mirror of
https://github.com/openssl/openssl.git
synced 2024-12-27 06:21:43 +08:00
556009c596
Reviewed-by: Richard Levitte <levitte@openssl.org> Release: yes
401 lines
9.9 KiB
C
401 lines
9.9 KiB
C
/*
|
|
* Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/lhash.h>
|
|
#include <openssl/err.h>
|
|
#include "crypto/ctype.h"
|
|
#include "crypto/lhash.h"
|
|
#include "lhash_local.h"
|
|
|
|
/*
|
|
* A hashing implementation that appears to be based on the linear hashing
|
|
* algorithm:
|
|
* https://en.wikipedia.org/wiki/Linear_hashing
|
|
*
|
|
* Litwin, Witold (1980), "Linear hashing: A new tool for file and table
|
|
* addressing", Proc. 6th Conference on Very Large Databases: 212-223
|
|
* https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf
|
|
*
|
|
* From the Wikipedia article "Linear hashing is used in the BDB Berkeley
|
|
* database system, which in turn is used by many software systems such as
|
|
* OpenLDAP, using a C implementation derived from the CACM article and first
|
|
* published on the Usenet in 1988 by Esmond Pitt."
|
|
*
|
|
* The CACM paper is available here:
|
|
* https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf
|
|
*/
|
|
|
|
#undef MIN_NODES
|
|
#define MIN_NODES 16
|
|
#define UP_LOAD (2*LH_LOAD_MULT) /* load times 256 (default 2) */
|
|
#define DOWN_LOAD (LH_LOAD_MULT) /* load times 256 (default 1) */
|
|
|
|
static int expand(OPENSSL_LHASH *lh);
|
|
static void contract(OPENSSL_LHASH *lh);
|
|
static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash);
|
|
|
|
OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c)
|
|
{
|
|
OPENSSL_LHASH *ret;
|
|
|
|
if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL)
|
|
return NULL;
|
|
if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL)
|
|
goto err;
|
|
ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c);
|
|
ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h);
|
|
ret->num_nodes = MIN_NODES / 2;
|
|
ret->num_alloc_nodes = MIN_NODES;
|
|
ret->pmax = MIN_NODES / 2;
|
|
ret->up_load = UP_LOAD;
|
|
ret->down_load = DOWN_LOAD;
|
|
return ret;
|
|
|
|
err:
|
|
OPENSSL_free(ret->b);
|
|
OPENSSL_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
void OPENSSL_LH_free(OPENSSL_LHASH *lh)
|
|
{
|
|
if (lh == NULL)
|
|
return;
|
|
|
|
OPENSSL_LH_flush(lh);
|
|
OPENSSL_free(lh->b);
|
|
OPENSSL_free(lh);
|
|
}
|
|
|
|
void OPENSSL_LH_flush(OPENSSL_LHASH *lh)
|
|
{
|
|
unsigned int i;
|
|
OPENSSL_LH_NODE *n, *nn;
|
|
|
|
if (lh == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < lh->num_nodes; i++) {
|
|
n = lh->b[i];
|
|
while (n != NULL) {
|
|
nn = n->next;
|
|
OPENSSL_free(n);
|
|
n = nn;
|
|
}
|
|
lh->b[i] = NULL;
|
|
}
|
|
|
|
lh->num_items = 0;
|
|
}
|
|
|
|
void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data)
|
|
{
|
|
unsigned long hash;
|
|
OPENSSL_LH_NODE *nn, **rn;
|
|
void *ret;
|
|
|
|
lh->error = 0;
|
|
if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh))
|
|
return NULL; /* 'lh->error++' already done in 'expand' */
|
|
|
|
rn = getrn(lh, data, &hash);
|
|
|
|
if (*rn == NULL) {
|
|
if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) {
|
|
lh->error++;
|
|
return NULL;
|
|
}
|
|
nn->data = data;
|
|
nn->next = NULL;
|
|
nn->hash = hash;
|
|
*rn = nn;
|
|
ret = NULL;
|
|
lh->num_items++;
|
|
} else { /* replace same key */
|
|
ret = (*rn)->data;
|
|
(*rn)->data = data;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data)
|
|
{
|
|
unsigned long hash;
|
|
OPENSSL_LH_NODE *nn, **rn;
|
|
void *ret;
|
|
|
|
lh->error = 0;
|
|
rn = getrn(lh, data, &hash);
|
|
|
|
if (*rn == NULL) {
|
|
return NULL;
|
|
} else {
|
|
nn = *rn;
|
|
*rn = nn->next;
|
|
ret = nn->data;
|
|
OPENSSL_free(nn);
|
|
