openssl/crypto/stack/stack.c
Matt Caswell da1c088f59 Copyright year updates
Reviewed-by: Richard Levitte <levitte@openssl.org>
Release: yes
2023-09-07 09:59:15 +01:00

492 lines
12 KiB
C

/*
* Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include "internal/safe_math.h"
#include <openssl/stack.h>
#include <errno.h>
#include <openssl/e_os2.h> /* For ossl_inline */
OSSL_SAFE_MATH_SIGNED(int, int)
/*
* The initial number of nodes in the array.
*/
static const int min_nodes = 4;
static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX;
struct stack_st {
int num;
const void **data;
int sorted;
int num_alloc;
OPENSSL_sk_compfunc comp;
};
OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
OPENSSL_sk_compfunc c)
{
OPENSSL_sk_compfunc old = sk->comp;
if (sk->comp != c)
sk->sorted = 0;
sk->comp = c;
return old;
}
OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
{
OPENSSL_STACK *ret;
if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
goto err;
if (sk == NULL) {
ret->num = 0;
ret->sorted = 0;
ret->comp = NULL;
} else {
/* direct structure assignment */
*ret = *sk;
}
if (sk == NULL || sk->num == 0) {
/* postpone |ret->data| allocation */
ret->data = NULL;
ret->num_alloc = 0;
return ret;
}
/* duplicate |sk->data| content */
ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc);
if (ret->data == NULL)
goto err;
memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
return ret;
err:
OPENSSL_sk_free(ret);
return NULL;
}
OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
OPENSSL_sk_copyfunc copy_func,
OPENSSL_sk_freefunc free_func)
{
OPENSSL_STACK *ret;
int i;
if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
goto err;
if (sk == NULL) {
ret->num = 0;
ret->sorted = 0;
ret->comp = NULL;
} else {
/* direct structure assignment */
*ret = *sk;
}
if (sk == NULL || sk->num == 0) {
/* postpone |ret| data allocation */
ret->data = NULL;
ret->num_alloc = 0;
return ret;
}
ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
if (ret->data == NULL)
goto err;
for (i = 0; i < ret->num; ++i) {
if (sk->data[i] == NULL)
continue;
if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
while (--i >= 0)
if (ret->data[i] != NULL)
free_func((void *)ret->data[i]);
goto err;
}
}
return ret;
err:
OPENSSL_sk_free(ret);
return NULL;
}
OPENSSL_STACK *OPENSSL_sk_new_null(void)
{
return OPENSSL_sk_new_reserve(NULL, 0);
}
OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
{
return OPENSSL_sk_new_reserve(c, 0);
}
/*
* Calculate the array growth based on the target size.
*
* The growth factor is a rational number and is defined by a numerator
* and a denominator. According to Andrew Koenig in his paper "Why Are
* Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
* than the golden ratio (1.618...).
*
* Considering only the Fibonacci ratios less than the golden ratio, the
* number of steps from the minimum allocation to integer overflow is:
* factor decimal growths
* 3/2 1.5 51
* 8/5 1.6 45
* 21/13 1.615... 44
*
* All larger factors have the same number of growths.
*
* 3/2 and 8/5 have nice power of two shifts, so seem like a good choice.
*/
static ossl_inline int compute_growth(int target, int current)
{
int err = 0;
while (current < target) {
if (current >= max_nodes)
return 0;
current = safe_muldiv_int(current, 8, 5, &err);
if (err != 0)
return 0;
if (current >= max_nodes)
current = max_nodes;
}
return current;
}
/* internal STACK storage allocation */
static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
{
const void **tmpdata;
int num_alloc;
/* Check to see the reservation isn't exceeding the hard limit */
if (n > max_nodes - st->num) {
ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
return 0;
}
/* Figure out the new size */
num_alloc = st->num + n;
if (num_alloc < min_nodes)
num_alloc = min_nodes;
/* If |st->data| allocation was postponed */
if (st->data == NULL) {
/*
* At this point, |st->num_alloc| and |st->num| are 0;
* so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
*/
if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL)
return 0;
st->num_alloc = num_alloc;
return 1;
}
if (!exact) {
if (num_alloc <= st->num_alloc)
return 1;
num_alloc = compute_growth(num_alloc, st->num_alloc);
if (num_alloc == 0) {
ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
return 0;
}
} else if (num_alloc == st->num_alloc) {
return 1;
}
tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
if (tmpdata == NULL)
return 0;
st->data = tmpdata;
st->num_alloc = num_alloc;
return 1;
}
OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
{
OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
if (st == NULL)
