_THUNK(%g1)
#endif
.align 32
.globl sha1_block_data_order
sha1_block_data_order:
SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5)
ld [%g1+4],%g1 ! OPENSSL_sparcv9cap_P[1]
andcc %g1, CFR_SHA1, %g0
be .Lsoftware
nop
ld [%o0 + 0x00], %f0 ! load context
ld [%o0 + 0x04], %f1
ld [%o0 + 0x08], %f2
andcc %o1, 0x7, %g0
ld [%o0 + 0x0c], %f3
bne,pn %icc, .Lhwunaligned
ld [%o0 + 0x10], %f4
.Lhw_loop:
ldd [%o1 + 0x00], %f8
ldd [%o1 + 0x08], %f10
ldd [%o1 + 0x10], %f12
ldd [%o1 + 0x18], %f14
ldd [%o1 + 0x20], %f16
ldd [%o1 + 0x28], %f18
ldd [%o1 + 0x30], %f20
subcc %o2, 1, %o2 ! done yet?
ldd [%o1 + 0x38], %f22
add %o1, 0x40, %o1
prefetch [%o1 + 63], 20
.word 0x81b02820 ! SHA1
bne,pt SIZE_T_CC, .Lhw_loop
nop
.Lhwfinish:
st %f0, [%o0 + 0x00] ! store context
st %f1, [%o0 + 0x04]
st %f2, [%o0 + 0x08]
st %f3, [%o0 + 0x0c]
retl
st %f4, [%o0 + 0x10]
.align 8
.Lhwunaligned:
alignaddr %o1, %g0, %o1
ldd [%o1 + 0x00], %f10
.Lhwunaligned_loop:
ldd [%o1 + 0x08], %f12
ldd [%o1 + 0x10], %f14
ldd [%o1 + 0x18], %f16
ldd [%o1 + 0x20], %f18
ldd [%o1 + 0x28], %f20
ldd [%o1 + 0x30], %f22
ldd [%o1 + 0x38], %f24
subcc %o2, 1, %o2 ! done yet?
ldd [%o1 + 0x40], %f26
add %o1, 0x40, %o1
prefetch [%o1 + 63], 20
faligndata %f10, %f12, %f8
faligndata %f12, %f14, %f10
faligndata %f14, %f16, %f12
faligndata %f16, %f18, %f14
faligndata %f18, %f20, %f16
faligndata %f20, %f22, %f18
faligndata %f22, %f24, %f20
faligndata %f24, %f26, %f22
.word 0x81b02820 ! SHA1
bne,pt SIZE_T_CC, .Lhwunaligned_loop
for %f26, %f26, %f10 ! %f10=%f26
ba .Lhwfinish
nop
.align 16
.Lsoftware:
save %sp,-STACK_FRAME,%sp
sllx $len,6,$len
add $inp,$len,$len
or %g0,1,$rot1m
sllx $rot1m,32,$rot1m
or $rot1m,1,$rot1m
ld [$ctx+0],$A
ld [$ctx+4],$B
ld [$ctx+8],$C
ld [$ctx+12],$D
ld [$ctx+16],$E
andn $inp,7,$tmp0
sethi %hi(0x5a827999),$K_00_19
or $K_00_19,%lo(0x5a827999),$K_00_19
sethi %hi(0x6ed9eba1),$K_20_39
or $K_20_39,%lo(0x6ed9eba1),$K_20_39
sethi %hi(0x8f1bbcdc),$K_40_59
or $K_40_59,%lo(0x8f1bbcdc),$K_40_59
sethi %hi(0xca62c1d6),$K_60_79
or $K_60_79,%lo(0xca62c1d6),$K_60_79
.Lloop:
ldx [$tmp0+0],@X[0]
ldx [$tmp0+16],@X[2]
ldx [$tmp0+32],@X[4]
ldx [$tmp0+48],@X[6]
and $inp,7,$tmp1
ldx [$tmp0+8],@X[1]
sll $tmp1,3,$tmp1
ldx [$tmp0+24],@X[3]
subcc %g0,$tmp1,$tmp2 ! should be 64-$tmp1, but -$tmp1 works too
ldx [$tmp0+40],@X[5]
bz,pt %icc,.Laligned
ldx [$tmp0+56],@X[7]
sllx @X[0],$tmp1,@X[0]
ldx [$tmp0+64],$tmp64
___
for($i=0;$i<7;$i++)
{ $code.=<<___;
srlx @X[$i+1],$tmp2,$Xi
sllx @X[$i+1],$tmp1,@X[$i+1]
or $Xi,@X[$i],@X[$i]
___
}
$code.=<<___;
srlx $tmp64,$tmp2,$tmp64
or $tmp64,@X[7],@X[7]
.Laligned:
srlx @X[0],32,$Xi
___
for ($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
for (;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
for (;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
ld [$ctx+0],@X[0]
ld [$ctx+4],@X[1]
ld [$ctx+8],@X[2]
ld [$ctx+12],@X[3]
add $inp,64,$inp
ld [$ctx+16],@X[4]
cmp $inp,$len
add $A,@X[0],$A
st $A,[$ctx+0]
add $B,@X[1],$B
st $B,[$ctx+4]
add $C,@X[2],$C
st $C,[$ctx+8]
add $D,@X[3],$D
st $D,[$ctx+12]
add $E,@X[4],$E
st $E,[$ctx+16]
bne SIZE_T_CC,.Lloop
andn $inp,7,$tmp0
ret
restore
.type sha1_block_data_order,#function
.size sha1_block_data_order,(.-sha1_block_data_order)
.asciz "SHA1 block transform for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
.align 4
___
# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my $ref,$opf;
my %visopf = ( "faligndata" => 0x048,
"for" => 0x07c );
$ref = "$mnemonic\t$rs1,$rs2,$rd";
if ($opf=$visopf{$mnemonic}) {
foreach ($rs1,$rs2,$rd) {
return $ref if (!/%f([0-9]{1,2})/);
$_=$1;
if ($1>=32) {
return $ref if ($1&1);
# re-encode for upper double register addressing
$_=($1|$1>>5)&31;
}
}
return sprintf ".word\t0x%08x !%s",
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
$ref;
} else {
return $ref;
}
}
sub unalignaddr {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my $ref="$mnemonic\t$rs1,$rs2,$rd";
foreach ($rs1,$rs2,$rd) {
if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
else { return $ref; }
}
return sprintf ".word\t0x%08x !%s",
0x81b00300|$rd<<25|$rs1<<14|$rs2,
$ref;
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/
&unvis($1,$2,$3,$4)
/ge;
s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
&unalignaddr($1,$2,$3,$4)
/ge;
print $_,"\n";
}
close STDOUT or die "error closing STDOUT: $!";