da1c088f59
Reviewed-by: Richard Levitte <levitte@openssl.org> Release: yes |
||
---|---|---|
.. | ||
arm-xlate.pl | ||
cbc.pl | ||
ppc-xlate.pl | ||
README.md | ||
riscv.pm | ||
s390x.pm | ||
sparcv9_modes.pl | ||
x86_64-support.pl | ||
x86_64-xlate.pl | ||
x86asm.pl | ||
x86gas.pl | ||
x86masm.pl | ||
x86nasm.pl |
Perl scripts for assembler sources
The perl scripts in this directory are my 'hack' to generate multiple different assembler formats via the one original script.
The way to use this library is to start with adding the path to this directory and then include it.
push(@INC,"perlasm","../../perlasm");
require "x86asm.pl";
The first thing we do is setup the file and type of assembler
&asm_init($ARGV[0]);
The first argument is the 'type'. Currently
cpp
, sol
, a.out
, elf
or win32
.
The second argument is the file name.
The reciprocal function is
&asm_finish()
which should be called at the end.
There are two main 'packages'. x86ms.pl
, which is the Microsoft assembler,
and x86unix.pl
which is the unix (gas) version.
Functions of interest are:
&external_label("des_SPtrans"); declare and external variable
&LB(reg); Low byte for a register
&HB(reg); High byte for a register
&BP(off,base,index,scale) Byte pointer addressing
&DWP(off,base,index,scale) Word pointer addressing
&stack_push(num) Basically a 'sub esp, num*4' with extra
&stack_pop(num) inverse of stack_push
&function_begin(name,extra) Start a function with pushing of
edi, esi, ebx and ebp. extra is extra win32
external info that may be required.
&function_begin_B(name,extra) Same as normal function_begin but no
pushing.
&function_end(name) Call at end of function.
&function_end_A(name) Standard pop and ret, for use inside
functions.
&function_end_B(name) Call at end but with pop or ret.
&swtmp(num) Address on stack temp word.
&wparam(num) Parameter number num, that was push in
C convention. This all works over pushes
and pops.
&comment("hello there") Put in a comment.
&label("loop") Refer to a label, normally a jmp target.
&set_label("loop") Set a label at this point.
&data_word(word) Put in a word of data.
So how does this all hold together? Given
int calc(int len, int *data)
{
int i,j=0;
for (i=0; i<len; i++)
{
j+=other(data[i]);
}
}
So a very simple version of this function could be coded as
push(@INC,"perlasm","../../perlasm");
require "x86asm.pl";
&asm_init($ARGV[0]);
&external_label("other");
$tmp1= "eax";
$j= "edi";
$data= "esi";
$i= "ebp";
&comment("a simple function");
&function_begin("calc");
&mov( $data, &wparam(1)); # data
&xor( $j, $j);
&xor( $i, $i);
&set_label("loop");
&cmp( $i, &wparam(0));
&jge( &label("end"));
&mov( $tmp1, &DWP(0,$data,$i,4));
&push( $tmp1);
&call( "other");
&add( $j, "eax");
&pop( $tmp1);
&inc( $i);
&jmp( &label("loop"));
&set_label("end");
&mov( "eax", $j);
&function_end("calc");
&asm_finish();
The above example is very very unoptimised but gives an idea of how things work.
There is also a cbc mode function generator in cbc.pl
&cbc($name,
$encrypt_function_name,
$decrypt_function_name,
$true_if_byte_swap_needed,
$parameter_number_for_iv,
$parameter_number_for_encrypt_flag,
$first_parameter_to_pass,
$second_parameter_to_pass,
$third_parameter_to_pass);
So for example, given
void BF_encrypt(BF_LONG *data,BF_KEY *key);
void BF_decrypt(BF_LONG *data,BF_KEY *key);
void BF_cbc_encrypt(unsigned char *in, unsigned char *out, long length,
BF_KEY *ks, unsigned char *iv, int enc);
&cbc("BF_cbc_encrypt","BF_encrypt","BF_encrypt",1,4,5,3,-1,-1);
&cbc("des_ncbc_encrypt","des_encrypt","des_encrypt",0,4,5,3,5,-1);
&cbc("des_ede3_cbc_encrypt","des_encrypt3","des_decrypt3",0,6,7,3,4,5);