mirror of
https://github.com/openssl/openssl.git
synced 2024-12-27 06:21:43 +08:00
25f2138b0a
Currently, there are two different directories which contain internal header files of libcrypto which are meant to be shared internally: While header files in 'include/internal' are intended to be shared between libcrypto and libssl, the files in 'crypto/include/internal' are intended to be shared inside libcrypto only. To make things complicated, the include search path is set up in such a way that the directive #include "internal/file.h" could refer to a file in either of these two directoroes. This makes it necessary in some cases to add a '_int.h' suffix to some files to resolve this ambiguity: #include "internal/file.h" # located in 'include/internal' #include "internal/file_int.h" # located in 'crypto/include/internal' This commit moves the private crypto headers from 'crypto/include/internal' to 'include/crypto' As a result, the include directives become unambiguous #include "internal/file.h" # located in 'include/internal' #include "crypto/file.h" # located in 'include/crypto' hence the superfluous '_int.h' suffixes can be stripped. The files 'store_int.h' and 'store.h' need to be treated specially; they are joined into a single file. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9333)
379 lines
9.9 KiB
C
379 lines
9.9 KiB
C
/*
|
|
* Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/core_names.h>
|
|
#include <openssl/params.h>
|
|
#include "crypto/modes.h"
|
|
#include "crypto/siv.h"
|
|
|
|
#ifndef OPENSSL_NO_SIV
|
|
|
|
__owur static ossl_inline uint32_t rotl8(uint32_t x)
|
|
{
|
|
return (x << 8) | (x >> 24);
|
|
}
|
|
|
|
__owur static ossl_inline uint32_t rotr8(uint32_t x)
|
|
{
|
|
return (x >> 8) | (x << 24);
|
|
}
|
|
|
|
__owur static ossl_inline uint64_t byteswap8(uint64_t x)
|
|
{
|
|
uint32_t high = (uint32_t)(x >> 32);
|
|
uint32_t low = (uint32_t)x;
|
|
|
|
high = (rotl8(high) & 0x00ff00ff) | (rotr8(high) & 0xff00ff00);
|
|
low = (rotl8(low) & 0x00ff00ff) | (rotr8(low) & 0xff00ff00);
|
|
return ((uint64_t)low) << 32 | (uint64_t)high;
|
|
}
|
|
|
|
__owur static ossl_inline uint64_t siv128_getword(SIV_BLOCK const *b, size_t i)
|
|
{
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = { 1 };
|
|
|
|
if (is_endian.little)
|
|
return byteswap8(b->word[i]);
|
|
return b->word[i];
|
|
}
|
|
|
|
static ossl_inline void siv128_putword(SIV_BLOCK *b, size_t i, uint64_t x)
|
|
{
|
|
const union {
|
|
long one;
|
|
char little;
|
|
} is_endian = { 1 };
|
|
|
|
if (is_endian.little)
|
|
b->word[i] = byteswap8(x);
|
|
else
|
|
b->word[i] = x;
|
|
}
|
|
|
|
static ossl_inline void siv128_xorblock(SIV_BLOCK *x,
|
|
SIV_BLOCK const *y)
|
|
{
|
|
x->word[0] ^= y->word[0];
|
|
x->word[1] ^= y->word[1];
|
|
}
|
|
|
|
/*
|
|
* Doubles |b|, which is 16 bytes representing an element
|
|
* of GF(2**128) modulo the irreducible polynomial
|
|
* x**128 + x**7 + x**2 + x + 1.
|
|
* Assumes two's-complement arithmetic
|
|
*/
|
|
static ossl_inline void siv128_dbl(SIV_BLOCK *b)
|
|
{
|
|
uint64_t high = siv128_getword(b, 0);
|
|
uint64_t low = siv128_getword(b, 1);
|
|
uint64_t high_carry = high & (((uint64_t)1) << 63);
|
|
uint64_t low_carry = low & (((uint64_t)1) << 63);
|
|
int64_t low_mask = -((int64_t)(high_carry >> 63)) & 0x87;
|
|
uint64_t high_mask = low_carry >> 63;
|
|
|
|
high = (high << 1) | high_mask;
|
|
low = (low << 1) ^ (uint64_t)low_mask;
|
|
siv128_putword(b, 0, high);
|
|
siv128_putword(b, 1, low);
|
|
}
|
|
|
|
__owur static ossl_inline int siv128_do_s2v_p(SIV128_CONTEXT *ctx, SIV_BLOCK *out,
|
|
unsigned char const* in, size_t len)
|
|
{
|
|
SIV_BLOCK t;
|
|
size_t out_len = sizeof(out->byte);
|
|
EVP_MAC_CTX *mac_ctx;
|
