mirror of
https://github.com/openssl/openssl.git
synced 2024-11-27 05:21:51 +08:00
2500c093aa
DH_check is used to test the validity of Diffie-Hellman parameter sets (p, q, g). Among the tests performed are primality tests on p and q, for this BN_is_prime_ex is called with the rounds of Miller-Rabin set as default. This will therefore use the average case error estimates derived from the function BN_prime_checks_for_size based on the bit size of the number tested. However, these bounds are only accurate on testing random input. Within this testing scenario, where we are checking the validity of a DH parameter set, we can not assert that these parameters are randomly generated. Thus we must treat them as if they are adversarial in nature and increase the rounds of Miller-Rabin performed. Generally, each round of Miller-Rabin can declare a composite number prime with probability at most (1/4), thus 64 rounds is sufficient in thwarting known generation techniques (even in safe prime settings - see https://eprint.iacr.org/2019/032 for full analysis). The choice of 64 rounds is also consistent with SRP_NUMBER_ITERATIONS_FOR_PRIME 64 as used in srp_Verify_N_and_g in openssl/apps/s_client.c. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/8593) |
||
---|---|---|
.. | ||
aes | ||
aria | ||
asn1 | ||
async | ||
bf | ||
bio | ||
blake2 | ||
bn | ||
buffer | ||
camellia | ||
cast | ||
chacha | ||
cmac | ||
cms | ||
comp | ||
conf | ||
crmf | ||
ct | ||
des | ||
dh | ||
dsa | ||
dso | ||
ec | ||
engine | ||
err | ||
ess | ||
evp | ||
gmac | ||
hmac | ||
idea | ||
include/internal | ||
kdf | ||
kmac | ||
lhash | ||
md2 | ||
md4 | ||
md5 | ||
mdc2 | ||
modes | ||
objects | ||
ocsp | ||
pem | ||
perlasm | ||
pkcs7 | ||
pkcs12 | ||
poly1305 | ||
property | ||
rand | ||
rc2 | ||
rc4 | ||
rc5 | ||
ripemd | ||
rsa | ||
seed | ||
sha | ||
siphash | ||
sm2 | ||
sm3 | ||
sm4 | ||
srp | ||
stack | ||
store | ||
ts | ||
txt_db | ||
ui | ||
whrlpool | ||
x509 | ||
x509v3 | ||
alphacpuid.pl | ||
arm64cpuid.pl | ||
arm_arch.h | ||
armcap.c | ||
armv4cpuid.pl | ||
build.info | ||
c64xpluscpuid.pl | ||
context.c | ||
core_fetch.c | ||
cpt_err.c | ||
cryptlib.c | ||
ctype.c | ||
cversion.c | ||
dllmain.c | ||
ebcdic.c | ||
ex_data.c | ||
getenv.c | ||
ia64cpuid.S | ||
init.c | ||
LPdir_nyi.c | ||
LPdir_unix.c | ||
LPdir_vms.c | ||
LPdir_win32.c | ||
LPdir_win.c | ||
LPdir_wince.c | ||
mem_clr.c | ||
mem_dbg.c | ||
mem_sec.c | ||
mem.c | ||
mips_arch.h | ||
o_dir.c | ||
o_fips.c | ||
o_fopen.c | ||
o_init.c | ||
o_str.c | ||
o_time.c | ||
params.c | ||
pariscid.pl | ||
ppc_arch.h | ||
ppccap.c | ||
ppccpuid.pl | ||
provider_core.c | ||
provider_local.h | ||
provider_predefined.c | ||
provider.c | ||
README.sparse_array | ||
s390x_arch.h | ||
s390xcap.c | ||
s390xcpuid.pl | ||
sparc_arch.h | ||
sparccpuid.S | ||
sparcv9cap.c | ||
sparse_array.c | ||
threads_none.c | ||
threads_pthread.c | ||
threads_win.c | ||
trace.c | ||
uid.c | ||
vms_rms.h | ||
x86_64cpuid.pl | ||
x86cpuid.pl |
