openssl/providers/implementations/encode_decode/encode_key2any.c
Pauli 23b2fc0b50 rsa: add ossl_ prefix to internal rsa_ calls.
The functions being:
    rsa_check_crt_components, rsa_check_key, rsa_check_pminusq_diff,
    rsa_check_prime_factor, rsa_check_prime_factor_range,
    rsa_check_private_exponent, rsa_check_public_exponent,
    rsa_digestinfo_encoding, rsa_fips186_4_gen_prob_primes, rsa_fromdata,
    rsa_get0_all_params, rsa_get0_libctx, rsa_get0_pss_params_30,
    rsa_get_lcm, rsa_mgf_nid2name, rsa_mp_coeff_names, rsa_mp_exp_names,
    rsa_mp_factor_names, rsa_new_with_ctx, rsa_oaeppss_md2nid,
    rsa_oaeppss_nid2name, rsa_padding_add_PKCS1_OAEP_mgf1_with_libctx,
    rsa_padding_add_PKCS1_type_2_with_libctx,
    rsa_padding_add_SSLv23_with_libctx, rsa_padding_check_PKCS1_type_2_TLS,
    rsa_pkey_method, rsa_pss_params_30_copy, rsa_pss_params_30_fromdata,
    rsa_pss_params_30_hashalg, rsa_pss_params_30_is_unrestricted,
    rsa_pss_params_30_maskgenalg, rsa_pss_params_30_maskgenhashalg,
    rsa_pss_params_30_saltlen, rsa_pss_params_30_set_defaults,
    rsa_pss_params_30_set_hashalg, rsa_pss_params_30_set_maskgenalg,
    rsa_pss_params_30_set_maskgenhashalg, rsa_pss_params_30_set_saltlen,
    rsa_pss_params_30_set_trailerfield, rsa_pss_params_30_todata,
    rsa_pss_params_30_trailerfield, rsa_pss_pkey_method, rsa_set0_all_params,
    rsa_sp800_56b_check_keypair, rsa_sp800_56b_check_private,
    rsa_sp800_56b_check_public, rsa_sp800_56b_derive_params_from_pq,
    rsa_sp800_56b_generate_key, rsa_sp800_56b_pairwise_test,
    rsa_sp800_56b_validate_strength, rsa_todata, rsa_validate_pairwise,
    rsa_validate_private and rsa_validate_public.

Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13040)
2020-10-07 09:04:51 +10:00

966 lines
31 KiB
C

/*
* Copyright 2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Low level APIs are deprecated for public use, but still ok for internal use.
*/
#include "internal/deprecated.h"
#include <openssl/core.h>
#include <openssl/core_dispatch.h>
#include <openssl/core_names.h>
#include <openssl/crypto.h>
#include <openssl/params.h>
#include <openssl/asn1.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include <openssl/x509.h>
#include <openssl/pkcs12.h> /* PKCS8_encrypt() */
#include <openssl/dh.h>
#include <openssl/dsa.h>
#include <openssl/ec.h>
#include "internal/passphrase.h"
#include "internal/cryptlib.h"
#include "crypto/ecx.h"
#include "crypto/rsa.h"
#include "prov/implementations.h"
#include "prov/providercommonerr.h"
#include "prov/bio.h"
#include "prov/provider_ctx.h"
#include "prov/der_rsa.h"
#include "endecoder_local.h"
struct key2any_ctx_st {
PROV_CTX *provctx;
/* Set to 1 if intending to encrypt/decrypt, otherwise 0 */
int cipher_intent;
EVP_CIPHER *cipher;
struct ossl_passphrase_data_st pwdata;
};
typedef int check_key_type_fn(const void *key, int nid);
typedef int key_to_paramstring_fn(const void *key, int nid,
void **str, int *strtype);
typedef int key_to_der_fn(BIO *out, const void *key, int key_nid,
key_to_paramstring_fn *p2s, i2d_of_void *k2d,
struct key2any_ctx_st *ctx);
typedef int write_bio_of_void_fn(BIO *bp, const void *x);
