openssl/crypto/bio/bss_dgram.c
Neil Horman 4bad474746 embed bio_dgram_data inside bio_dgram_sctp_data
the sctp BIO implementation uses the generic BIO dgram implementation
under the covers for some operations.  However, the private data for
each bio is incongruous, leading to segfaults when doing things like
passing a dgram_sctp_ctrl operation to the underlying dgram_ctrl method.

Fix this by removing the common fields between the two strcutres and
embedding a bio_dgram_data as the first member of the
bio_dgram_sctp_data struct.  This allows implicit casting when that call
path is taken, avoiding any memory mis-use

Fixes #20643

Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/22278)
2023-10-05 19:09:06 +02:00

2838 lines
87 KiB
C

/*
* Copyright 2005-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
#include <stdio.h>
#include <errno.h>
#include "internal/time.h"
#include "bio_local.h"
#ifndef OPENSSL_NO_DGRAM
# ifndef OPENSSL_NO_SCTP
# include <netinet/sctp.h>
# include <fcntl.h>
# define OPENSSL_SCTP_DATA_CHUNK_TYPE 0x00
# define OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE 0xc0
# endif
# if defined(OPENSSL_SYS_LINUX) && !defined(IP_MTU)
# define IP_MTU 14 /* linux is lame */
# endif
# if OPENSSL_USE_IPV6 && !defined(IPPROTO_IPV6)
# define IPPROTO_IPV6 41 /* windows is lame */
# endif
# if defined(__FreeBSD__) && defined(IN6_IS_ADDR_V4MAPPED)
/* Standard definition causes type-punning problems. */
# undef IN6_IS_ADDR_V4MAPPED
# define s6_addr32 __u6_addr.__u6_addr32
# define IN6_IS_ADDR_V4MAPPED(a) \
(((a)->s6_addr32[0] == 0) && \
((a)->s6_addr32[1] == 0) && \
((a)->s6_addr32[2] == htonl(0x0000ffff)))
# endif
/* Determine what method to use for BIO_sendmmsg and BIO_recvmmsg. */
# define M_METHOD_NONE 0
# define M_METHOD_RECVMMSG 1
# define M_METHOD_RECVMSG 2
# define M_METHOD_RECVFROM 3
# define M_METHOD_WSARECVMSG 4
# if defined(__GLIBC__) && defined(__GLIBC_PREREQ)
# if !(__GLIBC_PREREQ(2, 14))
# undef NO_RECVMMSG
/*
* Some old glibc versions may have recvmmsg and MSG_WAITFORONE flag, but
* not sendmmsg. We need both so force this to be disabled on these old
* versions
*/
# define NO_RECVMMSG
# endif
# endif
# if !defined(M_METHOD)
# if defined(OPENSSL_SYS_WINDOWS) && defined(BIO_HAVE_WSAMSG) && !defined(NO_WSARECVMSG)
# define M_METHOD M_METHOD_WSARECVMSG
# elif !defined(OPENSSL_SYS_WINDOWS) && defined(MSG_WAITFORONE) && !defined(NO_RECVMMSG)
# define M_METHOD M_METHOD_RECVMMSG
# elif !defined(OPENSSL_SYS_WINDOWS) && defined(CMSG_LEN) && !defined(NO_RECVMSG)
# define M_METHOD M_METHOD_RECVMSG
# elif !defined(NO_RECVFROM)
# define M_METHOD M_METHOD_RECVFROM
# else
# define M_METHOD M_METHOD_NONE
# endif
# endif
# if defined(OPENSSL_SYS_WINDOWS)
# define BIO_CMSG_SPACE(x) WSA_CMSG_SPACE(x)
# define BIO_CMSG_FIRSTHDR(x) WSA_CMSG_FIRSTHDR(x)
# define BIO_CMSG_NXTHDR(x, y) WSA_CMSG_NXTHDR(x, y)
# define BIO_CMSG_DATA(x) WSA_CMSG_DATA(x)
# define BIO_CMSG_LEN(x) WSA_CMSG_LEN(x)
# define MSGHDR_TYPE WSAMSG
# define CMSGHDR_TYPE WSACMSGHDR
# else
# define MSGHDR_TYPE struct msghdr
# define CMSGHDR_TYPE struct cmsghdr
# define BIO_CMSG_SPACE(x) CMSG_SPACE(x)
# define BIO_CMSG_FIRSTHDR(x) CMSG_FIRSTHDR(x)
# define BIO_CMSG_NXTHDR(x, y) CMSG_NXTHDR(x, y)
# define BIO_CMSG_DATA(x) CMSG_DATA(x)
# define BIO_CMSG_LEN(x) CMSG_LEN(x)
# endif
# if M_METHOD == M_METHOD_RECVMMSG \
|| M_METHOD == M_METHOD_RECVMSG \
|| M_METHOD == M_METHOD_WSARECVMSG
# if defined(__APPLE__)
/*
* CMSG_SPACE is not a constant expresson on OSX even though POSIX
* says it's supposed to be. This should be adequate.
*/
# define BIO_CMSG_ALLOC_LEN 64
# else
# if defined(IPV6_PKTINFO)
# define BIO_CMSG_ALLOC_LEN_1 BIO_CMSG_SPACE(sizeof(struct in6_pktinfo))
# else
# define BIO_CMSG_ALLOC_LEN_1 0
# endif
# if defined(IP_PKTINFO)
# define BIO_CMSG_ALLOC_LEN_2 BIO_CMSG_SPACE(sizeof(struct in_pktinfo))
# else
# define BIO_CMSG_ALLOC_LEN_2 0
# endif
# if defined(IP_RECVDSTADDR)
# define BIO_CMSG_ALLOC_LEN_3 BIO_CMSG_SPACE(sizeof(struct in_addr))
# else
# define BIO_CMSG_ALLOC_LEN_3 0
# endif
# define BIO_MAX(X,Y) ((X) > (Y) ? (X) : (Y))
# define BIO_CMSG_ALLOC_LEN \
BIO_MAX(BIO_CMSG_ALLOC_LEN_1, \
BIO_MAX(BIO_CMSG_ALLOC_LEN_2, BIO_CMSG_ALLOC_LEN_3))
# endif
# if (defined(IP_PKTINFO) || defined(IP_RECVDSTADDR)) && defined(IPV6_RECVPKTINFO)
# define SUPPORT_LOCAL_ADDR
# endif
# endif
# define BIO_MSG_N(array, stride, n) (*(BIO_MSG *)((char *)(array) + (n)*(stride)))
static int dgram_write(BIO *h, const char *buf, int num);
static int dgram_read(BIO *h, char *buf, int size);
static int dgram_puts(BIO *h, const char *str);
static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2);
static int dgram_new(BIO *h);
static int dgram_free(BIO *data);
static int dgram_clear(BIO *bio);
static int dgram_sendmmsg(BIO *b, BIO_MSG *msg,
size_t stride, size_t num_msg,
uint64_t flags, size_t *num_processed);
static int dgram_recvmmsg(BIO *b, BIO_MSG *msg,
size_t stride, size_t num_msg,
uint64_t flags, size_t *num_processed);
# ifndef OPENSSL_NO_SCTP
static int dgram_sctp_write(BIO *h, const char *buf, int num);
static int dgram_sctp_read(BIO *h, char *buf, int size);
static int dgram_sctp_puts(BIO *h, const char *str);
static long dgram_sctp_ctrl(BIO *h, int cmd, long arg1, void *arg2);
static int dgram_sctp_new(BIO *h);
static int dgram_sctp_free(BIO *data);
static int dgram_sctp_wait_for_dry(BIO *b);
static int dgram_sctp_msg_waiting(BIO *b);
# ifdef SCTP_AUTHENTICATION_EVENT
static void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification
*snp);
# endif
# endif
static int BIO_dgram_should_retry(int s);
static const BIO_METHOD methods_dgramp = {
BIO_TYPE_DGRAM,
"datagram socket",
bwrite_conv,
dgram_write,
bread_conv,
dgram_read,
dgram_puts,
NULL, /* dgram_gets, */
dgram_ctrl,
dgram_new,
dgram_free,
NULL, /* dgram_callback_ctrl */
dgram_sendmmsg,
dgram_recvmmsg,
};
# ifndef OPENSSL_NO_SCTP
static const BIO_METHOD methods_dgramp_sctp = {
BIO_TYPE_DGRAM_SCTP,
"datagram sctp socket",
bwrite_conv,
dgram_sctp_write,
bread_conv,
dgram_sctp_read,
dgram_sctp_puts,
NULL, /* dgram_gets, */
dgram_sctp_ctrl,
dgram_sctp_new,
dgram_sctp_free,
NULL, /* dgram_callback_ctrl */
NULL, /* sendmmsg */
NULL, /* recvmmsg */
};
# endif
typedef struct bio_dgram_data_st {
BIO_ADDR peer;
BIO_ADDR local_addr;
unsigned int connected;
unsigned int _errno;
unsigned int mtu;
OSSL_TIME next_timeout;
OSSL_TIME socket_timeout;
unsigned int peekmode;
char local_addr_enabled;
} bio_dgram_data;
# ifndef OPENSSL_NO_SCTP
typedef struct bio_dgram_sctp_save_message_st {
BIO *bio;
char *data;
int length;
} bio_dgram_sctp_save_message;
/*
* Note: bio_dgram_data must be first here
* as we use dgram_ctrl for underlying dgram operations
* which will cast this struct to a bio_dgram_data
*/
typedef struct bio_dgram_sctp_data_st {
bio_dgram_data dgram;
struct bio_dgram_sctp_sndinfo sndinfo;
struct bio_dgram_sctp_rcvinfo rcvinfo;
struct bio_dgram_sctp_prinfo prinfo;
BIO_dgram_sctp_notification_handler_fn handle_notifications;
void *notification_context;
int in_handshake;
int ccs_rcvd;
int ccs_sent;
int save_shutdown;
int peer_auth_tested;
} bio_dgram_sctp_data;
# endif
const BIO_METHOD *BIO_s_datagram(void)
{
return &methods_dgramp;
}
BIO *BIO_new_dgram(int fd, int close_flag)
{
BIO *ret;
ret = BIO_new(BIO_s_datagram());
if (ret == NULL)
return NULL;
BIO_set_fd(ret, fd, close_flag);
return ret;
}
static int dgram_new(BIO *bi)
{
bio_dgram_data *data = OPENSSL_zalloc(sizeof(*data));
if (data == NULL)
return 0;
bi->ptr = data;
return 1;
}
static int dgram_free(BIO *a)
{
bio_dgram_data *data;
if (a == NULL)
return 0;
if (!dgram_clear(a))
return 0;
data = (bio_dgram_data *)a->ptr;
OPENSSL_free(data);
return 1;
}
static int dgram_clear(BIO *a)
{
if (a == NULL)
return 0;
if (a->shutdown) {
if (a->init) {
BIO_closesocket(a->num);
}
a->init = 0;
a->flags = 0;
}
return 1;
}
static void dgram_adjust_rcv_timeout(BIO *b)
{
# if defined(SO_RCVTIMEO)
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
OSSL_TIME timeleft;
/* Is a timer active? */
if (!ossl_time_is_zero(data->next_timeout)) {
/* Read current socket timeout */
# ifdef OPENSSL_SYS_WINDOWS
int timeout;
int sz = sizeof(timeout);
if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void *)&timeout, &sz) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
else
data->socket_timeout = ossl_ms2time(timeout);
# else
struct timeval tv;
socklen_t sz = sizeof(tv);
if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &tv, &sz) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
else
data->socket_timeout = ossl_time_from_timeval(tv);
# endif
/* Calculate time left until timer expires */
timeleft = ossl_time_subtract(data->next_timeout, ossl_time_now());
if (ossl_time_compare(timeleft, ossl_ticks2time(OSSL_TIME_US)) < 0)
timeleft = ossl_ticks2time(OSSL_TIME_US);
/*
* Adjust socket timeout if next handshake message timer will expire
* earlier.