|
int ret = 0;
|
|
|
|
mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init);
|
|
if (mac_ctx == NULL)
|
|
return 0;
|
|
|
|
if (len >= SIV_LEN) {
|
|
if (!EVP_MAC_update(mac_ctx, in, len - SIV_LEN))
|
|
goto err;
|
|
memcpy(&t, in + (len-SIV_LEN), SIV_LEN);
|
|
siv128_xorblock(&t, &ctx->d);
|
|
if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN))
|
|
goto err;
|
|
} else {
|
|
memset(&t, 0, sizeof(t));
|
|
memcpy(&t, in, len);
|
|
t.byte[len] = 0x80;
|
|
siv128_dbl(&ctx->d);
|
|
siv128_xorblock(&t, &ctx->d);
|
|
if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN))
|
|
goto err;
|
|
}
|
|
if (!EVP_MAC_final(mac_ctx, out->byte, &out_len, sizeof(out->byte))
|
|
|| out_len != SIV_LEN)
|
|
goto err;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
EVP_MAC_CTX_free(mac_ctx);
|
|
return ret;
|
|
}
|
|
|
|
|
|
__owur static ossl_inline int siv128_do_encrypt(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
unsigned char const *in, size_t len,
|
|
SIV_BLOCK *icv)
|
|
{
|
|
int out_len = (int)len;
|
|
|
|
if (!EVP_CipherInit_ex(ctx, NULL, NULL, NULL, icv->byte, 1))
|
|
return 0;
|
|
return EVP_EncryptUpdate(ctx, out, &out_len, in, out_len);
|
|
}
|
|
|
|
/*
|
|
* Create a new SIV128_CONTEXT
|
|
*/
|
|
SIV128_CONTEXT *CRYPTO_siv128_new(const unsigned char *key, int klen, EVP_CIPHER* cbc, EVP_CIPHER* ctr)
|
|
{
|
|
SIV128_CONTEXT *ctx;
|
|
int ret;
|
|
|
|
if ((ctx = OPENSSL_malloc(sizeof(*ctx))) != NULL) {
|
|
ret = CRYPTO_siv128_init(ctx, key, klen, cbc, ctr);
|
|
if (ret)
|
|
return ctx;
|
|
OPENSSL_free(ctx);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialise an existing SIV128_CONTEXT
|
|
*/
|
|
int CRYPTO_siv128_init(SIV128_CONTEXT *ctx, const unsigned char *key, int klen,
|
|
const EVP_CIPHER* cbc, const EVP_CIPHER* ctr)
|
|
{
|
|
static const unsigned char zero[SIV_LEN] = { 0 };
|
|
size_t out_len = SIV_LEN;
|
|
EVP_MAC_CTX *mac_ctx = NULL;
|
|
OSSL_PARAM params[3];
|
|
const char *cbc_name = EVP_CIPHER_name(cbc);
|
|
|
|
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER,
|
|
(char *)cbc_name, 0);
|
|
params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
|
|
(void *)key, klen);
|
|
params[2] = OSSL_PARAM_construct_end();
|
|
|
|
memset(&ctx->d, 0, sizeof(ctx->d));
|
|
ctx->cipher_ctx = NULL;
|
|
ctx->mac_ctx_init = NULL;
|
|
|
|
if (key == NULL || cbc == NULL || ctr == NULL
|
|
|| (ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL
|
|
/* TODO(3.0) library context */
|
|
|| (ctx->mac =
|
|
EVP_MAC_fetch(NULL, OSSL_MAC_NAME_CMAC, NULL)) == NULL
|
|
|| (ctx->mac_ctx_init = EVP_MAC_CTX_new(ctx->mac)) == NULL
|
|
|| !EVP_MAC_CTX_set_params(ctx->mac_ctx_init, params)
|
|
|| !EVP_EncryptInit_ex(ctx->cipher_ctx, ctr, NULL, key + klen, NULL)
|
|
|| (mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL
|
|
|| !EVP_MAC_update(mac_ctx, zero, sizeof(zero))
|
|
|| !EVP_MAC_final(mac_ctx, ctx->d.byte, &out_len,
|
|
sizeof(ctx->d.byte))) {
|
|
EVP_CIPHER_CTX_free(ctx->cipher_ctx);
|
|
EVP_MAC_CTX_free(ctx->mac_ctx_init);
|
|
EVP_MAC_CTX_free(mac_ctx);
|
|
EVP_MAC_free(ctx->mac);
|
|
return 0;
|
|
}
|
|
EVP_MAC_CTX_free(mac_ctx);
|
|
|
|
ctx->final_ret = -1;
|
|
ctx->crypto_ok = 1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Copy an SIV128_CONTEXT object
|
|
*/
|
|
int CRYPTO_siv128_copy_ctx(SIV128_CONTEXT *dest, SIV128_CONTEXT *src)
|
|
{
|
|
memcpy(&dest->d, &src->d, sizeof(src->d));
|
|
if (!EVP_CIPHER_CTX_copy(dest->cipher_ctx, src->cipher_ctx))
|
|
return 0;
|
|
EVP_MAC_CTX_free(dest->mac_ctx_init);
|
|
dest->mac_ctx_init = EVP_MAC_CTX_dup(src->mac_ctx_init);
|
|
if (dest->mac_ctx_init == NULL)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Provide any AAD. This can be called multiple times.