static PKCS8_PRIV_KEY_INFO *key_to_p8info(const void *key, int key_nid,
void *params, int params_type,
i2d_of_void *k2d)
{
/* der, derlen store the key DER output and its length */
unsigned char *der = NULL;
int derlen;
/* The final PKCS#8 info */
PKCS8_PRIV_KEY_INFO *p8info = NULL;
if ((p8info = PKCS8_PRIV_KEY_INFO_new()) == NULL
|| (derlen = k2d(key, &der)) <= 0
|| !PKCS8_pkey_set0(p8info, OBJ_nid2obj(key_nid), 0,
params_type, params, der, derlen)) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
PKCS8_PRIV_KEY_INFO_free(p8info);
OPENSSL_free(der);
p8info = NULL;
}
return p8info;
}
static X509_SIG *p8info_to_encp8(PKCS8_PRIV_KEY_INFO *p8info,
struct key2any_ctx_st *ctx)
{
X509_SIG *p8 = NULL;
char kstr[PEM_BUFSIZE];
size_t klen = 0;
if (ctx->cipher == NULL)
return NULL;
if (!ossl_pw_get_passphrase(kstr, sizeof(kstr), &klen, NULL, 1,
&ctx->pwdata)) {
ERR_raise(ERR_LIB_PROV, PROV_R_READ_KEY);
return NULL;
}
/* First argument == -1 means "standard" */
p8 = PKCS8_encrypt(-1, ctx->cipher, kstr, klen, NULL, 0, 0, p8info);
OPENSSL_cleanse(kstr, klen);
return p8;
}
static X509_SIG *key_to_encp8(const void *key, int key_nid,
void *params, int params_type,
i2d_of_void *k2d, struct key2any_ctx_st *ctx)
{
PKCS8_PRIV_KEY_INFO *p8info =
key_to_p8info(key, key_nid, params, params_type, k2d);
X509_SIG *p8 = p8info_to_encp8(p8info, ctx);
PKCS8_PRIV_KEY_INFO_free(p8info);
return p8;
}
static X509_PUBKEY *key_to_pubkey(const void *key, int key_nid,
void *params, int params_type,
i2d_of_void k2d)
{
/* der, derlen store the key DER output and its length */
unsigned char *der = NULL;
int derlen;
/* The final X509_PUBKEY */
X509_PUBKEY *xpk = NULL;
if ((xpk = X509_PUBKEY_new()) == NULL
|| (derlen = k2d(key, &der)) <= 0
|| !X509_PUBKEY_set0_param(xpk, OBJ_nid2obj(key_nid),
params_type, params, der, derlen)) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
X509_PUBKEY_free(xpk);
OPENSSL_free(der);
xpk = NULL;
}
return xpk;
}
static int key_to_der_pkcs8_bio(BIO *out, const void *key, int key_nid,
key_to_paramstring_fn *p2s, i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
if (p2s != NULL && !p2s(key, key_nid, &str, &strtype))
return 0;
if (ctx->cipher_intent) {
X509_SIG *p8 = key_to_encp8(key, key_nid, str, strtype, k2d, ctx);
if (p8 != NULL)
ret = i2d_PKCS8_bio(out, p8);
X509_SIG_free(p8);
} else {
PKCS8_PRIV_KEY_INFO *p8info =
key_to_p8info(key, key_nid, str, strtype, k2d);
if (p8info != NULL)
ret = i2d_PKCS8_PRIV_KEY_INFO_bio(out, p8info);
PKCS8_PRIV_KEY_INFO_free(p8info);
}
return ret;
}
static int key_to_pem_pkcs8_bio(BIO *out, const void *key, int key_nid,
key_to_paramstring_fn *p2s, i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
if (p2s != NULL && !p2s(key, key_nid, &str, &strtype))
return 0;
if (ctx->cipher_intent) {
X509_SIG *p8 = key_to_encp8(key, key_nid, str, strtype, k2d, ctx);
if (p8 != NULL)
ret = PEM_write_bio_PKCS8(out, p8);
X509_SIG_free(p8);
} else {
PKCS8_PRIV_KEY_INFO *p8info =
key_to_p8info(key, key_nid, str, strtype, k2d);
if (p8info != NULL)
ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(out, p8info);
PKCS8_PRIV_KEY_INFO_free(p8info);
}
return ret;
}
static int key_to_der_pubkey_bio(BIO *out, const void *key, int key_nid,
