openssl/apps/list.c
Pauli f4bd510503 list: add a -provider-info option.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/13084)
2020-10-16 10:33:38 +10:00

1542 lines
46 KiB
C

/*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* We need to use some deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED
#include <string.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/provider.h>
#include <openssl/safestack.h>
#include <openssl/kdf.h>
#include <openssl/encoder.h>
#include <openssl/decoder.h>
#include <openssl/core_names.h>
#include <openssl/rand.h>
#include "apps.h"
#include "app_params.h"
#include "progs.h"
#include "opt.h"
#include "names.h"
static int verbose = 0;
static const char *select_name = NULL;
static void legacy_cipher_fn(const EVP_CIPHER *c,
const char *from, const char *to, void *arg)
{
if (select_name != NULL
&& (c == NULL
|| strcasecmp(select_name, EVP_CIPHER_name(c)) != 0))
return;
if (c != NULL) {
BIO_printf(arg, " %s\n", EVP_CIPHER_name(c));
} else {
if (from == NULL)
from = "<undefined>";
if (to == NULL)
to = "<undefined>";
BIO_printf(arg, " %s => %s\n", from, to);
}
}
DEFINE_STACK_OF(EVP_CIPHER)
static int cipher_cmp(const EVP_CIPHER * const *a,
const EVP_CIPHER * const *b)
{
int ret = EVP_CIPHER_number(*a) - EVP_CIPHER_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_CIPHER_provider(*a)),
OSSL_PROVIDER_name(EVP_CIPHER_provider(*b)));
return ret;
}
static void collect_ciphers(EVP_CIPHER *cipher, void *stack)
{
STACK_OF(EVP_CIPHER) *cipher_stack = stack;
if (sk_EVP_CIPHER_push(cipher_stack, cipher) > 0)
EVP_CIPHER_up_ref(cipher);
}
static void list_ciphers(void)
{
STACK_OF(EVP_CIPHER) *ciphers = sk_EVP_CIPHER_new(cipher_cmp);
int i;
if (ciphers == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Legacy:\n");
EVP_CIPHER_do_all_sorted(legacy_cipher_fn, bio_out);
BIO_printf(bio_out, "Provided:\n");
EVP_CIPHER_do_all_provided(NULL, collect_ciphers, ciphers);
sk_EVP_CIPHER_sort(ciphers);
for (i = 0; i < sk_EVP_CIPHER_num(ciphers); i++) {
const EVP_CIPHER *c = sk_EVP_CIPHER_value(ciphers, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !EVP_CIPHER_is_a(c, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
EVP_CIPHER_names_do_all(c, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_CIPHER_provider(c)));
if (verbose) {
print_param_types("retrievable algorithm parameters",
EVP_CIPHER_gettable_params(c), 4);
print_param_types("retrievable operation parameters",
EVP_CIPHER_gettable_ctx_params(c), 4);
print_param_types("settable operation parameters",
EVP_CIPHER_settable_ctx_params(c), 4);
}
}
sk_EVP_CIPHER_pop_free(ciphers, EVP_CIPHER_free);
}
static void list_md_fn(const EVP_MD *m,
const char *from, const char *to, void *arg)
{
if (m != NULL) {
BIO_printf(arg, " %s\n", EVP_MD_name(m));
} else {
if (from == NULL)
from = "<undefined>";
if (to == NULL)
to = "<undefined>";
BIO_printf((BIO *)arg, " %s => %s\n", from, to);
}
}
DEFINE_STACK_OF(EVP_MD)
static int md_cmp(const EVP_MD * const *a, const EVP_MD * const *b)
{
int ret = EVP_MD_number(*a) - EVP_MD_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_MD_provider(*a)),
OSSL_PROVIDER_name(EVP_MD_provider(*b)));
return ret;
}
static void collect_digests(EVP_MD *md, void *stack)
{
STACK_OF(EVP_MD) *digest_stack = stack;
if (sk_EVP_MD_push(digest_stack, md) > 0)
EVP_MD_up_ref(md);
}
static void list_digests(void)
{
STACK_OF(EVP_MD) *digests = sk_EVP_MD_new(md_cmp);
int i;
if (digests == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Legacy:\n");
EVP_MD_do_all_sorted(list_md_fn, bio_out);
BIO_printf(bio_out, "Provided:\n");
EVP_MD_do_all_provided(NULL, collect_digests, digests);
sk_EVP_MD_sort(digests);
for (i = 0; i < sk_EVP_MD_num(digests); i++) {
const EVP_MD *m = sk_EVP_MD_value(digests, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !EVP_MD_is_a(m, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
EVP_MD_names_do_all(m, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_MD_provider(m)));
if (verbose) {
print_param_types("retrievable algorithm parameters",
EVP_MD_gettable_params(m), 4);
print_param_types("retrievable operation parameters",
EVP_MD_gettable_ctx_params(m), 4);
print_param_types("settable operation parameters",
EVP_MD_settable_ctx_params(m), 4);
}
}
sk_EVP_MD_pop_free(digests, EVP_MD_free);
}
DEFINE_STACK_OF(EVP_MAC)
static int mac_cmp(const EVP_MAC * const *a, const EVP_MAC * const *b)
{
int ret = EVP_MAC_number(*a) - EVP_MAC_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_MAC_provider(*a)),
OSSL_PROVIDER_name(EVP_MAC_provider(*b)));
return ret;
}
static void collect_macs(EVP_MAC *mac, void *stack)
{
STACK_OF(EVP_MAC) *mac_stack = stack;
if (sk_EVP_MAC_push(mac_stack, mac) > 0)