|
|
* Per RFC5297, the last piece of associated data
|
|
* is the nonce, but it's not treated special
|
|
*/
|
|
int CRYPTO_siv128_aad(SIV128_CONTEXT *ctx, const unsigned char *aad,
|
|
size_t len)
|
|
{
|
|
SIV_BLOCK mac_out;
|
|
size_t out_len = SIV_LEN;
|
|
EVP_MAC_CTX *mac_ctx;
|
|
|
|
siv128_dbl(&ctx->d);
|
|
|
|
if ((mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL
|
|
|| !EVP_MAC_update(mac_ctx, aad, len)
|
|
|| !EVP_MAC_final(mac_ctx, mac_out.byte, &out_len,
|
|
sizeof(mac_out.byte))
|
|
|| out_len != SIV_LEN) {
|
|
EVP_MAC_CTX_free(mac_ctx);
|
|
return 0;
|
|
}
|
|
EVP_MAC_CTX_free(mac_ctx);
|
|
|
|
siv128_xorblock(&ctx->d, &mac_out);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Provide any data to be encrypted. This can be called once.
|
|
*/
|
|
int CRYPTO_siv128_encrypt(SIV128_CONTEXT *ctx,
|
|
const unsigned char *in, unsigned char *out,
|
|
size_t len)
|
|
{
|
|
SIV_BLOCK q;
|
|
|
|
/* can only do one crypto operation */
|
|
if (ctx->crypto_ok == 0)
|
|
return 0;
|
|
ctx->crypto_ok--;
|
|
|
|
if (!siv128_do_s2v_p(ctx, &q, in, len))
|
|
return 0;
|
|
|
|
memcpy(ctx->tag.byte, &q, SIV_LEN);
|
|
q.byte[8] &= 0x7f;
|
|
q.byte[12] &= 0x7f;
|
|
|
|
if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q))
|
|
return 0;
|
|
ctx->final_ret = 0;
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Provide any data to be decrypted. This can be called once.
|
|
*/
|
|
int CRYPTO_siv128_decrypt(SIV128_CONTEXT *ctx,
|
|
const unsigned char *in, unsigned char *out,
|
|
size_t len)
|
|
{
|
|
unsigned char* p;
|
|
SIV_BLOCK t, q;
|
|
int i;
|
|
|
|
/* can only do one crypto operation */
|
|
if (ctx->crypto_ok == 0)
|
|
return 0;
|
|
ctx->crypto_ok--;
|
|
|
|
memcpy(&q, ctx->tag.byte, SIV_LEN);
|
|
q.byte[8] &= 0x7f;
|
|
q.byte[12] &= 0x7f;
|
|
|
|
if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q)
|
|
|| !siv128_do_s2v_p(ctx, &t, out, len))
|
|
return 0;
|
|
|
|
p = ctx->tag.byte;
|
|
for (i = 0; i < SIV_LEN; i++)
|
|
t.byte[i] ^= p[i];
|
|
|
|
if ((t.word[0] | t.word[1]) != 0) {
|
|
OPENSSL_cleanse(out, len);
|
|
return 0;
|
|
}
|
|
ctx->final_ret = 0;
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Return the already calculated final result.
|
|
*/
|
|
int CRYPTO_siv128_finish(SIV128_CONTEXT *ctx)
|
|
{
|
|
return ctx->final_ret;
|
|
}
|
|
|
|
/*
|
|
* Set the tag
|
|
*/
|
|
int CRYPTO_siv128_set_tag(SIV128_CONTEXT *ctx, const unsigned char *tag, size_t len)
|
|
{
|
|
if (len != SIV_LEN)
|
|
return 0;
|
|
|
|
/* Copy the tag from the supplied buffer */
|
|
memcpy(ctx->tag.byte, tag, len);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Retrieve the calculated tag
|
|
*/
|
|
int CRYPTO_siv128_get_tag(SIV128_CONTEXT *ctx, unsigned char *tag, size_t len)
|
|
{
|
|
if (len != SIV_LEN)
|
|
return 0;
|
|
|
|
/* Copy the tag into the supplied buffer */
|
|
memcpy(tag, ctx->tag.byte, len);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Release all resources
|
|
*/
|
|
int CRYPTO_siv128_cleanup(SIV128_CONTEXT *ctx)
|
|
{
|
|
if (ctx != NULL) {
|
|
EVP_CIPHER_CTX_free(ctx->cipher_ctx);
|
|
ctx->cipher_ctx = NULL;
|
|
EVP_MAC_CTX_free(ctx->mac_ctx_init);
|
|
ctx->mac_ctx_init = NULL;
|
|
EVP_MAC_free(ctx->mac);
|
|
ctx->mac = NULL;
|
|
OPENSSL_cleanse(&ctx->d, sizeof(ctx->d));
|
|
OPENSSL_cleanse(&ctx->tag, sizeof(ctx->tag));
|
|
ctx->final_ret = -1;
|
|
ctx->crypto_ok = 1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_siv128_speed(SIV128_CONTEXT *ctx, int arg)
|
|
{
|
|
ctx->crypto_ok = (arg == 1) ? -1 : 1;
|
|
return 1;
|
|
}
|
|
|
|
#endif /* OPENSSL_NO_SIV */
|