key_to_paramstring_fn *p2s, i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
X509_PUBKEY *xpk = NULL;
if (p2s != NULL && !p2s(key, key_nid, &str, &strtype))
return 0;
xpk = key_to_pubkey(key, key_nid, str, strtype, k2d);
if (xpk != NULL)
ret = i2d_X509_PUBKEY_bio(out, xpk);
/* Also frees |str| */
X509_PUBKEY_free(xpk);
return ret;
}
static int key_to_pem_pubkey_bio(BIO *out, const void *key, int key_nid,
key_to_paramstring_fn *p2s, i2d_of_void *k2d,
struct key2any_ctx_st *ctx)
{
int ret = 0;
void *str = NULL;
int strtype = V_ASN1_UNDEF;
X509_PUBKEY *xpk = NULL;
if (p2s != NULL && !p2s(key, key_nid, &str, &strtype))
return 0;
xpk = key_to_pubkey(key, key_nid, str, strtype, k2d);
if (xpk != NULL)
ret = PEM_write_bio_X509_PUBKEY(out, xpk);
/* Also frees |str| */
X509_PUBKEY_free(xpk);
return ret;
}
#define der_output_type "DER"
#define pem_output_type "PEM"
/* ---------------------------------------------------------------------- */
#ifndef OPENSSL_NO_DH
static int prepare_dh_params(const void *dh, int nid,
void **pstr, int *pstrtype)
{
ASN1_STRING *params = ASN1_STRING_new();
if (params == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
if (nid == EVP_PKEY_DHX)
params->length = i2d_DHxparams(dh, &params->data);
else
params->length = i2d_DHparams(dh, &params->data);
if (params->length <= 0) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
ASN1_STRING_free(params);
return 0;
}
params->type = V_ASN1_SEQUENCE;
*pstr = params;
*pstrtype = V_ASN1_SEQUENCE;
return 1;
}
static int dh_pub_to_der(const void *dh, unsigned char **pder)
{
const BIGNUM *bn = NULL;
ASN1_INTEGER *pub_key = NULL;
int ret;
if ((bn = DH_get0_pub_key(dh)) == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY);
return 0;
}
if ((pub_key = BN_to_ASN1_INTEGER(bn, NULL)) == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_BN_ERROR);
return 0;
}
ret = i2d_ASN1_INTEGER(pub_key, pder);
ASN1_STRING_clear_free(pub_key);
return ret;
}
static int dh_priv_to_der(const void *dh, unsigned char **pder)
{
const BIGNUM *bn = NULL;
ASN1_INTEGER *priv_key = NULL;
int ret;
if ((bn = DH_get0_priv_key(dh)) == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PRIVATE_KEY);
return 0;
}
if ((priv_key = BN_to_ASN1_INTEGER(bn, NULL)) == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_BN_ERROR);
return 0;
}
ret = i2d_ASN1_INTEGER(priv_key, pder);
ASN1_STRING_clear_free(priv_key);
return ret;
}
static int dh_params_to_der_bio(BIO *out, const void *key)
{
return i2d_DHparams_bio(out, key);
}
static int dh_params_to_pem_bio(BIO *out, const void *key)
{
return PEM_write_bio_DHparams(out, key);
}
static int dh_check_key_type(const void *key, int expected_type)
{
int type =
DH_test_flags(key, DH_FLAG_TYPE_DHX) ? EVP_PKEY_DHX : EVP_PKEY_DH;
return type == expected_type;
}
# define dh_evp_type EVP_PKEY_DH
# define dhx_evp_type EVP_PKEY_DHX
# define dh_input_type "DH"
# define dhx_input_type "DHX"
#endif
/* ---------------------------------------------------------------------- */
#ifndef OPENSSL_NO_DSA
static int prepare_some_dsa_params(const void *dsa, int nid,
void **pstr, int *pstrtype)
{
ASN1_STRING *params = ASN1_STRING_new();