}
|
|
|
|
lh->num_items--;
|
|
if ((lh->num_nodes > MIN_NODES) &&
|
|
(lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)))
|
|
contract(lh);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data)
|
|
{
|
|
unsigned long hash;
|
|
OPENSSL_LH_NODE **rn;
|
|
|
|
if (lh->error != 0)
|
|
lh->error = 0;
|
|
|
|
rn = getrn(lh, data, &hash);
|
|
|
|
return *rn == NULL ? NULL : (*rn)->data;
|
|
}
|
|
|
|
static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg,
|
|
OPENSSL_LH_DOALL_FUNC func,
|
|
OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg)
|
|
{
|
|
int i;
|
|
OPENSSL_LH_NODE *a, *n;
|
|
|
|
if (lh == NULL)
|
|
return;
|
|
|
|
/*
|
|
* reverse the order so we search from 'top to bottom' We were having
|
|
* memory leaks otherwise
|
|
*/
|
|
for (i = lh->num_nodes - 1; i >= 0; i--) {
|
|
a = lh->b[i];
|
|
while (a != NULL) {
|
|
n = a->next;
|
|
if (use_arg)
|
|
func_arg(a->data, arg);
|
|
else
|
|
func(a->data);
|
|
a = n;
|
|
}
|
|
}
|
|
}
|
|
|
|
void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func)
|
|
{
|
|
doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL);
|
|
}
|
|
|
|
void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg)
|
|
{
|
|
doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg);
|
|
}
|
|
|
|
static int expand(OPENSSL_LHASH *lh)
|
|
{
|
|
OPENSSL_LH_NODE **n, **n1, **n2, *np;
|
|
unsigned int p, pmax, nni, j;
|
|
unsigned long hash;
|
|
|
|
nni = lh->num_alloc_nodes;
|
|
p = lh->p;
|
|
pmax = lh->pmax;
|
|
if (p + 1 >= pmax) {
|
|
j = nni * 2;
|
|
n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j);
|
|
if (n == NULL) {
|
|
lh->error++;
|
|
return 0;
|
|
}
|
|
lh->b = n;
|
|
memset(n + nni, 0, sizeof(*n) * (j - nni));
|
|
lh->pmax = nni;
|
|
lh->num_alloc_nodes = j;
|
|
lh->p = 0;
|
|
} else {
|
|
lh->p++;
|
|
}
|
|
|
|
lh->num_nodes++;
|
|
n1 = &(lh->b[p]);
|
|
n2 = &(lh->b[p + pmax]);
|
|
*n2 = NULL;
|
|
|
|
for (np = *n1; np != NULL;) {
|
|
hash = np->hash;
|
|
if ((hash % nni) != p) { /* move it */
|
|
*n1 = (*n1)->next;
|
|
np->next = *n2;
|
|
*n2 = np;
|
|
} else
|
|
n1 = &((*n1)->next);
|
|
np = *n1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void contract(OPENSSL_LHASH *lh)
|
|
{
|
|
OPENSSL_LH_NODE **n, *n1, *np;
|
|
|
|
np = lh->b[lh->p + lh->pmax - 1];
|
|
lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */
|
|
if (lh->p == 0) {
|
|
n = OPENSSL_realloc(lh->b,
|
|
(unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax));
|
|
if (n == NULL) {
|
|
/* fputs("realloc error in lhash", stderr); */
|
|
lh->error++;
|
|
} else {
|
|
lh->b = n;
|
|
}
|
|
lh->num_alloc_nodes /= 2;
|
|
lh->pmax /= 2;
|
|
lh->p = lh->pmax - 1;
|
|
} else
|
|
lh->p--;
|
|
|
|
lh->num_nodes--;
|
|
|
|
n1 = lh->b[(int)lh->p];
|
|
if (n1 == NULL)
|
|
lh->b[(int)lh->p] = np;
|
|
else {
|
|
while (n1->next != NULL)
|
|
n1 = n1->next;
|
|
n1->next = np;
|
|
}
|
|
}
|
|
|
|
static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh,
|
|
const void *data, unsigned long *rhash)
|
|
{
|
|
OPENSSL_LH_NODE **ret, *n1;
|
|
unsigned long hash, nn;
|
|
OPENSSL_LH_COMPFUNC cf;
|
|
|
|
hash = (*(lh->hash)) (data);
|
|
*rhash = hash;
|
|
|
|
nn = hash % lh->pmax;
|
|
if (nn < lh->p)
|
|
nn = hash % lh->num_alloc_nodes;
|
|
|
|
cf = lh->comp;
|
|
ret = &(lh->b[(int)nn]);
|
|
for (n1 = *ret; n1 != NULL; n1 = n1->next) {
|
|
if (n1->hash != hash) {
|
|
ret = &(n1->next);
|
|
continue;
|
|
}
|
|
if (cf(n1->data, data) == 0)
|
|
break;
|
|
ret = &(n1->next);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The following hash seems to work very well on normal text strings no
|
|
* collisions on /usr/dict/words and it distributes on %2^n quite well, not
|
|
* as good as MD5, but still good.
