openssl/doc/designs/ddd/ddd-05-mem-nonblocking.c
Hugo Landau 8d7f034622 Minor fixes
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/21715)
2023-09-01 10:45:36 +01:00

460 lines
12 KiB
C

#include <sys/poll.h>
#include <openssl/ssl.h>
/*
* Demo 5: Client — Client Uses Memory BIO — Nonblocking
* =====================================================
*
* This is an example of (part of) an application which uses libssl in an
* asynchronous, nonblocking fashion. The application passes memory BIOs to
* OpenSSL, meaning that it controls both when data is read/written from an SSL
* object on the decrypted side but also when encrypted data from the network is
* shunted to/from OpenSSL. In this way OpenSSL is used as a pure state machine
* which does not make its own network I/O calls. OpenSSL never sees or creates
* any file descriptor for a network socket. The functions below show all
* interactions with libssl the application makes, and would hypothetically be
* linked into a larger application.
*/
typedef struct app_conn_st {
SSL *ssl;
BIO *ssl_bio, *net_bio;
int rx_need_tx, tx_need_rx;
} APP_CONN;
/*
* The application is initializing and wants an SSL_CTX which it will use for
* some number of outgoing connections, which it creates in subsequent calls to
* new_conn. The application may also call this function multiple times to
* create multiple SSL_CTX.
*/
SSL_CTX *create_ssl_ctx(void)
{
SSL_CTX *ctx;
#ifdef USE_QUIC
ctx = SSL_CTX_new(OSSL_QUIC_client_method());
#else
ctx = SSL_CTX_new(TLS_client_method());
#endif
if (ctx == NULL)
return NULL;
/* Enable trust chain verification. */
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, NULL);
/* Load default root CA store. */
if (SSL_CTX_set_default_verify_paths(ctx) == 0) {
SSL_CTX_free(ctx);
return NULL;
}
return ctx;
}
/*
* The application wants to create a new outgoing connection using a given
* SSL_CTX.
*
* hostname is a string like "openssl.org" used for certificate validation.
*/
APP_CONN *new_conn(SSL_CTX *ctx, const char *bare_hostname)
{
BIO *ssl_bio, *internal_bio, *net_bio;
APP_CONN *conn;
SSL *ssl;
#ifdef USE_QUIC
static const unsigned char alpn[] = {5, 'd', 'u', 'm', 'm', 'y'};
#endif
conn = calloc(1, sizeof(APP_CONN));
if (conn == NULL)
return NULL;
ssl = conn->ssl = SSL_new(ctx);
if (ssl == NULL) {
free(conn);
return NULL;
}
SSL_set_connect_state(ssl); /* cannot fail */
#ifdef USE_QUIC
if (BIO_new_bio_dgram_pair(&internal_bio, 0, &net_bio, 0) <= 0) {
#else
if (BIO_new_bio_pair(&internal_bio, 0, &net_bio, 0) <= 0) {
#endif
SSL_free(ssl);
free(conn);
return NULL;
}
SSL_set_bio(ssl, internal_bio, internal_bio);
if (SSL_set1_host(ssl, bare_hostname) <= 0) {
SSL_free(ssl);
free(conn);
return NULL;
}
if (SSL_set_tlsext_host_name(ssl, bare_hostname) <= 0) {
SSL_free(ssl);
free(conn);
return NULL;
}
ssl_bio = BIO_new(BIO_f_ssl());
if (ssl_bio == NULL) {
SSL_free(ssl);
free(conn);
return NULL;
}
if (BIO_set_ssl(ssl_bio, ssl, BIO_CLOSE) <= 0) {
SSL_free(ssl);
BIO_free(ssl_bio);
return NULL;
}
#ifdef USE_QUIC
/* Configure ALPN, which is required for QUIC. */
if (SSL_set_alpn_protos(ssl, alpn, sizeof(alpn))) {
/* Note: SSL_set_alpn_protos returns 1 for failure. */
SSL_free(ssl);
BIO_free(ssl_bio);
return NULL;
}
#endif
conn->ssl_bio = ssl_bio;
conn->net_bio = net_bio;
return conn;
}
/*
* Non-blocking transmission.