if (params == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
params->length = i2d_DSAparams(dsa, &params->data);
if (params->length <= 0) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
ASN1_STRING_free(params);
return 0;
}
*pstrtype = V_ASN1_SEQUENCE;
*pstr = params;
return 1;
}
static int prepare_all_dsa_params(const void *dsa, int nid,
void **pstr, int *pstrtype)
{
const BIGNUM *p = DSA_get0_p(dsa);
const BIGNUM *q = DSA_get0_q(dsa);
const BIGNUM *g = DSA_get0_g(dsa);
if (p != NULL && q != NULL && g != NULL)
return prepare_some_dsa_params(dsa, nid, pstr, pstrtype);
*pstr = NULL;
*pstrtype = V_ASN1_UNDEF;
return 1;
}
static int prepare_dsa_params(const void *dsa, int nid,
void **pstr, int *pstrtype)
{
/*
* TODO(v3.0) implement setting save_parameters, see dsa_pub_encode()
* in crypto/dsa/dsa_ameth.c
*/
int save_parameters = 1;
return save_parameters
? prepare_all_dsa_params(dsa, nid, pstr, pstrtype)
: prepare_some_dsa_params(dsa, nid, pstr, pstrtype);
}
static int dsa_pub_to_der(const void *dsa, unsigned char **pder)
{
const BIGNUM *bn = NULL;
ASN1_INTEGER *pub_key = NULL;
int ret;
if ((bn = DSA_get0_pub_key(dsa)) == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PUBLIC_KEY);
return 0;
}
if ((pub_key = BN_to_ASN1_INTEGER(bn, NULL)) == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_BN_ERROR);
return 0;
}
ret = i2d_ASN1_INTEGER(pub_key, pder);
ASN1_STRING_clear_free(pub_key);
return ret;
}
static int dsa_priv_to_der(const void *dsa, unsigned char **pder)
{
const BIGNUM *bn = NULL;
ASN1_INTEGER *priv_key = NULL;
int ret;
if ((bn = DSA_get0_priv_key(dsa)) == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_NOT_A_PRIVATE_KEY);
return 0;
}
if ((priv_key = BN_to_ASN1_INTEGER(bn, NULL)) == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_BN_ERROR);
return 0;
}
ret = i2d_ASN1_INTEGER(priv_key, pder);
ASN1_STRING_clear_free(priv_key);
return ret;
}
static int dsa_params_to_der_bio(BIO *out, const void *key)
{
return i2d_DSAparams_bio(out, key);
}
static int dsa_params_to_pem_bio(BIO *out, const void *key)
{
return PEM_write_bio_DSAparams(out, key);
}
# define dsa_check_key_type NULL
# define dsa_evp_type EVP_PKEY_DSA
# define dsa_input_type "DSA"
#endif
/* ---------------------------------------------------------------------- */
#ifndef OPENSSL_NO_EC
static int prepare_ec_explicit_params(const void *eckey,
void **pstr, int *pstrtype)
{
ASN1_STRING *params = ASN1_STRING_new();
if (params == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
params->length = i2d_ECParameters(eckey, &params->data);
if (params->length <= 0) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
ASN1_STRING_free(params);
return 0;
}
*pstrtype = V_ASN1_SEQUENCE;
*pstr = params;
return 1;
}
static int prepare_ec_params(const void *eckey, int nid,
void **pstr, int *pstrtype)
{
int curve_nid;
const EC_GROUP *group = EC_KEY_get0_group(eckey);
ASN1_OBJECT *params = NULL;
if (group == NULL)
return 0;
curve_nid = EC_GROUP_get_curve_name(group);
if (curve_nid != NID_undef) {
params = OBJ_nid2obj(curve_nid);
if (params == NULL)
return 0;
}
if (curve_nid != NID_undef
&& (EC_GROUP_get_asn1_flag(group) & OPENSSL_EC_NAMED_CURVE)) {