return NULL;
st->comp = c;
if (n <= 0)
return st;
if (!sk_reserve(st, n, 1)) {
OPENSSL_sk_free(st);
return NULL;
}
return st;
}
int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
{
if (st == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (n < 0)
return 1;
return sk_reserve(st, n, 1);
}
int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
{
if (st == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (st->num == max_nodes) {
ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
return 0;
}
if (!sk_reserve(st, 1, 0))
return 0;
if ((loc >= st->num) || (loc < 0)) {
st->data[st->num] = data;
} else {
memmove(&st->data[loc + 1], &st->data[loc],
sizeof(st->data[0]) * (st->num - loc));
st->data[loc] = data;
}
st->num++;
st->sorted = 0;
return st->num;
}
static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
{
const void *ret = st->data[loc];
if (loc != st->num - 1)
memmove(&st->data[loc], &st->data[loc + 1],
sizeof(st->data[0]) * (st->num - loc - 1));
st->num--;
return (void *)ret;
}
void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
{
int i;
if (st == NULL)
return NULL;
for (i = 0; i < st->num; i++)
if (st->data[i] == p)
return internal_delete(st, i);
return NULL;
}
void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
{
if (st == NULL || loc < 0 || loc >= st->num)
return NULL;
return internal_delete(st, loc);
}
static int internal_find(OPENSSL_STACK *st, const void *data,
int ret_val_options, int *pnum_matched)
{
const void *r;
int i, count = 0;
int *pnum = pnum_matched;
if (st == NULL || st->num == 0)
return -1;
if (pnum == NULL)
pnum = &count;
if (st->comp == NULL) {
for (i = 0; i < st->num; i++)
if (st->data[i] == data) {
*pnum = 1;
return i;
}
*pnum = 0;
return -1;
}
if (data == NULL)
return -1;
if (!st->sorted) {
int res = -1;
for (i = 0; i < st->num; i++)
if (st->comp(&data, st->data + i) == 0) {
if (res == -1)
res = i;
++*pnum;
/* Check if only one result is wanted and exit if so */
if (pnum_matched == NULL)
return i;
}
if (res == -1)
*pnum = 0;
return res;
}
if (pnum_matched != NULL)
ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH;
r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp,
ret_val_options);
if (pnum_matched != NULL) {
*pnum = 0;
if (r != NULL) {
const void **p = (const void **)r;
while (p < st->data + st->num) {
if (st->comp(&data, p) != 0)
break;
++*pnum;
++p;
}
}
}
return r == NULL ? -1 : (int)((const void **)r - st->data);
}
int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
{
return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL);
}
int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
{
return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL);
}
int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum)
{
return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum);
}
int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
{
if (st == NULL)
return -1;
return OPENSSL_sk_insert(st, data, st->num);
}
int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
{
return OPENSSL_sk_insert(st, data, 0);
}
void *OPENSSL_sk_shift(OPENSSL_STACK *st)
{
if (st == NULL || st->num == 0)
return NULL;
return internal_delete(st, 0);
}
void *OPENSSL_sk_pop(OPENSSL_STACK *st)
{
if (st == NULL || st->num == 0)
return NULL;
return internal_delete(st, st->num - 1);
}
void OPENSSL_sk_zero(OPENSSL_STACK *st)
{
if (st == NULL || st->num == 0)
return;
memset(st->data, 0, sizeof(*st->data) * st->num);
st->num = 0;
}
void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
{
int i;
if (st == NULL)
return;
for (i = 0; i < st->num; i++)
if (st->data[i] != NULL)
func((char *)st->data[i]);
OPENSSL_sk_free(st);
}
void OPENSSL_sk_free(OPENSSL_STACK *st)
{
if (st == NULL)
return;
OPENSSL_free(st->data);
OPENSSL_free(st);
}
int OPENSSL_sk_num(const OPENSSL_STACK *st)
{
return st == NULL ? -1 : st->num;
}
void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
{
if (st == NULL || i < 0 || i >= st->num)
return NULL;
return (void *)st->data[i];
}
void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
{
if (st == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
if (i < 0 || i >= st->num) {
ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT,
"i=%d", i);
return NULL;
}
st->data[i] = data;
st->sorted = 0;
return (void *)st->data[i];
}
void OPENSSL_sk_sort(OPENSSL_STACK *st)
{
if (st != NULL && !st->sorted && st->comp != NULL) {
if (st->num > 1)
qsort(st->data, st->num, sizeof(void *), st->comp);
st->sorted = 1; /* empty or single-element stack is considered sorted */
}
}
int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
{
return st == NULL ? 1 : st->sorted;
}