*/
if (ossl_time_is_zero(data->socket_timeout)
|| ossl_time_compare(data->socket_timeout, timeleft) >= 0) {
# ifdef OPENSSL_SYS_WINDOWS
timeout = (int)ossl_time2ms(timeleft);
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void *)&timeout, sizeof(timeout)) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# else
tv = ossl_time_to_timeval(timeleft);
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &tv,
sizeof(tv)) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# endif
}
}
# endif
}
static void dgram_update_local_addr(BIO *b)
{
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
socklen_t addr_len = sizeof(data->local_addr);
if (getsockname(b->num, &data->local_addr.sa, &addr_len) < 0)
/*
* This should not be possible, but zero-initialize and return
* anyway.
*/
BIO_ADDR_clear(&data->local_addr);
}
# if M_METHOD == M_METHOD_RECVMMSG || M_METHOD == M_METHOD_RECVMSG || M_METHOD == M_METHOD_WSARECVMSG
static int dgram_get_sock_family(BIO *b)
{
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
return data->local_addr.sa.sa_family;
}
# endif
static void dgram_reset_rcv_timeout(BIO *b)
{
# if defined(SO_RCVTIMEO)
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
/* Is a timer active? */
if (!ossl_time_is_zero(data->next_timeout)) {
# ifdef OPENSSL_SYS_WINDOWS
int timeout = (int)ossl_time2ms(data->socket_timeout);
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void *)&timeout, sizeof(timeout)) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# else
struct timeval tv = ossl_time_to_timeval(data->socket_timeout);
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# endif
}
# endif
}
static int dgram_read(BIO *b, char *out, int outl)
{
int ret = 0;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
int flags = 0;
BIO_ADDR peer;
socklen_t len = sizeof(peer);
if (out != NULL) {
clear_socket_error();
BIO_ADDR_clear(&peer);
dgram_adjust_rcv_timeout(b);
if (data->peekmode)
flags = MSG_PEEK;
ret = recvfrom(b->num, out, outl, flags,
BIO_ADDR_sockaddr_noconst(&peer), &len);
if (!data->connected && ret >= 0)
BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &peer);
BIO_clear_retry_flags(b);
if (ret < 0) {
if (BIO_dgram_should_retry(ret)) {
BIO_set_retry_read(b);
data->_errno = get_last_socket_error();
}
}
dgram_reset_rcv_timeout(b);
}
return ret;
}
static int dgram_write(BIO *b, const char *in, int inl)
{
int ret;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
clear_socket_error();
if (data->connected)
ret = writesocket(b->num, in, inl);
else {
int peerlen = BIO_ADDR_sockaddr_size(&data->peer);
ret = sendto(b->num, in, inl, 0,
BIO_ADDR_sockaddr(&data->peer), peerlen);
}
BIO_clear_retry_flags(b);
if (ret <= 0) {
if (BIO_dgram_should_retry(ret)) {
BIO_set_retry_write(b);
data->_errno = get_last_socket_error();
}
}
return ret;
}
static long dgram_get_mtu_overhead(bio_dgram_data *data)
{
long ret;
switch (BIO_ADDR_family(&data->peer)) {
case AF_INET:
/*
* Assume this is UDP - 20 bytes for IP, 8 bytes for UDP
*/
ret = 28;
break;
# if OPENSSL_USE_IPV6
case AF_INET6:
{
# ifdef IN6_IS_ADDR_V4MAPPED
struct in6_addr tmp_addr;
if (BIO_ADDR_rawaddress(&data->peer, &tmp_addr, NULL)
&& IN6_IS_ADDR_V4MAPPED(&tmp_addr))
/*
* Assume this is UDP - 20 bytes for IP, 8 bytes for UDP
*/
ret = 28;
else
# endif
/*
* Assume this is UDP - 40 bytes for IP, 8 bytes for UDP
*/
ret = 48;
}
break;
# endif
default:
/* We don't know. Go with the historical default */
ret = 28;
break;
}
return ret;
}
/* Enables appropriate destination address reception option on the socket. */
# if defined(SUPPORT_LOCAL_ADDR)
static int enable_local_addr(BIO *b, int enable) {
int af = dgram_get_sock_family(b);
if (af == AF_INET) {
# if defined(IP_PKTINFO)
/* IP_PKTINFO is preferred */
if (setsockopt(b->num, IPPROTO_IP, IP_PKTINFO,
(void *)&enable, sizeof(enable)) < 0)
return 0;
return 1;
# elif defined(IP_RECVDSTADDR)
/* Fall back to IP_RECVDSTADDR */
if (setsockopt(b->num, IPPROTO_IP, IP_RECVDSTADDR,
&enable, sizeof(enable)) < 0)
return 0;
return 1;
# endif
}
# if OPENSSL_USE_IPV6
if (af == AF_INET6) {
# if defined(IPV6_RECVPKTINFO)
if (setsockopt(b->num, IPPROTO_IPV6, IPV6_RECVPKTINFO,
&enable, sizeof(enable)) < 0)
return 0;
return 1;
# endif
}
# endif
return 0;
}
# endif
static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr)
{
long ret = 1;
int *ip;
bio_dgram_data *data = NULL;
# ifndef __DJGPP__
/* There are currently no cases where this is used on djgpp/watt32. */
int sockopt_val = 0;
# endif
int d_errno;
# if defined(OPENSSL_SYS_LINUX) && (defined(IP_MTU_DISCOVER) || defined(IP_MTU))
socklen_t sockopt_len; /* assume that system supporting IP_MTU is
* modern enough to define socklen_t */
socklen_t addr_len;
BIO_ADDR addr;
# endif
data = (bio_dgram_data *)b->ptr;
switch (cmd) {
case BIO_CTRL_RESET:
num = 0;
ret = 0;
break;
case BIO_CTRL_INFO:
ret = 0;
break;
case BIO_C_SET_FD:
dgram_clear(b);
b->num = *((int *)ptr);
b->shutdown = (int)num;
b->init = 1;
dgram_update_local_addr(b);
# if defined(SUPPORT_LOCAL_ADDR)
if (data->local_addr_enabled) {
if (enable_local_addr(b, 1) < 1)
data->local_addr_enabled = 0;
}
# endif
break;
case BIO_C_GET_FD:
if (b->init) {
ip = (int *)ptr;
if (ip != NULL)
*ip = b->num;
ret = b->num;
} else
ret = -1;
break;
case BIO_CTRL_GET_CLOSE:
ret = b->shutdown;
break;
case BIO_CTRL_SET_CLOSE:
b->shutdown = (int)num;
break;
case BIO_CTRL_PENDING:
case BIO_CTRL_WPENDING:
ret = 0;
break;
case BIO_CTRL_DUP:
case BIO_CTRL_FLUSH:
ret = 1;
break;
case BIO_CTRL_DGRAM_CONNECT:
BIO_ADDR_make(&data->peer, BIO_ADDR_sockaddr((BIO_ADDR *)ptr));
break;
/* (Linux)kernel sets DF bit on outgoing IP packets */
case BIO_CTRL_DGRAM_MTU_DISCOVER:
# if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO)
addr_len = (socklen_t) sizeof(addr);
BIO_ADDR_clear(&addr);
if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
ret = 0;
break;
}
switch (addr.sa.sa_family) {
case AF_INET:
sockopt_val = IP_PMTUDISC_DO;
if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
break;
# if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO)
case AF_INET6:
sockopt_val = IPV6_PMTUDISC_DO;
if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
break;
# endif
default:
ret = -1;
break;
}
# else
ret = -1;
# endif
break;
case BIO_CTRL_DGRAM_QUERY_MTU:
# if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU)
addr_len = (socklen_t) sizeof(addr);
BIO_ADDR_clear(&addr);
if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
ret = 0;
break;
}
sockopt_len = sizeof(sockopt_val);
switch (addr.sa.sa_family) {
case AF_INET:
if ((ret =
getsockopt(b->num, IPPROTO_IP, IP_MTU, (void *)&sockopt_val,
&sockopt_len)) < 0 || sockopt_val < 0) {
ret = 0;
} else {
/*
* we assume that the transport protocol is UDP and no IP
* options are used.