if (OBJ_length(params) == 0) {
/* Some curves might not have an associated OID */
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_OID);
ASN1_OBJECT_free(params);
return 0;
}
*pstr = params;
*pstrtype = V_ASN1_OBJECT;
return 1;
} else {
return prepare_ec_explicit_params(eckey, pstr, pstrtype);
}
}
static int ec_params_to_der_bio(BIO *out, const void *eckey)
{
return i2d_ECPKParameters_bio(out, EC_KEY_get0_group(eckey));
}
static int ec_params_to_pem_bio(BIO *out, const void *eckey)
{
return PEM_write_bio_ECPKParameters(out, EC_KEY_get0_group(eckey));
}
static int ec_pub_to_der(const void *eckey, unsigned char **pder)
{
return i2o_ECPublicKey(eckey, pder);
}
static int ec_priv_to_der(const void *veckey, unsigned char **pder)
{
EC_KEY *eckey = (EC_KEY *)veckey;
unsigned int old_flags;
int ret = 0;
/*
* For PKCS8 the curve name appears in the PKCS8_PRIV_KEY_INFO object
* as the pkeyalg->parameter field. (For a named curve this is an OID)
* The pkey field is an octet string that holds the encoded
* ECPrivateKey SEQUENCE with the optional parameters field omitted.
* We omit this by setting the EC_PKEY_NO_PARAMETERS flag.
*/
old_flags = EC_KEY_get_enc_flags(eckey); /* save old flags */
EC_KEY_set_enc_flags(eckey, old_flags | EC_PKEY_NO_PARAMETERS);
ret = i2d_ECPrivateKey(eckey, pder);
EC_KEY_set_enc_flags(eckey, old_flags); /* restore old flags */
return ret; /* return the length of the der encoded data */
}
# define ec_check_key_type NULL
# define ec_evp_type EVP_PKEY_EC
# define ec_input_type "EC"
#endif
/* ---------------------------------------------------------------------- */
#ifndef OPENSSL_NO_EC
# define prepare_ecx_params NULL
static int ecx_pub_to_der(const void *vecxkey, unsigned char **pder)
{
const ECX_KEY *ecxkey = vecxkey;
unsigned char *keyblob;
if (ecxkey == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
keyblob = OPENSSL_memdup(ecxkey->pubkey, ecxkey->keylen);
if (keyblob == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
*pder = keyblob;
return ecxkey->keylen;
}
static int ecx_priv_to_der(const void *vecxkey, unsigned char **pder)
{
const ECX_KEY *ecxkey = vecxkey;
ASN1_OCTET_STRING oct;
int keybloblen;
if (ecxkey == NULL || ecxkey->privkey == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
oct.data = ecxkey->privkey;
oct.length = ecxkey->keylen;
oct.flags = 0;
keybloblen = i2d_ASN1_OCTET_STRING(&oct, pder);
if (keybloblen < 0) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
return keybloblen;
}
# define ecx_params_to_der_bio NULL
# define ecx_params_to_pem_bio NULL
# define ecx_check_key_type NULL
# define ed25519_evp_type EVP_PKEY_ED25519
# define ed448_evp_type EVP_PKEY_ED448
# define x25519_evp_type EVP_PKEY_X25519
# define x448_evp_type EVP_PKEY_X448
# define ed25519_input_type "ED25519"
# define ed448_input_type "ED448"
# define x25519_input_type "X25519"
# define x448_input_type "X448"
#endif
/* ---------------------------------------------------------------------- */
/*
* Helper functions to prepare RSA-PSS params for encoding. We would
* have simply written the whole AlgorithmIdentifier, but existing libcrypto
* functionality doesn't allow that.