The sparse_array.c file contains an implementation of a sparse array that attempts to be both space and time efficient. The sparse array is represented using a tree structure. Each node in the tree contains a block of pointers to either the user supplied leaf values or to another node. There are a number of parameters used to define the block size: OPENSSL_SA_BLOCK_BITS Specifies the number of bits covered by each block SA_BLOCK_MAX Specifies the number of pointers in each block SA_BLOCK_MASK Specifies a bit mask to perform modulo block size SA_BLOCK_MAX_LEVELS Indicates the maximum possible height of the tree These constants are inter-related: SA_BLOCK_MAX = 2 ^ OPENSSL_SA_BLOCK_BITS SA_BLOCK_MASK = SA_BLOCK_MAX - 1 SA_BLOCK_MAX_LEVELS = number of bits in size_t divided by OPENSSL_SA_BLOCK_BITS rounded up to the next multiple of OPENSSL_SA_BLOCK_BITS OPENSSL_SA_BLOCK_BITS can be defined at compile time and this overrides the built in setting. As a space and performance optimisation, the height of the tree is usually less than the maximum possible height. Only sufficient height is allocated to accommodate the largest index added to the data structure. The largest index used to add a value to the array determines the tree height: +----------------------+---------------------+ | Largest Added Index | Height of Tree | +----------------------+---------------------+ | SA_BLOCK_MAX - 1 | 1 | | SA_BLOCK_MAX ^ 2 - 1 | 2 | | SA_BLOCK_MAX ^ 3 - 1 | 3 | | ... | ... | | size_t max | SA_BLOCK_MAX_LEVELS | +----------------------+---------------------+ The tree height is dynamically increased as needed based on additions. An empty tree is represented by a NULL root pointer. Inserting a value at index 0 results in the allocation of a top level node full of null pointers except for the single pointer to the user's data (N = SA_BLOCK_MAX for breviety): +----+ |Root| |Node| +-+--+ | | | v +-+-+---+---+---+---+ | 0 | 1 | 2 |...|N-1| | |nil|nil|...|nil| +-+-+---+---+---+---+ | | | v +-+--+ |User| |Data| +----+ Index 0 Inserting at element 2N+1 creates a new root node and pushes down the old root node. It then creates a second second level node to hold the pointer to the user's new data: +----+ |Root| |Node| +-+--+ | | | v +-+-+---+---+---+---+ | 0 | 1 | 2 |...|N-1| | |nil| |...|nil| +-+-+---+-+-+---+---+ | | | +------------------+ | | v v +-+-+---+---+---+---+ +-+-+---+---+---+---+ | 0 | 1 | 2 |...|N-1| | 0 | 1 | 2 |...|N-1| |nil| |nil|...|nil| |nil| |nil|...|nil| +-+-+---+---+---+---+ +---+-+-+---+---+---+ | | | | | | v v +-+--+ +-+--+ |User| |User| |Data| |Data| +----+ +----+ Index 0 Index 2N+1 The nodes themselves are allocated in a sparse manner. Only nodes which exist along a path from the root of the tree to an added leaf will be allocated. The complexity is hidden and nodes are allocated on an as needed basis. Because the data is expected to be sparse this doesn't result in a large waste of space. Values can be removed from the sparse array by setting their index position to NULL. The data structure does not attempt to reclaim nodes or reduce the height of the tree on removal. For example, now setting index 0 to NULL would result in: +----+ |Root| |Node| +-+--+ | | | v +-+-+---+---+---+---+ | 0 | 1 | 2 |...|N-1| | |nil| |...|nil| +-+-+---+-+-+---+---+ | | | +------------------+ | | v v +-+-+---+---+---+---+ +-+-+---+---+---+---+ | 0 | 1 | 2 |...|N-1| | 0 | 1 | 2 |...|N-1| |nil|nil|nil|...|nil| |nil| |nil|...|nil| +---+---+---+---+---+ +---+-+-+---+---+---+ | | | v +-+--+ |User| |Data| +----+ Index 2N+1 Accesses to elements in the sparse array take O(log n) time where n is the largest element. The base of the logarithm is SA_BLOCK_MAX, so for moderately small indices (e.g. NIDs), single level (constant time) access is achievable. Space usage is O(minimum(m, n log(n)) where m is the number of elements in the array. Note: sparse arrays only include pointers to types. Thus, SPARSE_ARRAY_OF(char) can be used to store a string.