*
* Returns -1 on error. Returns -2 if the function would block (corresponds to
* EWOULDBLOCK).
*/
int tx(APP_CONN *conn, const void *buf, int buf_len)
{
int rc, l;
l = BIO_write(conn->ssl_bio, buf, buf_len);
if (l <= 0) {
rc = SSL_get_error(conn->ssl, l);
switch (rc) {
case SSL_ERROR_WANT_READ:
conn->tx_need_rx = 1;
case SSL_ERROR_WANT_CONNECT:
case SSL_ERROR_WANT_WRITE:
return -2;
default:
return -1;
}
} else {
conn->tx_need_rx = 0;
}
return l;
}
/*
* Non-blocking reception.
*
* Returns -1 on error. Returns -2 if the function would block (corresponds to
* EWOULDBLOCK).
*/
int rx(APP_CONN *conn, void *buf, int buf_len)
{
int rc, l;
l = BIO_read(conn->ssl_bio, buf, buf_len);
if (l <= 0) {
rc = SSL_get_error(conn->ssl, l);
switch (rc) {
case SSL_ERROR_WANT_WRITE:
conn->rx_need_tx = 1;
case SSL_ERROR_WANT_READ:
return -2;
default:
return -1;
}
} else {
conn->rx_need_tx = 0;
}
return l;
}
/*
* Called to get data which has been enqueued for transmission to the network
* by OpenSSL. For QUIC, this always outputs a single datagram.
*
* IMPORTANT (QUIC): If buf_len is inadequate to hold the datagram, it is truncated
* (similar to read(2)). A buffer size of at least 1472 must be used by default
* to guarantee this does not occur.
*/
int read_net_tx(APP_CONN *conn, void *buf, int buf_len)
{
return BIO_read(conn->net_bio, buf, buf_len);
}
/*
* Called to feed data which has been received from the network to OpenSSL.
*
* QUIC: buf must contain the entirety of a single datagram. It will be consumed
* entirely (return value == buf_len) or not at all.
*/
int write_net_rx(APP_CONN *conn, const void *buf, int buf_len)
{
return BIO_write(conn->net_bio, buf, buf_len);
}
/*
* Determine how much data can be written to the network RX BIO.
*/
size_t net_rx_space(APP_CONN *conn)
{
return BIO_ctrl_get_write_guarantee(conn->net_bio);
}
/*
* Determine how much data is currently queued for transmission in the network
* TX BIO.
*/
size_t net_tx_avail(APP_CONN *conn)
{
return BIO_ctrl_pending(conn->net_bio);
}
/*
* These functions returns zero or more of:
*
* POLLIN: The SSL state machine is interested in socket readability events.
*
* POLLOUT: The SSL state machine is interested in socket writeability events.
*
* POLLERR: The SSL state machine is interested in socket error events.
*
* get_conn_pending_tx returns events which may cause SSL_write to make
* progress and get_conn_pending_rx returns events which may cause SSL_read
* to make progress.
*/
int get_conn_pending_tx(APP_CONN *conn)
{
#ifdef USE_QUIC
return (SSL_net_read_desired(conn->ssl) ? POLLIN : 0)
| (SSL_net_write_desired(conn->ssl) ? POLLOUT : 0)
| POLLERR;
#else
return (conn->tx_need_rx ? POLLIN : 0) | POLLOUT | POLLERR;
#endif
}
int get_conn_pending_rx(APP_CONN *conn)
{
#ifdef USE_QUIC
return get_conn_pending_tx(conn);
#else
return (conn->rx_need_tx ? POLLOUT : 0) | POLLIN | POLLERR;
#endif
}
/*
* The application wants to close the connection and free bookkeeping
* structures.
*/
void teardown(APP_CONN *conn)
{
BIO_free_all(conn->ssl_bio);
BIO_free_all(conn->net_bio);
free(conn);
}
/*
* The application is shutting down and wants to free a previously
* created SSL_CTX.
*/
void teardown_ctx(SSL_CTX *ctx)
{
SSL_CTX_free(ctx);
}
/*
* ============================================================================
* Example driver for the above code. This is just to demonstrate that the code
* works and is not intended to be representative of a real application.