*/
data->mtu = sockopt_val - 8 - 20;
ret = data->mtu;
}
break;
# if OPENSSL_USE_IPV6 && defined(IPV6_MTU)
case AF_INET6:
if ((ret =
getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU,
(void *)&sockopt_val, &sockopt_len)) < 0
|| sockopt_val < 0) {
ret = 0;
} else {
/*
* we assume that the transport protocol is UDP and no IPV6
* options are used.
*/
data->mtu = sockopt_val - 8 - 40;
ret = data->mtu;
}
break;
# endif
default:
ret = 0;
break;
}
# else
ret = 0;
# endif
break;
case BIO_CTRL_DGRAM_GET_FALLBACK_MTU:
ret = -dgram_get_mtu_overhead(data);
switch (BIO_ADDR_family(&data->peer)) {
case AF_INET:
ret += 576;
break;
# if OPENSSL_USE_IPV6
case AF_INET6:
{
# ifdef IN6_IS_ADDR_V4MAPPED
struct in6_addr tmp_addr;
if (BIO_ADDR_rawaddress(&data->peer, &tmp_addr, NULL)
&& IN6_IS_ADDR_V4MAPPED(&tmp_addr))
ret += 576;
else
# endif
ret += 1280;
}
break;
# endif
default:
ret += 576;
break;
}
break;
case BIO_CTRL_DGRAM_GET_MTU:
return data->mtu;
case BIO_CTRL_DGRAM_SET_MTU:
data->mtu = num;
ret = num;
break;
case BIO_CTRL_DGRAM_SET_CONNECTED:
if (ptr != NULL) {
data->connected = 1;
BIO_ADDR_make(&data->peer, BIO_ADDR_sockaddr((BIO_ADDR *)ptr));
} else {
data->connected = 0;
BIO_ADDR_clear(&data->peer);
}
break;
case BIO_CTRL_DGRAM_GET_PEER:
ret = BIO_ADDR_sockaddr_size(&data->peer);
/* FIXME: if num < ret, we will only return part of an address.
That should bee an error, no? */
if (num == 0 || num > ret)
num = ret;
memcpy(ptr, &data->peer, (ret = num));
break;
case BIO_CTRL_DGRAM_SET_PEER:
BIO_ADDR_make(&data->peer, BIO_ADDR_sockaddr((BIO_ADDR *)ptr));
break;
case BIO_CTRL_DGRAM_DETECT_PEER_ADDR:
{
BIO_ADDR xaddr, *p = &data->peer;
socklen_t xaddr_len = sizeof(xaddr.sa);
if (BIO_ADDR_family(p) == AF_UNSPEC) {
if (getpeername(b->num, (void *)&xaddr.sa, &xaddr_len) == 0
&& BIO_ADDR_family(&xaddr) != AF_UNSPEC) {
p = &xaddr;
} else {
ret = 0;
break;
}
}
ret = BIO_ADDR_sockaddr_size(p);
if (num == 0 || num > ret)
num = ret;
memcpy(ptr, p, (ret = num));
}
break;
case BIO_C_SET_NBIO:
if (!BIO_socket_nbio(b->num, num != 0))
ret = 0;
break;
case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
data->next_timeout = ossl_time_from_timeval(*(struct timeval *)ptr);
break;
# if defined(SO_RCVTIMEO)
case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT:
# ifdef OPENSSL_SYS_WINDOWS
{
struct timeval *tv = (struct timeval *)ptr;
int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000;
if ((ret = setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void *)&timeout, sizeof(timeout))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
}
# else
if ((ret = setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr,
sizeof(struct timeval))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# endif
break;
case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT:
{
# ifdef OPENSSL_SYS_WINDOWS
int sz = 0;
int timeout;
struct timeval *tv = (struct timeval *)ptr;
sz = sizeof(timeout);
if ((ret = getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void *)&timeout, &sz)) < 0) {
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
} else {
tv->tv_sec = timeout / 1000;
tv->tv_usec = (timeout % 1000) * 1000;
ret = sizeof(*tv);
}
# else
socklen_t sz = sizeof(struct timeval);
if ((ret = getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
ptr, &sz)) < 0) {
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
} else {
OPENSSL_assert((size_t)sz <= sizeof(struct timeval));
ret = (int)sz;
}
# endif
}
break;
# endif
# if defined(SO_SNDTIMEO)
case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT:
# ifdef OPENSSL_SYS_WINDOWS
{
struct timeval *tv = (struct timeval *)ptr;
int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000;
if ((ret = setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
(void *)&timeout, sizeof(timeout))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
}
# else
if ((ret = setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr,
sizeof(struct timeval))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# endif
break;
case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT:
{
# ifdef OPENSSL_SYS_WINDOWS
int sz = 0;
int timeout;
struct timeval *tv = (struct timeval *)ptr;
sz = sizeof(timeout);
if ((ret = getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
(void *)&timeout, &sz)) < 0) {
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
} else {
tv->tv_sec = timeout / 1000;
tv->tv_usec = (timeout % 1000) * 1000;
ret = sizeof(*tv);
}
# else
socklen_t sz = sizeof(struct timeval);
if ((ret = getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
ptr, &sz)) < 0) {
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling getsockopt()");
} else {
OPENSSL_assert((size_t)sz <= sizeof(struct timeval));
ret = (int)sz;
}
# endif
}
break;
# endif
case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP:
/* fall-through */
case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP:
# ifdef OPENSSL_SYS_WINDOWS
d_errno = (data->_errno == WSAETIMEDOUT);
# else
d_errno = (data->_errno == EAGAIN);
# endif
if (d_errno) {
ret = 1;
data->_errno = 0;
} else
ret = 0;
break;
# ifdef EMSGSIZE
case BIO_CTRL_DGRAM_MTU_EXCEEDED:
if (data->_errno == EMSGSIZE) {
ret = 1;
data->_errno = 0;
} else
ret = 0;
break;
# endif
case BIO_CTRL_DGRAM_SET_DONT_FRAG:
switch (data->peer.sa.sa_family) {
case AF_INET:
# if defined(IP_DONTFRAG)
sockopt_val = num ? 1 : 0;
if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAG,
&sockopt_val, sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# elif defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined (IP_PMTUDISC_PROBE)
sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT;
if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# elif defined(OPENSSL_SYS_WINDOWS) && defined(IP_DONTFRAGMENT)
sockopt_val = num ? 1 : 0;
if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAGMENT,
(const char *)&sockopt_val,
sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# else
ret = -1;
# endif
break;
# if OPENSSL_USE_IPV6
case AF_INET6:
# if defined(IPV6_DONTFRAG)
sockopt_val = num ? 1 : 0;
if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_DONTFRAG,
(const void *)&sockopt_val,
sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# elif defined(OPENSSL_SYS_LINUX) && defined(IPV6_MTUDISCOVER)
sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT;
if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
ERR_raise_data(ERR_LIB_SYS, get_last_socket_error(),
"calling setsockopt()");
# else
ret = -1;
# endif
break;
# endif
default:
ret = -1;
break;
}
break;
case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
ret = dgram_get_mtu_overhead(data);
break;
/*
* BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE is used here for compatibility
* reasons. When BIO_CTRL_DGRAM_SET_PEEK_MODE was first defined its value
* was incorrectly clashing with BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE. The
* value has been updated to a non-clashing value. However to preserve
* binary compatibility we now respond to both the old value and the new one
*/
case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE:
case BIO_CTRL_DGRAM_SET_PEEK_MODE:
data->peekmode = (unsigned int)num;
break;
case BIO_CTRL_DGRAM_GET_LOCAL_ADDR_CAP:
# if defined(SUPPORT_LOCAL_ADDR)
ret = 1;
# else
ret = 0;
# endif
break;
case BIO_CTRL_DGRAM_SET_LOCAL_ADDR_ENABLE:
# if defined(SUPPORT_LOCAL_ADDR)
num = num > 0;
if (num != data->local_addr_enabled) {
if (enable_local_addr(b, num) < 1) {
ret = 0;
break;
}
data->local_addr_enabled = (char)num;
}
# else
ret = 0;
# endif
break;
case BIO_CTRL_DGRAM_GET_LOCAL_ADDR_ENABLE:
*(int *)ptr = data->local_addr_enabled;
break;
case BIO_CTRL_DGRAM_GET_EFFECTIVE_CAPS:
ret = (long)(BIO_DGRAM_CAP_HANDLES_DST_ADDR
| BIO_DGRAM_CAP_HANDLES_SRC_ADDR
| BIO_DGRAM_CAP_PROVIDES_DST_ADDR
| BIO_DGRAM_CAP_PROVIDES_SRC_ADDR);
break;
case BIO_CTRL_GET_RPOLL_DESCRIPTOR:
case BIO_CTRL_GET_WPOLL_DESCRIPTOR:
{
BIO_POLL_DESCRIPTOR *pd = ptr;
pd->type = BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD;
pd->value.fd = b->num;
}
break;
default:
ret = 0;
break;
}
/* Normalize if error */
if (ret < 0)
ret = -1;
return ret;
}
static int dgram_puts(BIO *bp, const char *str)
{
int n, ret;
n = strlen(str);
ret = dgram_write(bp, str, n);
return ret;
}
# if M_METHOD == M_METHOD_WSARECVMSG
static void translate_msg_win(BIO *b, WSAMSG *mh, WSABUF *iov,
unsigned char *control, BIO_MSG *msg)
{
iov->len = msg->data_len;
iov->buf = msg->data;
/* Windows requires namelen to be set exactly */
mh->name = msg->peer != NULL ? &msg->peer->sa : NULL;
if (msg->peer != NULL && dgram_get_sock_family(b) == AF_INET)
mh->namelen = sizeof(struct sockaddr_in);
# if OPENSSL_USE_IPV6
else if (msg->peer != NULL && dgram_get_sock_family(b) == AF_INET6)
mh->namelen = sizeof(struct sockaddr_in6);
# endif
else
mh->namelen = 0;
/*
* When local address reception (IP_PKTINFO, etc.) is enabled, on Windows
* this causes WSARecvMsg to fail if the control buffer is too small to hold
* the structure, or if no control buffer is passed. So we need to give it
* the control buffer even if we aren't actually going to examine the
* result.