*/
static int prepare_rsa_params(const void *rsa, int nid,
void **pstr, int *pstrtype)
{
const RSA_PSS_PARAMS_30 *pss = ossl_rsa_get0_pss_params_30((RSA *)rsa);
*pstr = NULL;
switch (RSA_test_flags(rsa, RSA_FLAG_TYPE_MASK)) {
case RSA_FLAG_TYPE_RSA:
/* If plain RSA, the parameters shall be NULL */
*pstrtype = V_ASN1_NULL;
return 1;
case RSA_FLAG_TYPE_RSASSAPSS:
if (ossl_rsa_pss_params_30_is_unrestricted(pss)) {
*pstrtype = V_ASN1_UNDEF;
return 1;
} else {
ASN1_STRING *astr = NULL;
WPACKET pkt;
unsigned char *str = NULL;
size_t str_sz = 0;
int i;
for (i = 0; i < 2; i++) {
switch (i) {
case 0:
if (!WPACKET_init_null_der(&pkt))
goto err;
break;
case 1:
if ((str = OPENSSL_malloc(str_sz)) == NULL
|| !WPACKET_init_der(&pkt, str, str_sz)) {
goto err;
}
break;
}
if (!ossl_DER_w_RSASSA_PSS_params(&pkt, -1, pss)
|| !WPACKET_finish(&pkt)
|| !WPACKET_get_total_written(&pkt, &str_sz))
goto err;
WPACKET_cleanup(&pkt);
/*
* If no PSS parameters are going to be written, there's no
* point going for another iteration.
* This saves us from getting |str| allocated just to have it
* immediately de-allocated.
*/
if (str_sz == 0)
break;
}
if ((astr = ASN1_STRING_new()) == NULL)
goto err;
*pstrtype = V_ASN1_SEQUENCE;
ASN1_STRING_set0(astr, str, (int)str_sz);
*pstr = astr;
return 1;
err:
OPENSSL_free(str);
return 0;
}
}
/* Currently unsupported RSA key type */
return 0;
}
#define rsa_params_to_der_bio NULL
#define rsa_params_to_pem_bio NULL
#define rsa_priv_to_der (i2d_of_void *)i2d_RSAPrivateKey
#define rsa_pub_to_der (i2d_of_void *)i2d_RSAPublicKey
static int rsa_check_key_type(const void *rsa, int expected_type)
{
switch (RSA_test_flags(rsa, RSA_FLAG_TYPE_MASK)) {
case RSA_FLAG_TYPE_RSA:
return expected_type == EVP_PKEY_RSA;
case RSA_FLAG_TYPE_RSASSAPSS:
return expected_type == EVP_PKEY_RSA_PSS;
}
/* Currently unsupported RSA key type */
return EVP_PKEY_NONE;
}
#define rsa_evp_type EVP_PKEY_RSA
#define rsapss_evp_type EVP_PKEY_RSA_PSS
#define rsa_input_type "RSA"
#define rsapss_input_type "RSA-PSS"
/* ---------------------------------------------------------------------- */
static OSSL_FUNC_decoder_newctx_fn key2any_newctx;
static OSSL_FUNC_decoder_freectx_fn key2any_freectx;
static OSSL_FUNC_decoder_gettable_params_fn key2any_gettable_params;
static void *key2any_newctx(void *provctx)
{
struct key2any_ctx_st *ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx != NULL)
ctx->provctx = provctx;
return ctx;
}
static void key2any_freectx(void *vctx)
{
struct key2any_ctx_st *ctx = vctx;
ossl_pw_clear_passphrase_data(&ctx->pwdata);
EVP_CIPHER_free(ctx->cipher);
OPENSSL_free(ctx);
}
static const OSSL_PARAM *key2any_gettable_params(void *provctx)
{
static const OSSL_PARAM gettables[] = {
{ OSSL_ENCODER_PARAM_OUTPUT_TYPE, OSSL_PARAM_UTF8_PTR, NULL, 0, 0 },
OSSL_PARAM_END,
};
return gettables;
}
static int key2any_get_params(OSSL_PARAM params[], const char *input_type,
const char *output_type)
{
OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_ENCODER_PARAM_INPUT_TYPE);
if (p != NULL && !OSSL_PARAM_set_utf8_ptr(p, input_type))
return 0;