|
|
*/
|
|
unsigned long OPENSSL_LH_strhash(const char *c)
|
|
{
|
|
unsigned long ret = 0;
|
|
long n;
|
|
unsigned long v;
|
|
int r;
|
|
|
|
if ((c == NULL) || (*c == '\0'))
|
|
return ret;
|
|
|
|
n = 0x100;
|
|
while (*c) {
|
|
v = n | (*c);
|
|
n += 0x100;
|
|
r = (int)((v >> 2) ^ v) & 0x0f;
|
|
/* cast to uint64_t to avoid 32 bit shift of 32 bit value */
|
|
ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r));
|
|
ret &= 0xFFFFFFFFL;
|
|
ret ^= v * v;
|
|
c++;
|
|
}
|
|
return (ret >> 16) ^ ret;
|
|
}
|
|
|
|
/*
|
|
* Case insensitive string hashing.
|
|
*
|
|
* The lower/upper case bit is masked out (forcing all letters to be capitals).
|
|
* The major side effect on non-alpha characters is mapping the symbols and
|
|
* digits into the control character range (which should be harmless).
|
|
* The duplication (with respect to the hash value) of printable characters
|
|
* are that '`', '{', '|', '}' and '~' map to '@', '[', '\', ']' and '^'
|
|
* respectively (which seems tolerable).
|
|
*
|
|
* For EBCDIC, the alpha mapping is to lower case, most symbols go to control
|
|
* characters. The only duplication is '0' mapping to '^', which is better
|
|
* than for ASCII.
|
|
*/
|
|
unsigned long ossl_lh_strcasehash(const char *c)
|
|
{
|
|
unsigned long ret = 0;
|
|
long n;
|
|
unsigned long v;
|
|
int r;
|
|
#if defined(CHARSET_EBCDIC) && !defined(CHARSET_EBCDIC_TEST)
|
|
const long int case_adjust = ~0x40;
|
|
#else
|
|
const long int case_adjust = ~0x20;
|
|
#endif
|
|
|
|
if (c == NULL || *c == '\0')
|
|
return ret;
|
|
|
|
for (n = 0x100; *c != '\0'; n += 0x100) {
|
|
v = n | (case_adjust & *c);
|
|
r = (int)((v >> 2) ^ v) & 0x0f;
|
|
/* cast to uint64_t to avoid 32 bit shift of 32 bit value */
|
|
ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r));
|
|
ret &= 0xFFFFFFFFL;
|
|
ret ^= v * v;
|
|
c++;
|
|
}
|
|
return (ret >> 16) ^ ret;
|
|
}
|
|
|
|
unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh)
|
|
{
|
|
return lh ? lh->num_items : 0;
|
|
}
|
|
|
|
unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh)
|
|
{
|
|
return lh->down_load;
|
|
}
|
|
|
|
void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load)
|
|
{
|
|
lh->down_load = down_load;
|
|
}
|
|
|
|
int OPENSSL_LH_error(OPENSSL_LHASH *lh)
|
|
{
|
|
return lh->error;
|
|
}
|