*/
mh->lpBuffers = iov;
mh->dwBufferCount = 1;
mh->Control.len = BIO_CMSG_ALLOC_LEN;
mh->Control.buf = control;
mh->dwFlags = 0;
}
# endif
# if M_METHOD == M_METHOD_RECVMMSG || M_METHOD == M_METHOD_RECVMSG
/* Translates a BIO_MSG to a msghdr and iovec. */
static void translate_msg(BIO *b, struct msghdr *mh, struct iovec *iov,
unsigned char *control, BIO_MSG *msg)
{
iov->iov_base = msg->data;
iov->iov_len = msg->data_len;
/* macOS requires msg_namelen be 0 if msg_name is NULL */
mh->msg_name = msg->peer != NULL ? &msg->peer->sa : NULL;
if (msg->peer != NULL && dgram_get_sock_family(b) == AF_INET)
mh->msg_namelen = sizeof(struct sockaddr_in);
# if OPENSSL_USE_IPV6
else if (msg->peer != NULL && dgram_get_sock_family(b) == AF_INET6)
mh->msg_namelen = sizeof(struct sockaddr_in6);
# endif
else
mh->msg_namelen = 0;
mh->msg_iov = iov;
mh->msg_iovlen = 1;
mh->msg_control = msg->local != NULL ? control : NULL;
mh->msg_controllen = msg->local != NULL ? BIO_CMSG_ALLOC_LEN : 0;
mh->msg_flags = 0;
}
# endif
# if M_METHOD == M_METHOD_RECVMMSG || M_METHOD == M_METHOD_RECVMSG || M_METHOD == M_METHOD_WSARECVMSG
/* Extracts destination address from the control buffer. */
static int extract_local(BIO *b, MSGHDR_TYPE *mh, BIO_ADDR *local) {
# if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR) || defined(IPV6_PKTINFO)
CMSGHDR_TYPE *cmsg;
int af = dgram_get_sock_family(b);
for (cmsg = BIO_CMSG_FIRSTHDR(mh); cmsg != NULL;
cmsg = BIO_CMSG_NXTHDR(mh, cmsg)) {
if (af == AF_INET) {
if (cmsg->cmsg_level != IPPROTO_IP)
continue;
# if defined(IP_PKTINFO)
if (cmsg->cmsg_type != IP_PKTINFO)
continue;
local->s_in.sin_addr =
((struct in_pktinfo *)BIO_CMSG_DATA(cmsg))->ipi_addr;
# elif defined(IP_RECVDSTADDR)
if (cmsg->cmsg_type != IP_RECVDSTADDR)
continue;
local->s_in.sin_addr = *(struct in_addr *)BIO_CMSG_DATA(cmsg);
# endif
# if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR)
{
bio_dgram_data *data = b->ptr;
local->s_in.sin_family = AF_INET;
local->s_in.sin_port = data->local_addr.s_in.sin_port;
}
return 1;
# endif
}
# if OPENSSL_USE_IPV6
else if (af == AF_INET6) {
if (cmsg->cmsg_level != IPPROTO_IPV6)
continue;
# if defined(IPV6_RECVPKTINFO)
if (cmsg->cmsg_type != IPV6_PKTINFO)
continue;
{
bio_dgram_data *data = b->ptr;
local->s_in6.sin6_addr =
((struct in6_pktinfo *)BIO_CMSG_DATA(cmsg))->ipi6_addr;
local->s_in6.sin6_family = AF_INET6;
local->s_in6.sin6_port = data->local_addr.s_in6.sin6_port;
local->s_in6.sin6_scope_id =
data->local_addr.s_in6.sin6_scope_id;
local->s_in6.sin6_flowinfo = 0;
}
return 1;
# endif
}
# endif
}
# endif
return 0;
}
static int pack_local(BIO *b, MSGHDR_TYPE *mh, const BIO_ADDR *local) {
int af = dgram_get_sock_family(b);
# if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR) || defined(IPV6_PKTINFO)
CMSGHDR_TYPE *cmsg;
bio_dgram_data *data = b->ptr;
# endif
if (af == AF_INET) {
# if defined(IP_PKTINFO)
struct in_pktinfo *info;
# if defined(OPENSSL_SYS_WINDOWS)
cmsg = (CMSGHDR_TYPE *)mh->Control.buf;
# else
cmsg = (CMSGHDR_TYPE *)mh->msg_control;
# endif
cmsg->cmsg_len = BIO_CMSG_LEN(sizeof(struct in_pktinfo));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_PKTINFO;
info = (struct in_pktinfo *)BIO_CMSG_DATA(cmsg);
# if !defined(OPENSSL_SYS_WINDOWS) && !defined(OPENSSL_SYS_CYGWIN)
info->ipi_spec_dst = local->s_in.sin_addr;
# endif
info->ipi_addr.s_addr = 0;
info->ipi_ifindex = 0;
/*
* We cannot override source port using this API, therefore
* ensure the application specified a source port of 0
* or the one we are bound to. (Better to error than silently
* ignore this.)
*/
if (local->s_in.sin_port != 0
&& data->local_addr.s_in.sin_port != local->s_in.sin_port) {
ERR_raise(ERR_LIB_BIO, BIO_R_PORT_MISMATCH);
return 0;
}
# if defined(OPENSSL_SYS_WINDOWS)
mh->Control.len = BIO_CMSG_SPACE(sizeof(struct in_pktinfo));
# else
mh->msg_controllen = BIO_CMSG_SPACE(sizeof(struct in_pktinfo));
# endif
return 1;
# elif defined(IP_SENDSRCADDR)
struct in_addr *info;
/*
* At least FreeBSD is very pedantic about using IP_SENDSRCADDR when we
* are not bound to 0.0.0.0 or ::, even if the address matches what we
* bound to. Support this by not packing the structure if the address
* matches our understanding of our local address. IP_SENDSRCADDR is a
* BSD thing, so we don't need an explicit test for BSD here.
*/
if (local->s_in.sin_addr.s_addr == data->local_addr.s_in.sin_addr.s_addr) {
mh->msg_control = NULL;
mh->msg_controllen = 0;
return 1;
}
cmsg = (struct cmsghdr *)mh->msg_control;
cmsg->cmsg_len = BIO_CMSG_LEN(sizeof(struct in_addr));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_SENDSRCADDR;
info = (struct in_addr *)BIO_CMSG_DATA(cmsg);
*info = local->s_in.sin_addr;
/* See comment above. */
if (local->s_in.sin_port != 0
&& data->local_addr.s_in.sin_port != local->s_in.sin_port) {
ERR_raise(ERR_LIB_BIO, BIO_R_PORT_MISMATCH);
return 0;
}
mh->msg_controllen = BIO_CMSG_SPACE(sizeof(struct in_addr));
return 1;
# endif
}
# if OPENSSL_USE_IPV6
else if (af == AF_INET6) {
# if defined(IPV6_PKTINFO)
struct in6_pktinfo *info;
# if defined(OPENSSL_SYS_WINDOWS)
cmsg = (CMSGHDR_TYPE *)mh->Control.buf;
# else
cmsg = (CMSGHDR_TYPE *)mh->msg_control;
# endif
cmsg->cmsg_len = BIO_CMSG_LEN(sizeof(struct in6_pktinfo));
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
info = (struct in6_pktinfo *)BIO_CMSG_DATA(cmsg);
info->ipi6_addr = local->s_in6.sin6_addr;
info->ipi6_ifindex = 0;
/*
* See comment above, but also applies to the other fields
* in sockaddr_in6.
*/
if (local->s_in6.sin6_port != 0
&& data->local_addr.s_in6.sin6_port != local->s_in6.sin6_port) {
ERR_raise(ERR_LIB_BIO, BIO_R_PORT_MISMATCH);
return 0;
}
if (local->s_in6.sin6_scope_id != 0
&& data->local_addr.s_in6.sin6_scope_id != local->s_in6.sin6_scope_id) {
ERR_raise(ERR_LIB_BIO, BIO_R_PORT_MISMATCH);
return 0;
}
# if defined(OPENSSL_SYS_WINDOWS)
mh->Control.len = BIO_CMSG_SPACE(sizeof(struct in6_pktinfo));
# else
mh->msg_controllen = BIO_CMSG_SPACE(sizeof(struct in6_pktinfo));
# endif
return 1;
# endif
}
# endif
return 0;
}
# endif
/*
* Converts flags passed to BIO_sendmmsg or BIO_recvmmsg to syscall flags. You
* should mask out any system flags returned by this function you cannot support
* in a particular circumstance. Currently no flags are defined.
*/
# if M_METHOD != M_METHOD_NONE
static int translate_flags(uint64_t flags) {
return 0;
}
# endif
static int dgram_sendmmsg(BIO *b, BIO_MSG *msg, size_t stride,
size_t num_msg, uint64_t flags, size_t *num_processed)
{
# if M_METHOD != M_METHOD_NONE && M_METHOD != M_METHOD_RECVMSG
int ret;
# endif
# if M_METHOD == M_METHOD_RECVMMSG
# define BIO_MAX_MSGS_PER_CALL 64
int sysflags;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
size_t i;
struct mmsghdr mh[BIO_MAX_MSGS_PER_CALL];
struct iovec iov[BIO_MAX_MSGS_PER_CALL];
unsigned char control[BIO_MAX_MSGS_PER_CALL][BIO_CMSG_ALLOC_LEN];
int have_local_enabled = data->local_addr_enabled;
# elif M_METHOD == M_METHOD_RECVMSG
int sysflags;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
ossl_ssize_t l;
struct msghdr mh;
struct iovec iov;
unsigned char control[BIO_CMSG_ALLOC_LEN];
int have_local_enabled = data->local_addr_enabled;
# elif M_METHOD == M_METHOD_WSARECVMSG
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
int have_local_enabled = data->local_addr_enabled;
WSAMSG wmsg;
WSABUF wbuf;
DWORD num_bytes_sent = 0;
unsigned char control[BIO_CMSG_ALLOC_LEN];
# endif
# if M_METHOD == M_METHOD_RECVFROM || M_METHOD == M_METHOD_WSARECVMSG
int sysflags;
# endif
if (num_msg == 0) {
*num_processed = 0;
return 1;
}
if (num_msg > OSSL_SSIZE_MAX)
num_msg = OSSL_SSIZE_MAX;
# if M_METHOD != M_METHOD_NONE
sysflags = translate_flags(flags);
# endif
# if M_METHOD == M_METHOD_RECVMMSG
/*
* In the sendmmsg/recvmmsg case, we need to allocate our translated struct
* msghdr and struct iovec on the stack to support multithreaded use. Thus
* we place a fixed limit on the number of messages per call, in the
* expectation that we will be called again if there were more messages to
* be sent.