p = OSSL_PARAM_locate(params, OSSL_ENCODER_PARAM_OUTPUT_TYPE);
if (p != NULL && !OSSL_PARAM_set_utf8_ptr(p, output_type))
return 0;
return 1;
}
static const OSSL_PARAM *key2any_settable_ctx_params(ossl_unused void *provctx)
{
static const OSSL_PARAM settables[] = {
OSSL_PARAM_utf8_string(OSSL_ENCODER_PARAM_CIPHER, NULL, 0),
OSSL_PARAM_utf8_string(OSSL_ENCODER_PARAM_PROPERTIES, NULL, 0),
OSSL_PARAM_END,
};
return settables;
}
static int key2any_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
struct key2any_ctx_st *ctx = vctx;
OPENSSL_CTX *libctx = ossl_prov_ctx_get0_library_context(ctx->provctx);
const OSSL_PARAM *cipherp =
OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_CIPHER);
const OSSL_PARAM *propsp =
OSSL_PARAM_locate_const(params, OSSL_ENCODER_PARAM_PROPERTIES);
if (cipherp != NULL) {
const char *ciphername = NULL;
const char *props = NULL;
if (!OSSL_PARAM_get_utf8_string_ptr(cipherp, &ciphername))
return 0;
if (propsp != NULL && !OSSL_PARAM_get_utf8_string_ptr(propsp, &props))
return 0;
EVP_CIPHER_free(ctx->cipher);
ctx->cipher_intent = ciphername != NULL;
if (ciphername != NULL
&& ((ctx->cipher =
EVP_CIPHER_fetch(libctx, ciphername, props)) == NULL))
return 0;
}
return 1;
}
static int key2any_encode(struct key2any_ctx_st *ctx, OSSL_CORE_BIO *cout,
const void *key, int type,
check_key_type_fn *checker,
key_to_der_fn *writer,
OSSL_PASSPHRASE_CALLBACK *cb, void *cbarg,
key_to_paramstring_fn *key2paramstring,
i2d_of_void *key2der)
{
int ret = 0;
if (key == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_NULL_PARAMETER);
} else if (checker == NULL || checker(key, type)) {
BIO *out = bio_new_from_core_bio(ctx->provctx, cout);
if (out != NULL
&& writer != NULL
&& ossl_pw_set_ossl_passphrase_cb(&ctx->pwdata, cb, cbarg))
ret = writer(out, key, type, key2paramstring, key2der, ctx);
BIO_free(out);
} else {
ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT);
}
return ret;
}
static int key2any_encode_params(struct key2any_ctx_st *ctx,
OSSL_CORE_BIO *cout,
const void *key, int type,
check_key_type_fn *checker,
write_bio_of_void_fn *writer)
{
int ret = 0;
if (key == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_NULL_PARAMETER);
} else if (checker == NULL || checker(key, type)) {
BIO *out = bio_new_from_core_bio(ctx->provctx, cout);
if (out != NULL && writer != NULL)
ret = writer(out, key);
BIO_free(out);
} else {
ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT);
}
return ret;
}
#define MAKE_ENCODER(impl, type, evp_type, output) \
static OSSL_FUNC_encoder_get_params_fn \
impl##2##output##_get_params; \
static OSSL_FUNC_encoder_import_object_fn \
impl##2##output##_import_object; \
static OSSL_FUNC_encoder_free_object_fn \
impl##2##output##_free_object; \
static OSSL_FUNC_encoder_encode_fn impl##2##output##_encode; \
\
static int impl##2##output##_get_params(OSSL_PARAM params[]) \
{ \
return key2any_get_params(params, impl##_input_type, \
output##_output_type); \
} \
static void * \
impl##2##output##_import_object(void *vctx, int selection, \
const OSSL_PARAM params[]) \
{ \
struct key2any_ctx_st *ctx = vctx; \
return ossl_prov_import_key(ossl_##impl##_keymgmt_functions, \