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/signal.h>
#include <netdb.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
static int pump(APP_CONN *conn, int fd, int events, int timeout)
{
int l, l2;
char buf[2048]; /* QUIC: would need to be changed if < 1472 */
size_t wspace;
struct pollfd pfd = {0};
pfd.fd = fd;
pfd.events = (events & (POLLIN | POLLERR));
if (net_rx_space(conn) == 0)
pfd.events &= ~POLLIN;
if (net_tx_avail(conn) > 0)
pfd.events |= POLLOUT;
if ((pfd.events & (POLLIN|POLLOUT)) == 0)
return 1;
if (poll(&pfd, 1, timeout) == 0)
return -1;
if (pfd.revents & POLLIN) {
while ((wspace = net_rx_space(conn)) > 0) {
l = read(fd, buf, wspace > sizeof(buf) ? sizeof(buf) : wspace);
if (l <= 0) {
switch (errno) {
case EAGAIN:
goto stop;
default:
if (l == 0) /* EOF */
goto stop;
fprintf(stderr, "error on read: %d\n", errno);
return -1;
}
break;
}
l2 = write_net_rx(conn, buf, l);
if (l2 < l)
fprintf(stderr, "short write %d %d\n", l2, l);
} stop:;
}
if (pfd.revents & POLLOUT) {
for (;;) {
l = read_net_tx(conn, buf, sizeof(buf));
if (l <= 0)
break;
l2 = write(fd, buf, l);
if (l2 < l)
fprintf(stderr, "short read %d %d\n", l2, l);
}
}
return 1;
}
int main(int argc, char **argv)
{
int rc, fd = -1, res = 1;
static char tx_msg[300];
const char *tx_p = tx_msg;
char rx_buf[2048];
int l, tx_len = sizeof(tx_msg)-1;
int timeout = 2000 /* ms */;
APP_CONN *conn = NULL;
struct addrinfo hints = {0}, *result = NULL;
SSL_CTX *ctx = NULL;
if (argc < 3) {
fprintf(stderr, "usage: %s host port\n", argv[0]);
goto fail;
}
snprintf(tx_msg, sizeof(tx_msg),
"GET / HTTP/1.0\r\nHost: %s\r\n\r\n",
argv[1]);
ctx = create_ssl_ctx();
if (ctx == NULL) {
fprintf(stderr, "cannot create SSL context\n");
goto fail;
}
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;
rc = getaddrinfo(argv[1], argv[2], &hints, &result);
if (rc < 0) {
fprintf(stderr, "cannot resolve\n");
goto fail;
}
signal(SIGPIPE, SIG_IGN);
#ifdef USE_QUIC
fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
#else
fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
#endif
if (fd < 0) {
fprintf(stderr, "cannot create socket\n");
goto fail;
}
rc = connect(fd, result->ai_addr, result->ai_addrlen);
if (rc < 0) {
fprintf(stderr, "cannot connect\n");
goto fail;
}
rc = fcntl(fd, F_SETFL, O_NONBLOCK);
if (rc < 0) {
fprintf(stderr, "cannot make socket nonblocking\n");
goto fail;
}
conn = new_conn(ctx, argv[1]);
if (conn == NULL) {
fprintf(stderr, "cannot establish connection\n");
goto fail;
}
/* TX */
while (tx_len != 0) {
l = tx(conn, tx_p, tx_len);
if (l > 0) {
tx_p += l;
tx_len -= l;
} else if (l == -1) {
fprintf(stderr, "tx error\n");
} else if (l == -2) {
if (pump(conn, fd, get_conn_pending_tx(conn), timeout) != 1) {
fprintf(stderr, "pump error\n");
goto fail;
}
}
}
/* RX */
for (;;) {
l = rx(conn, rx_buf, sizeof(rx_buf));
if (l > 0) {
fwrite(rx_buf, 1, l, stdout);
} else if (l == -1) {
break;
} else if (l == -2) {
if (pump(conn, fd, get_conn_pending_rx(conn), timeout) != 1) {
fprintf(stderr, "pump error\n");
goto fail;
}
}
}
res = 0;
fail:
if (conn != NULL)
teardown(conn);
if (ctx != NULL)
teardown_ctx(ctx);
if (result != NULL)
freeaddrinfo(result);
return res;
}