*/
if (num_msg > BIO_MAX_MSGS_PER_CALL)
num_msg = BIO_MAX_MSGS_PER_CALL;
for (i = 0; i < num_msg; ++i) {
translate_msg(b, &mh[i].msg_hdr, &iov[i],
control[i], &BIO_MSG_N(msg, stride, i));
/* If local address was requested, it must have been enabled */
if (BIO_MSG_N(msg, stride, i).local != NULL) {
if (!have_local_enabled) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
if (pack_local(b, &mh[i].msg_hdr,
BIO_MSG_N(msg, stride, i).local) < 1) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
}
}
/* Do the batch */
ret = sendmmsg(b->num, mh, num_msg, sysflags);
if (ret < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
for (i = 0; i < (size_t)ret; ++i) {
BIO_MSG_N(msg, stride, i).data_len = mh[i].msg_len;
BIO_MSG_N(msg, stride, i).flags = 0;
}
*num_processed = (size_t)ret;
return 1;
# elif M_METHOD == M_METHOD_RECVMSG
/*
* If sendmsg is available, use it.
*/
translate_msg(b, &mh, &iov, control, msg);
if (msg->local != NULL) {
if (!have_local_enabled) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
if (pack_local(b, &mh, msg->local) < 1) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
}
l = sendmsg(b->num, &mh, sysflags);
if (l < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
msg->data_len = (size_t)l;
msg->flags = 0;
*num_processed = 1;
return 1;
# elif M_METHOD == M_METHOD_WSARECVMSG || M_METHOD == M_METHOD_RECVFROM
# if M_METHOD == M_METHOD_WSARECVMSG
if (bio_WSASendMsg != NULL) {
/* WSASendMsg-based implementation for Windows. */
translate_msg_win(b, &wmsg, &wbuf, control, msg);
if (msg[0].local != NULL) {
if (!have_local_enabled) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
if (pack_local(b, &wmsg, msg[0].local) < 1) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
}
ret = WSASendMsg((SOCKET)b->num, &wmsg, 0, &num_bytes_sent, NULL, NULL);
if (ret < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
msg[0].data_len = num_bytes_sent;
msg[0].flags = 0;
*num_processed = 1;
return 1;
}
# endif
/*
* Fallback to sendto and send a single message.
*/
if (msg[0].local != NULL) {
/*
* We cannot set the local address if using sendto
* so fail in this case
*/
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
ret = sendto(b->num, msg[0].data,
# if defined(OPENSSL_SYS_WINDOWS)
(int)msg[0].data_len,
# else
msg[0].data_len,
# endif
sysflags,
msg[0].peer != NULL ? BIO_ADDR_sockaddr(msg[0].peer) : NULL,
msg[0].peer != NULL ? BIO_ADDR_sockaddr_size(msg[0].peer) : 0);
if (ret <= 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
msg[0].data_len = ret;
msg[0].flags = 0;
*num_processed = 1;
return 1;
# else
ERR_raise(ERR_LIB_BIO, BIO_R_UNSUPPORTED_METHOD);
*num_processed = 0;
return 0;
# endif
}
static int dgram_recvmmsg(BIO *b, BIO_MSG *msg,
size_t stride, size_t num_msg,
uint64_t flags, size_t *num_processed)
{
# if M_METHOD != M_METHOD_NONE && M_METHOD != M_METHOD_RECVMSG
int ret;
# endif
# if M_METHOD == M_METHOD_RECVMMSG
int sysflags;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
size_t i;
struct mmsghdr mh[BIO_MAX_MSGS_PER_CALL];
struct iovec iov[BIO_MAX_MSGS_PER_CALL];
unsigned char control[BIO_MAX_MSGS_PER_CALL][BIO_CMSG_ALLOC_LEN];
int have_local_enabled = data->local_addr_enabled;
# elif M_METHOD == M_METHOD_RECVMSG
int sysflags;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
ossl_ssize_t l;
struct msghdr mh;
struct iovec iov;
unsigned char control[BIO_CMSG_ALLOC_LEN];
int have_local_enabled = data->local_addr_enabled;
# elif M_METHOD == M_METHOD_WSARECVMSG
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
int have_local_enabled = data->local_addr_enabled;
WSAMSG wmsg;
WSABUF wbuf;
DWORD num_bytes_received = 0;
unsigned char control[BIO_CMSG_ALLOC_LEN];
# endif
# if M_METHOD == M_METHOD_RECVFROM || M_METHOD == M_METHOD_WSARECVMSG
int sysflags;
socklen_t slen;
# endif
if (num_msg == 0) {
*num_processed = 0;
return 1;
}
if (num_msg > OSSL_SSIZE_MAX)
num_msg = OSSL_SSIZE_MAX;
# if M_METHOD != M_METHOD_NONE
sysflags = translate_flags(flags);
# endif
# if M_METHOD == M_METHOD_RECVMMSG
/*
* In the sendmmsg/recvmmsg case, we need to allocate our translated struct
* msghdr and struct iovec on the stack to support multithreaded use. Thus
* we place a fixed limit on the number of messages per call, in the
* expectation that we will be called again if there were more messages to
* be sent.
*/
if (num_msg > BIO_MAX_MSGS_PER_CALL)
num_msg = BIO_MAX_MSGS_PER_CALL;
for (i = 0; i < num_msg; ++i) {
translate_msg(b, &mh[i].msg_hdr, &iov[i],
control[i], &BIO_MSG_N(msg, stride, i));
/* If local address was requested, it must have been enabled */
if (BIO_MSG_N(msg, stride, i).local != NULL && !have_local_enabled) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
}
/* Do the batch */
ret = recvmmsg(b->num, mh, num_msg, sysflags, NULL);
if (ret < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
for (i = 0; i < (size_t)ret; ++i) {
BIO_MSG_N(msg, stride, i).data_len = mh[i].msg_len;
BIO_MSG_N(msg, stride, i).flags = 0;
/*
* *(msg->peer) will have been filled in by recvmmsg;
* for msg->local we parse the control data returned
*/
if (BIO_MSG_N(msg, stride, i).local != NULL)
if (extract_local(b, &mh[i].msg_hdr,
BIO_MSG_N(msg, stride, i).local) < 1)
/*
* It appears BSDs do not support local addresses for
* loopback sockets. In this case, just clear the local
* address, as for OS X and Windows in some circumstances
* (see below).
*/
BIO_ADDR_clear(msg->local);
}
*num_processed = (size_t)ret;
return 1;
# elif M_METHOD == M_METHOD_RECVMSG
/*
* If recvmsg is available, use it.
*/
translate_msg(b, &mh, &iov, control, msg);
/* If local address was requested, it must have been enabled */
if (msg->local != NULL && !have_local_enabled) {
/*
* If we have done at least one message, we must return the
* count; if we haven't done any, we can give an error code
*/
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
l = recvmsg(b->num, &mh, sysflags);
if (l < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
msg->data_len = (size_t)l;
msg->flags = 0;
if (msg->local != NULL)
if (extract_local(b, &mh, msg->local) < 1)
/*
* OS X exhibits odd behaviour where it appears that if a packet is
* sent before the receiving interface enables IP_PKTINFO, it will
* sometimes not have any control data returned even if the
* receiving interface enables IP_PKTINFO before calling recvmsg().
* This appears to occur non-deterministically. Presumably, OS X
* handles IP_PKTINFO at the time the packet is enqueued into a
* socket's receive queue, rather than at the time recvmsg() is
* called, unlike most other operating systems. Thus (if this
* hypothesis is correct) there is a race between where IP_PKTINFO
* is enabled by the process and when the kernel's network stack
* queues the incoming message.
*
* We cannot return the local address if we do not have it, but this
* is not a caller error either, so just return a zero address
* structure. This is similar to how we handle Windows loopback
* interfaces (see below). We enable this workaround for all
* platforms, not just Apple, as this kind of quirk in OS networking
* stacks seems to be common enough that failing hard if a local
* address is not provided appears to be too brittle.
*/
BIO_ADDR_clear(msg->local);
*num_processed = 1;
return 1;
# elif M_METHOD == M_METHOD_RECVFROM || M_METHOD == M_METHOD_WSARECVMSG
# if M_METHOD == M_METHOD_WSARECVMSG
if (bio_WSARecvMsg != NULL) {
/* WSARecvMsg-based implementation for Windows. */
translate_msg_win(b, &wmsg, &wbuf, control, msg);
/* If local address was requested, it must have been enabled */
if (msg[0].local != NULL && !have_local_enabled) {
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
ret = WSARecvMsg((SOCKET)b->num, &wmsg, &num_bytes_received, NULL, NULL);
if (ret < 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
*num_processed = 0;
return 0;
}
msg[0].data_len = num_bytes_received;
msg[0].flags = 0;
if (msg[0].local != NULL)
if (extract_local(b, &wmsg, msg[0].local) < 1)
/*
* On Windows, loopback is not a "proper" interface and it works
* differently; packets are essentially short-circuited and
* don't go through all of the normal processing. A consequence
* of this is that packets sent from the local machine to the
* local machine _will not have IP_PKTINFO_ even if the
* IP_PKTINFO socket option is enabled. WSARecvMsg just sets
* Control.len to 0 on returning.