ctx->provctx, selection, params); \
} \
static void impl##2##output##_free_object(void *key) \
{ \
ossl_prov_free_key(ossl_##impl##_keymgmt_functions, key); \
} \
static int \
impl##2##output##_encode(void *ctx, OSSL_CORE_BIO *cout, \
const void *key, \
const OSSL_PARAM key_abstract[], \
int selection, \
OSSL_PASSPHRASE_CALLBACK *cb, void *cbarg) \
{ \
/* We don't deal with abstract objects */ \
if (key_abstract != NULL) { \
ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT); \
return 0; \
} \
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) \
return key2any_encode(ctx, cout, key, impl##_evp_type, \
type##_check_key_type, \
key_to_##output##_pkcs8_bio, \
cb, cbarg, \
prepare_##type##_params, \
type##_priv_to_der); \
if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) \
return key2any_encode(ctx, cout, key, impl##_evp_type, \
type##_check_key_type, \
key_to_##output##_pubkey_bio, \
cb, cbarg, \
prepare_##type##_params, \
type##_pub_to_der); \
if ((selection & OSSL_KEYMGMT_SELECT_ALL_PARAMETERS) != 0) \
return key2any_encode_params(ctx, cout, key, \
impl##_evp_type, \
type##_check_key_type, \
type##_params_to_##output##_bio); \
\
ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT); \
return 0; \
} \
const OSSL_DISPATCH ossl_##impl##_to_##output##_encoder_functions[] = { \
{ OSSL_FUNC_ENCODER_NEWCTX, \
(void (*)(void))key2any_newctx }, \
{ OSSL_FUNC_ENCODER_FREECTX, \
(void (*)(void))key2any_freectx }, \
{ OSSL_FUNC_ENCODER_GETTABLE_PARAMS, \
(void (*)(void))key2any_gettable_params }, \
{ OSSL_FUNC_ENCODER_GET_PARAMS, \
(void (*)(void))impl##2##output##_get_params }, \
{ OSSL_FUNC_ENCODER_SETTABLE_CTX_PARAMS, \
(void (*)(void))key2any_settable_ctx_params }, \
{ OSSL_FUNC_ENCODER_SET_CTX_PARAMS, \
(void (*)(void))key2any_set_ctx_params }, \
{ OSSL_FUNC_ENCODER_IMPORT_OBJECT, \
(void (*)(void))impl##2##output##_import_object }, \
{ OSSL_FUNC_ENCODER_FREE_OBJECT, \
(void (*)(void))impl##2##output##_free_object }, \
{ OSSL_FUNC_ENCODER_ENCODE, \
(void (*)(void))impl##2##output##_encode }, \
{ 0, NULL } \
}
#ifndef OPENSSL_NO_DH
MAKE_ENCODER(dh, dh, EVP_PKEY_DH, der);
MAKE_ENCODER(dh, dh, EVP_PKEY_DH, pem);
MAKE_ENCODER(dhx, dh, EVP_PKEY_DH, der);
MAKE_ENCODER(dhx, dh, EVP_PKEY_DH, pem);
#endif
#ifndef OPENSSL_NO_DSA
MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, der);
MAKE_ENCODER(dsa, dsa, EVP_PKEY_DSA, pem);
#endif
#ifndef OPENSSL_NO_EC
MAKE_ENCODER(ec, ec, EVP_PKEY_EC, der);
MAKE_ENCODER(ec, ec, EVP_PKEY_EC, pem);
MAKE_ENCODER(ed25519, ecx, EVP_PKEY_ED25519, der);
MAKE_ENCODER(ed25519, ecx, EVP_PKEY_ED25519, pem);
MAKE_ENCODER(ed448, ecx, EVP_PKEY_ED448, der);
MAKE_ENCODER(ed448, ecx, EVP_PKEY_ED448, pem);
MAKE_ENCODER(x25519, ecx, EVP_PKEY_X25519, der);
MAKE_ENCODER(x25519, ecx, EVP_PKEY_X25519, pem);
MAKE_ENCODER(x448, ecx, EVP_PKEY_ED448, der);
MAKE_ENCODER(x448, ecx, EVP_PKEY_ED448, pem);
#endif
MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, der);
MAKE_ENCODER(rsa, rsa, EVP_PKEY_RSA, pem);
MAKE_ENCODER(rsapss, rsa, EVP_PKEY_RSA, der);
MAKE_ENCODER(rsapss, rsa, EVP_PKEY_RSA, pem);