*
* This applies regardless of whether the loopback address,
* 127.0.0.1 is used, or a local interface address (e.g.
* 192.168.1.1); in both cases IP_PKTINFO will not be present.
*
* We report this condition by setting the local BIO_ADDR's
* family to 0.
*/
BIO_ADDR_clear(msg[0].local);
*num_processed = 1;
return 1;
}
# endif
/*
* Fallback to recvfrom and receive a single message.
*/
if (msg[0].local != NULL) {
/*
* We cannot determine the local address if using recvfrom
* so fail in this case
*/
ERR_raise(ERR_LIB_BIO, BIO_R_LOCAL_ADDR_NOT_AVAILABLE);
*num_processed = 0;
return 0;
}
slen = sizeof(*msg[0].peer);
ret = recvfrom(b->num, msg[0].data,
# if defined(OPENSSL_SYS_WINDOWS)
(int)msg[0].data_len,
# else
msg[0].data_len,
# endif
sysflags,
msg[0].peer != NULL ? &msg[0].peer->sa : NULL,
msg[0].peer != NULL ? &slen : NULL);
if (ret <= 0) {
ERR_raise(ERR_LIB_SYS, get_last_socket_error());
return 0;
}
msg[0].data_len = ret;
msg[0].flags = 0;
*num_processed = 1;
return 1;
# else
ERR_raise(ERR_LIB_BIO, BIO_R_UNSUPPORTED_METHOD);
*num_processed = 0;
return 0;
# endif
}
# ifndef OPENSSL_NO_SCTP
const BIO_METHOD *BIO_s_datagram_sctp(void)
{
return &methods_dgramp_sctp;
}
BIO *BIO_new_dgram_sctp(int fd, int close_flag)
{
BIO *bio;
int ret, optval = 20000;
int auth_data = 0, auth_forward = 0;
unsigned char *p;
struct sctp_authchunk auth;
struct sctp_authchunks *authchunks;
socklen_t sockopt_len;
# ifdef SCTP_AUTHENTICATION_EVENT
# ifdef SCTP_EVENT
struct sctp_event event;
# else
struct sctp_event_subscribe event;
# endif
# endif
bio = BIO_new(BIO_s_datagram_sctp());
if (bio == NULL)
return NULL;
BIO_set_fd(bio, fd, close_flag);
/* Activate SCTP-AUTH for DATA and FORWARD-TSN chunks */
auth.sauth_chunk = OPENSSL_SCTP_DATA_CHUNK_TYPE;
ret =
setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth,
sizeof(struct sctp_authchunk));
if (ret < 0) {
BIO_vfree(bio);
ERR_raise_data(ERR_LIB_BIO, ERR_R_SYS_LIB,
"Ensure SCTP AUTH chunks are enabled in kernel");
return NULL;
}
auth.sauth_chunk = OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE;
ret =
setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth,
sizeof(struct sctp_authchunk));
if (ret < 0) {
BIO_vfree(bio);
ERR_raise_data(ERR_LIB_BIO, ERR_R_SYS_LIB,
"Ensure SCTP AUTH chunks are enabled in kernel");
return NULL;
}
/*
* Test if activation was successful. When using accept(), SCTP-AUTH has
* to be activated for the listening socket already, otherwise the
* connected socket won't use it. Similarly with connect(): the socket
* prior to connection must be activated for SCTP-AUTH
*/
sockopt_len = (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
authchunks = OPENSSL_zalloc(sockopt_len);
if (authchunks == NULL) {
BIO_vfree(bio);
return NULL;
}
ret = getsockopt(fd, IPPROTO_SCTP, SCTP_LOCAL_AUTH_CHUNKS, authchunks,
&sockopt_len);
if (ret < 0) {
OPENSSL_free(authchunks);
BIO_vfree(bio);
return NULL;
}
for (p = (unsigned char *)authchunks->gauth_chunks;
p < (unsigned char *)authchunks + sockopt_len;
p += sizeof(uint8_t)) {
if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE)
auth_data = 1;
if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE)
auth_forward = 1;
}
OPENSSL_free(authchunks);
if (!auth_data || !auth_forward) {
BIO_vfree(bio);
ERR_raise_data(ERR_LIB_BIO, ERR_R_SYS_LIB,
"Ensure SCTP AUTH chunks are enabled on the "
"underlying socket");
return NULL;
}
# ifdef SCTP_AUTHENTICATION_EVENT
# ifdef SCTP_EVENT
memset(&event, 0, sizeof(event));
event.se_assoc_id = 0;
event.se_type = SCTP_AUTHENTICATION_EVENT;
event.se_on = 1;
ret =
setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event,
sizeof(struct sctp_event));
if (ret < 0) {
BIO_vfree(bio);
return NULL;
}
# else
sockopt_len = (socklen_t) sizeof(struct sctp_event_subscribe);
ret = getsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, &sockopt_len);
if (ret < 0) {
BIO_vfree(bio);
return NULL;
}
event.sctp_authentication_event = 1;
ret =
setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event,
sizeof(struct sctp_event_subscribe));
if (ret < 0) {
BIO_vfree(bio);
return NULL;
}
# endif
# endif
/*
* Disable partial delivery by setting the min size larger than the max
* record size of 2^14 + 2048 + 13
*/
ret =
setsockopt(fd, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval,
sizeof(optval));
if (ret < 0) {
BIO_vfree(bio);
return NULL;
}
return bio;
}
int BIO_dgram_is_sctp(BIO *bio)
{
return (BIO_method_type(bio) == BIO_TYPE_DGRAM_SCTP);
}
static int dgram_sctp_new(BIO *bi)
{
bio_dgram_sctp_data *data = NULL;
bi->init = 0;
bi->num = 0;
if ((data = OPENSSL_zalloc(sizeof(*data))) == NULL)
return 0;
# ifdef SCTP_PR_SCTP_NONE
data->prinfo.pr_policy = SCTP_PR_SCTP_NONE;
# endif
bi->ptr = data;
bi->flags = 0;
return 1;
}
static int dgram_sctp_free(BIO *a)
{
bio_dgram_sctp_data *data;
if (a == NULL)
return 0;
if (!dgram_clear(a))
return 0;
data = (bio_dgram_sctp_data *) a->ptr;
if (data != NULL)
OPENSSL_free(data);
return 1;
}
# ifdef SCTP_AUTHENTICATION_EVENT
void dgram_sctp_handle_auth_free_key_event(BIO *b,
union sctp_notification *snp)
{
int ret;
struct sctp_authkey_event *authkeyevent = &snp->sn_auth_event;
if (authkeyevent->auth_indication == SCTP_AUTH_FREE_KEY) {
struct sctp_authkeyid authkeyid;
/* delete key */
authkeyid.scact_keynumber = authkeyevent->auth_keynumber;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
}
}
# endif
static int dgram_sctp_read(BIO *b, char *out, int outl)
{
int ret = 0, n = 0, i, optval;
socklen_t optlen;
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
struct msghdr msg;
struct iovec iov;
struct cmsghdr *cmsg;
char cmsgbuf[512];
if (out != NULL) {
clear_socket_error();
do {
memset(&data->rcvinfo, 0, sizeof(data->rcvinfo));
iov.iov_base = out;
iov.iov_len = outl;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = cmsgbuf;
msg.msg_controllen = 512;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, 0);
if (n <= 0) {
if (n < 0)
ret = n;
break;
}
if (msg.msg_controllen > 0) {
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg;
cmsg = CMSG_NXTHDR(&msg, cmsg)) {
if (cmsg->cmsg_level != IPPROTO_SCTP)
continue;
# ifdef SCTP_RCVINFO
if (cmsg->cmsg_type == SCTP_RCVINFO) {
struct sctp_rcvinfo *rcvinfo;
rcvinfo = (struct sctp_rcvinfo *)CMSG_DATA(cmsg);
data->rcvinfo.rcv_sid = rcvinfo->rcv_sid;
data->rcvinfo.rcv_ssn = rcvinfo->rcv_ssn;
data->rcvinfo.rcv_flags = rcvinfo->rcv_flags;
data->rcvinfo.rcv_ppid = rcvinfo->rcv_ppid;
data->rcvinfo.rcv_tsn = rcvinfo->rcv_tsn;
data->rcvinfo.rcv_cumtsn = rcvinfo->rcv_cumtsn;
data->rcvinfo.rcv_context = rcvinfo->rcv_context;
}
# endif
# ifdef SCTP_SNDRCV
if (cmsg->cmsg_type == SCTP_SNDRCV) {
struct sctp_sndrcvinfo *sndrcvinfo;
sndrcvinfo =
(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
data->rcvinfo.rcv_sid = sndrcvinfo->sinfo_stream;
data->rcvinfo.rcv_ssn = sndrcvinfo->sinfo_ssn;
data->rcvinfo.rcv_flags = sndrcvinfo->sinfo_flags;
data->rcvinfo.rcv_ppid = sndrcvinfo->sinfo_ppid;
data->rcvinfo.rcv_tsn = sndrcvinfo->sinfo_tsn;
data->rcvinfo.rcv_cumtsn = sndrcvinfo->sinfo_cumtsn;
data->rcvinfo.rcv_context = sndrcvinfo->sinfo_context;
}
# endif
}
}
if (msg.msg_flags & MSG_NOTIFICATION) {
union sctp_notification snp;
memcpy(&snp, out, sizeof(snp));
if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT) {
# ifdef SCTP_EVENT
struct sctp_event event;
# else
struct sctp_event_subscribe event;
socklen_t eventsize;
# endif
/* disable sender dry event */
# ifdef SCTP_EVENT
memset(&event, 0, sizeof(event));
event.se_assoc_id = 0;
event.se_type = SCTP_SENDER_DRY_EVENT;
event.se_on = 0;
i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
sizeof(struct sctp_event));
if (i < 0) {
ret = i;
break;
}
# else
eventsize = sizeof(struct sctp_event_subscribe);
i = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
&eventsize);
if (i < 0) {
ret = i;
break;
}
event.sctp_sender_dry_event = 0;
i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
sizeof(struct sctp_event_subscribe));
if (i < 0) {
ret = i;
break;
}
# endif
}
# ifdef SCTP_AUTHENTICATION_EVENT
if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
dgram_sctp_handle_auth_free_key_event(b, &snp);
# endif
if (data->handle_notifications != NULL)
data->handle_notifications(b, data->notification_context,
(void *)out);
memset(&snp, 0, sizeof(snp));
memset(out, 0, outl);
} else {
ret += n;
}
}
while ((msg.msg_flags & MSG_NOTIFICATION) && (msg.msg_flags & MSG_EOR)
&& (ret < outl));
if (ret > 0 && !(msg.msg_flags & MSG_EOR)) {
/* Partial message read, this should never happen! */
/*
* The buffer was too small, this means the peer sent a message
* that was larger than allowed.
*/
if (ret == outl)
return -1;
/*
* Test if socket buffer can handle max record size (2^14 + 2048
* + 13)
*/
optlen = (socklen_t) sizeof(int);
ret = getsockopt(b->num, SOL_SOCKET, SO_RCVBUF, &optval, &optlen);
if (ret >= 0)
OPENSSL_assert(optval >= 18445);
/*
* Test if SCTP doesn't partially deliver below max record size
* (2^14 + 2048 + 13)
*/
optlen = (socklen_t) sizeof(int);
ret =
getsockopt(b->num, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT,
&optval, &optlen);
if (ret >= 0)
OPENSSL_assert(optval >= 18445);
/*
* Partially delivered notification??? Probably a bug....
*/
OPENSSL_assert(!(msg.msg_flags & MSG_NOTIFICATION));
/*
* Everything seems ok till now, so it's most likely a message
* dropped by PR-SCTP.
*/
memset(out, 0, outl);
BIO_set_retry_read(b);
return -1;
}
BIO_clear_retry_flags(b);
if (ret < 0) {
if (BIO_dgram_should_retry(ret)) {
BIO_set_retry_read(b);
data->dgram._errno = get_last_socket_error();
}
}
/* Test if peer uses SCTP-AUTH before continuing */
if (!data->peer_auth_tested) {
int ii, auth_data = 0, auth_forward = 0;
unsigned char *p;
struct sctp_authchunks *authchunks;
optlen =
(socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
authchunks = OPENSSL_malloc(optlen);
if (authchunks == NULL)
return -1;
memset(authchunks, 0, optlen);
ii = getsockopt(b->num, IPPROTO_SCTP, SCTP_PEER_AUTH_CHUNKS,
authchunks, &optlen);
if (ii >= 0)
for (p = (unsigned char *)authchunks->gauth_chunks;
p < (unsigned char *)authchunks + optlen;
p += sizeof(uint8_t)) {
if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE)
auth_data = 1;
if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE)
auth_forward = 1;
}
OPENSSL_free(authchunks);
if (!auth_data || !auth_forward) {
ERR_raise(ERR_LIB_BIO, BIO_R_CONNECT_ERROR);
return -1;
}
data->peer_auth_tested = 1;
}
}
return ret;
}
/*
* dgram_sctp_write - send message on SCTP socket
* @b: BIO to write to
* @in: data to send
* @inl: amount of bytes in @in to send
*
* Returns -1 on error or the sent amount of bytes on success
*/
static int dgram_sctp_write(BIO *b, const char *in, int inl)
{
int ret;
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
struct bio_dgram_sctp_sndinfo *sinfo = &(data->sndinfo);
struct bio_dgram_sctp_prinfo *pinfo = &(data->prinfo);
struct bio_dgram_sctp_sndinfo handshake_sinfo;
struct iovec iov[1];
struct msghdr msg;
struct cmsghdr *cmsg;
# if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo)) +
CMSG_SPACE(sizeof(struct sctp_prinfo))];
struct sctp_sndinfo *sndinfo;
struct sctp_prinfo *prinfo;
# else
char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
struct sctp_sndrcvinfo *sndrcvinfo;
# endif
clear_socket_error();
/*
* If we're send anything else than application data, disable all user
* parameters and flags.
*/
if (in[0] != 23) {
memset(&handshake_sinfo, 0, sizeof(handshake_sinfo));
# ifdef SCTP_SACK_IMMEDIATELY
handshake_sinfo.snd_flags = SCTP_SACK_IMMEDIATELY;
# endif
sinfo = &handshake_sinfo;
}
/* We can only send a shutdown alert if the socket is dry */
if (data->save_shutdown) {
ret = BIO_dgram_sctp_wait_for_dry(b);
if (ret < 0)
return -1;
if (ret == 0) {
BIO_clear_retry_flags(b);
BIO_set_retry_write(b);
return -1;
}
}
iov[0].iov_base = (char *)in;
iov[0].iov_len = inl;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_control = (caddr_t) cmsgbuf;
msg.msg_controllen = 0;
msg.msg_flags = 0;
# if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
cmsg = (struct cmsghdr *)cmsgbuf;
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndinfo));
sndinfo = (struct sctp_sndinfo *)CMSG_DATA(cmsg);
memset(sndinfo, 0, sizeof(*sndinfo));
sndinfo->snd_sid = sinfo->snd_sid;
sndinfo->snd_flags = sinfo->snd_flags;
sndinfo->snd_ppid = sinfo->snd_ppid;
sndinfo->snd_context = sinfo->snd_context;
msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndinfo));
cmsg =
(struct cmsghdr *)&cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo))];
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_PRINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_prinfo));
prinfo = (struct sctp_prinfo *)CMSG_DATA(cmsg);
memset(prinfo, 0, sizeof(*prinfo));
prinfo->pr_policy = pinfo->pr_policy;
prinfo->pr_value = pinfo->pr_value;
msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_prinfo));
# else
cmsg = (struct cmsghdr *)cmsgbuf;
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDRCV;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
memset(sndrcvinfo, 0, sizeof(*sndrcvinfo));
sndrcvinfo->sinfo_stream = sinfo->snd_sid;
sndrcvinfo->sinfo_flags = sinfo->snd_flags;
# ifdef __FreeBSD__
sndrcvinfo->sinfo_flags |= pinfo->pr_policy;
# endif
sndrcvinfo->sinfo_ppid = sinfo->snd_ppid;
sndrcvinfo->sinfo_context = sinfo->snd_context;
sndrcvinfo->sinfo_timetolive = pinfo->pr_value;
msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo));
# endif
ret = sendmsg(b->num, &msg, 0);
BIO_clear_retry_flags(b);
if (ret <= 0) {
if (BIO_dgram_should_retry(ret)) {
BIO_set_retry_write(b);
data->dgram._errno = get_last_socket_error();
}
}
return ret;
}
static long dgram_sctp_ctrl(BIO *b, int cmd, long num, void *ptr)
{
long ret = 1;
bio_dgram_sctp_data *data = NULL;
socklen_t sockopt_len = 0;
struct sctp_authkeyid authkeyid;
struct sctp_authkey *authkey = NULL;
data = (bio_dgram_sctp_data *) b->ptr;
switch (cmd) {
case BIO_CTRL_DGRAM_QUERY_MTU:
/*
* Set to maximum (2^14) and ignore user input to enable transport
* protocol fragmentation. Returns always 2^14.
*/
data->dgram.mtu = 16384;
ret = data->dgram.mtu;
break;
case BIO_CTRL_DGRAM_SET_MTU:
/*
* Set to maximum (2^14) and ignore input to enable transport
* protocol fragmentation. Returns always 2^14.
*/
data->dgram.mtu = 16384;
ret = data->dgram.mtu;
break;
case BIO_CTRL_DGRAM_SET_CONNECTED:
case BIO_CTRL_DGRAM_CONNECT:
/* Returns always -1. */
ret = -1;
break;
case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
/*
* SCTP doesn't need the DTLS timer Returns always 1.
*/
break;
case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
/*
* We allow transport protocol fragmentation so this is irrelevant
*/
ret = 0;
break;
case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE:
if (num > 0)
data->in_handshake = 1;
else
data->in_handshake = 0;
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_NODELAY,
&data->in_handshake, sizeof(int));
break;
case BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY:
/*
* New shared key for SCTP AUTH. Returns 0 on success, -1 otherwise.
*/
/* Get active key */
sockopt_len = sizeof(struct sctp_authkeyid);
ret =
getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid,
&sockopt_len);
if (ret < 0)
break;
/* Add new key */
sockopt_len = sizeof(struct sctp_authkey) + 64 * sizeof(uint8_t);
authkey = OPENSSL_malloc(sockopt_len);
if (authkey == NULL) {
ret = -1;
break;
}
memset(authkey, 0, sockopt_len);
authkey->sca_keynumber = authkeyid.scact_keynumber + 1;
# ifndef __FreeBSD__
/*
* This field is missing in FreeBSD 8.2 and earlier, and FreeBSD 8.3
* and higher work without it.
*/
authkey->sca_keylength = 64;
# endif
memcpy(&authkey->sca_key[0], ptr, 64 * sizeof(uint8_t));
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_KEY, authkey,
sockopt_len);
OPENSSL_free(authkey);
authkey = NULL;
if (ret < 0)
break;
/* Reset active key */
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
if (ret < 0)
break;
break;
case BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY:
/* Returns 0 on success, -1 otherwise. */
/* Get active key */
sockopt_len = sizeof(struct sctp_authkeyid);
ret =
getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid,
&sockopt_len);
if (ret < 0)
break;
/* Set active key */
authkeyid.scact_keynumber = authkeyid.scact_keynumber + 1;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
if (ret < 0)
break;
/*
* CCS has been sent, so remember that and fall through to check if
* we need to deactivate an old key
*/
data->ccs_sent = 1;
/* fall-through */
case BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD:
/* Returns 0 on success, -1 otherwise. */
/*
* Has this command really been called or is this just a
* fall-through?
*/
if (cmd == BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD)
data->ccs_rcvd = 1;
/*
* CSS has been both, received and sent, so deactivate an old key
*/
if (data->ccs_rcvd == 1 && data->ccs_sent == 1) {
/* Get active key */
sockopt_len = sizeof(struct sctp_authkeyid);
ret =
getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
&authkeyid, &sockopt_len);
if (ret < 0)
break;
/*
* Deactivate key or delete second last key if
* SCTP_AUTHENTICATION_EVENT is not available.
*/
authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
# ifdef SCTP_AUTH_DEACTIVATE_KEY
sockopt_len = sizeof(struct sctp_authkeyid);
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DEACTIVATE_KEY,
&authkeyid, sockopt_len);
if (ret < 0)
break;
# endif
# ifndef SCTP_AUTHENTICATION_EVENT
if (authkeyid.scact_keynumber > 0) {
authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
if (ret < 0)
break;
}
# endif
data->ccs_rcvd = 0;
data->ccs_sent = 0;
}
break;
case BIO_CTRL_DGRAM_SCTP_GET_SNDINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo))
num = sizeof(struct bio_dgram_sctp_sndinfo);
memcpy(ptr, &(data->sndinfo), num);
ret = num;
break;
case BIO_CTRL_DGRAM_SCTP_SET_SNDINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo))
num = sizeof(struct bio_dgram_sctp_sndinfo);
memcpy(&(data->sndinfo), ptr, num);
break;
case BIO_CTRL_DGRAM_SCTP_GET_RCVINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo))
num = sizeof(struct bio_dgram_sctp_rcvinfo);
memcpy(ptr, &data->rcvinfo, num);
ret = num;
break;
case BIO_CTRL_DGRAM_SCTP_SET_RCVINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo))
num = sizeof(struct bio_dgram_sctp_rcvinfo);
memcpy(&(data->rcvinfo), ptr, num);
break;
case BIO_CTRL_DGRAM_SCTP_GET_PRINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_prinfo))
num = sizeof(struct bio_dgram_sctp_prinfo);
memcpy(ptr, &(data->prinfo), num);
ret = num;
break;
case BIO_CTRL_DGRAM_SCTP_SET_PRINFO:
/* Returns the size of the copied struct. */
if (num > (long)sizeof(struct bio_dgram_sctp_prinfo))
num = sizeof(struct bio_dgram_sctp_prinfo);
memcpy(&(data->prinfo), ptr, num);
break;
case BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN:
/* Returns always 1. */
if (num > 0)
data->save_shutdown = 1;
else
data->save_shutdown = 0;
break;
case BIO_CTRL_DGRAM_SCTP_WAIT_FOR_DRY:
return dgram_sctp_wait_for_dry(b);
case BIO_CTRL_DGRAM_SCTP_MSG_WAITING:
return dgram_sctp_msg_waiting(b);
default:
/*
* Pass to default ctrl function to process SCTP unspecific commands
*/
ret = dgram_ctrl(b, cmd, num, ptr);
break;
}
return ret;
}
int BIO_dgram_sctp_notification_cb(BIO *b,
BIO_dgram_sctp_notification_handler_fn handle_notifications,
void *context)
{
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
if (handle_notifications != NULL) {
data->handle_notifications = handle_notifications;
data->notification_context = context;
} else
return -1;
return 0;
}
/*
* BIO_dgram_sctp_wait_for_dry - Wait for SCTP SENDER_DRY event
* @b: The BIO to check for the dry event
*
* Wait until the peer confirms all packets have been received, and so that
* our kernel doesn't have anything to send anymore. This is only received by
* the peer's kernel, not the application.
*
* Returns:
* -1 on error
* 0 when not dry yet
* 1 when dry
*/
int BIO_dgram_sctp_wait_for_dry(BIO *b)
{
return (int)BIO_ctrl(b, BIO_CTRL_DGRAM_SCTP_WAIT_FOR_DRY, 0, NULL);
}
static int dgram_sctp_wait_for_dry(BIO *b)
{
int is_dry = 0;
int sockflags = 0;
int n, ret;
union sctp_notification snp;
struct msghdr msg;
struct iovec iov;
# ifdef SCTP_EVENT
struct sctp_event event;
# else
struct sctp_event_subscribe event;
socklen_t eventsize;
# endif
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
/* set sender dry event */
# ifdef SCTP_EVENT
memset(&event, 0, sizeof(event));
event.se_assoc_id = 0;
event.se_type = SCTP_SENDER_DRY_EVENT;
event.se_on = 1;
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
sizeof(struct sctp_event));
# else
eventsize = sizeof(struct sctp_event_subscribe);
ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize);
if (ret < 0)
return -1;
event.sctp_sender_dry_event = 1;
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
sizeof(struct sctp_event_subscribe));
# endif
if (ret < 0)
return -1;
/* peek for notification */
memset(&snp, 0, sizeof(snp));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, MSG_PEEK);
if (n <= 0) {
if ((n < 0) && (get_last_socket_error() != EAGAIN)
&& (get_last_socket_error() != EWOULDBLOCK))
return -1;
else
return 0;
}
/* if we find a notification, process it and try again if necessary */
while (msg.msg_flags & MSG_NOTIFICATION) {
memset(&snp, 0, sizeof(snp));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, 0);
if (n <= 0) {
if ((n < 0) && (get_last_socket_error() != EAGAIN)
&& (get_last_socket_error() != EWOULDBLOCK))
return -1;
else
return is_dry;
}
if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT) {
is_dry = 1;
/* disable sender dry event */
# ifdef SCTP_EVENT
memset(&event, 0, sizeof(event));
event.se_assoc_id = 0;
event.se_type = SCTP_SENDER_DRY_EVENT;
event.se_on = 0;
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
sizeof(struct sctp_event));
# else
eventsize = (socklen_t) sizeof(struct sctp_event_subscribe);
ret =
getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
&eventsize);
if (ret < 0)
return -1;
event.sctp_sender_dry_event = 0;
ret =
setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
sizeof(struct sctp_event_subscribe));
# endif
if (ret < 0)
return -1;
}
# ifdef SCTP_AUTHENTICATION_EVENT
if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
dgram_sctp_handle_auth_free_key_event(b, &snp);
# endif
if (data->handle_notifications != NULL)
data->handle_notifications(b, data->notification_context,
(void *)&snp);
/* found notification, peek again */
memset(&snp, 0, sizeof(snp));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
/* if we have seen the dry already, don't wait */
if (is_dry) {
sockflags = fcntl(b->num, F_GETFL, 0);
fcntl(b->num, F_SETFL, O_NONBLOCK);
}
n = recvmsg(b->num, &msg, MSG_PEEK);
if (is_dry) {
fcntl(b->num, F_SETFL, sockflags);
}
if (n <= 0) {
if ((n < 0) && (get_last_socket_error() != EAGAIN)
&& (get_last_socket_error() != EWOULDBLOCK))
return -1;
else
return is_dry;
}
}
/* read anything else */
return is_dry;
}
int BIO_dgram_sctp_msg_waiting(BIO *b)
{
return (int)BIO_ctrl(b, BIO_CTRL_DGRAM_SCTP_MSG_WAITING, 0, NULL);
}
static int dgram_sctp_msg_waiting(BIO *b)
{
int n, sockflags;
union sctp_notification snp;
struct msghdr msg;
struct iovec iov;
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
/* Check if there are any messages waiting to be read */
do {
memset(&snp, 0, sizeof(snp));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
sockflags = fcntl(b->num, F_GETFL, 0);
fcntl(b->num, F_SETFL, O_NONBLOCK);
n = recvmsg(b->num, &msg, MSG_PEEK);
fcntl(b->num, F_SETFL, sockflags);
/* if notification, process and try again */
if (n > 0 && (msg.msg_flags & MSG_NOTIFICATION)) {
# ifdef SCTP_AUTHENTICATION_EVENT
if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
dgram_sctp_handle_auth_free_key_event(b, &snp);
# endif
memset(&snp, 0, sizeof(snp));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, 0);
if (data->handle_notifications != NULL)
data->handle_notifications(b, data->notification_context,
(void *)&snp);
}
} while (n > 0 && (msg.msg_flags & MSG_NOTIFICATION));
/* Return 1 if there is a message to be read, return 0 otherwise. */
if (n > 0)
return 1;
else
return 0;
}
static int dgram_sctp_puts(BIO *bp, const char *str)
{
int n, ret;
n = strlen(str);
ret = dgram_sctp_write(bp, str, n);
return ret;
}
# endif
static int BIO_dgram_should_retry(int i)
{
int err;
if ((i == 0) || (i == -1)) {
err = get_last_socket_error();
# if defined(OPENSSL_SYS_WINDOWS)
/*
* If the socket return value (i) is -1 and err is unexpectedly 0 at
* this point, the error code was overwritten by another system call
* before this error handling is called.
*/
# endif
return BIO_dgram_non_fatal_error(err);
}
return 0;
}
int BIO_dgram_non_fatal_error(int err)
{
switch (err) {
# if defined(OPENSSL_SYS_WINDOWS)
# if defined(WSAEWOULDBLOCK)
case WSAEWOULDBLOCK:
# endif
# endif
# ifdef EWOULDBLOCK
# ifdef WSAEWOULDBLOCK
# if WSAEWOULDBLOCK != EWOULDBLOCK
case EWOULDBLOCK:
# endif
# else
case EWOULDBLOCK:
# endif
# endif
# ifdef EINTR
case EINTR:
# endif
# ifdef EAGAIN
# if EWOULDBLOCK != EAGAIN
case EAGAIN:
# endif
# endif
# ifdef EPROTO
case EPROTO:
# endif
# ifdef EINPROGRESS
case EINPROGRESS:
# endif
# ifdef EALREADY
case EALREADY:
# endif
return 1;
default:
break;
}
return 0;
}
#endif