EVP_MAC_up_ref(mac);
}
static void list_macs(void)
{
STACK_OF(EVP_MAC) *macs = sk_EVP_MAC_new(mac_cmp);
int i;
if (macs == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Provided MACs:\n");
EVP_MAC_do_all_provided(NULL, collect_macs, macs);
sk_EVP_MAC_sort(macs);
for (i = 0; i < sk_EVP_MAC_num(macs); i++) {
const EVP_MAC *m = sk_EVP_MAC_value(macs, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !EVP_MAC_is_a(m, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
EVP_MAC_names_do_all(m, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_MAC_provider(m)));
if (verbose) {
print_param_types("retrievable algorithm parameters",
EVP_MAC_gettable_params(m), 4);
print_param_types("retrievable operation parameters",
EVP_MAC_gettable_ctx_params(m), 4);
print_param_types("settable operation parameters",
EVP_MAC_settable_ctx_params(m), 4);
}
}
sk_EVP_MAC_pop_free(macs, EVP_MAC_free);
}
/*
* KDFs and PRFs
*/
DEFINE_STACK_OF(EVP_KDF)
static int kdf_cmp(const EVP_KDF * const *a, const EVP_KDF * const *b)
{
int ret = EVP_KDF_number(*a) - EVP_KDF_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_KDF_provider(*a)),
OSSL_PROVIDER_name(EVP_KDF_provider(*b)));
return ret;
}
static void collect_kdfs(EVP_KDF *kdf, void *stack)
{
STACK_OF(EVP_KDF) *kdf_stack = stack;
sk_EVP_KDF_push(kdf_stack, kdf);
EVP_KDF_up_ref(kdf);
}
static void list_kdfs(void)
{
STACK_OF(EVP_KDF) *kdfs = sk_EVP_KDF_new(kdf_cmp);
int i;
if (kdfs == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Provided KDFs and PDFs:\n");
EVP_KDF_do_all_provided(NULL, collect_kdfs, kdfs);
sk_EVP_KDF_sort(kdfs);
for (i = 0; i < sk_EVP_KDF_num(kdfs); i++) {
const EVP_KDF *k = sk_EVP_KDF_value(kdfs, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !EVP_KDF_is_a(k, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
EVP_KDF_names_do_all(k, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_KDF_provider(k)));
if (verbose) {
print_param_types("retrievable algorithm parameters",
EVP_KDF_gettable_params(k), 4);
print_param_types("retrievable operation parameters",
EVP_KDF_gettable_ctx_params(k), 4);
print_param_types("settable operation parameters",
EVP_KDF_settable_ctx_params(k), 4);
}
}
sk_EVP_KDF_pop_free(kdfs, EVP_KDF_free);
}
/*
* RANDs
*/
DEFINE_STACK_OF(EVP_RAND)
static int rand_cmp(const EVP_RAND * const *a, const EVP_RAND * const *b)
{
int ret = strcasecmp(EVP_RAND_name(*a), EVP_RAND_name(*b));
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_RAND_provider(*a)),
OSSL_PROVIDER_name(EVP_RAND_provider(*b)));
return ret;
}
static void collect_rands(EVP_RAND *rand, void *stack)
{
STACK_OF(EVP_RAND) *rand_stack = stack;
sk_EVP_RAND_push(rand_stack, rand);
EVP_RAND_up_ref(rand);
}
static void list_random_generators(void)
{
STACK_OF(EVP_RAND) *rands = sk_EVP_RAND_new(rand_cmp);
int i;
if (rands == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Provided RNGs and seed sources:\n");
EVP_RAND_do_all_provided(NULL, collect_rands, rands);
sk_EVP_RAND_sort(rands);
for (i = 0; i < sk_EVP_RAND_num(rands); i++) {
const EVP_RAND *m = sk_EVP_RAND_value(rands, i);
if (select_name != NULL
&& strcasecmp(EVP_RAND_name(m), select_name) != 0)
continue;
BIO_printf(bio_out, " %s", EVP_RAND_name(m));
BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_RAND_provider(m)));
if (verbose) {
print_param_types("retrievable algorithm parameters",
EVP_RAND_gettable_params(m), 4);
print_param_types("retrievable operation parameters",
EVP_RAND_gettable_ctx_params(m), 4);
print_param_types("settable operation parameters",
EVP_RAND_settable_ctx_params(m), 4);
}
}
sk_EVP_RAND_pop_free(rands, EVP_RAND_free);
}
static void display_random(const char *name, EVP_RAND_CTX *drbg)
{
EVP_RAND *rand;
uint64_t u;
const char *p;
const OSSL_PARAM *gettables;
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
unsigned char buf[1000];
BIO_printf(bio_out, "%s:\n", name);
if (drbg != NULL) {
rand = EVP_RAND_CTX_rand(drbg);
BIO_printf(bio_out, " %s", EVP_RAND_name(rand));
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_RAND_provider(rand)));
switch (EVP_RAND_state(drbg)) {
case EVP_RAND_STATE_UNINITIALISED:
p = "uninitialised";
break;
case EVP_RAND_STATE_READY:
p = "ready";
break;
case EVP_RAND_STATE_ERROR:
p = "error";
break;
default:
p = "unknown";
break;
}
BIO_printf(bio_out, " state = %s\n", p);
gettables = EVP_RAND_gettable_ctx_params(rand);
if (gettables != NULL)
for (; gettables->key != NULL; gettables++) {
/* State has been dealt with already, so ignore */
if (strcasecmp(gettables->key, OSSL_RAND_PARAM_STATE) == 0)
continue;
/* Outside of verbose mode, we skip non-string values */
if (gettables->data_type != OSSL_PARAM_UTF8_STRING
&& gettables->data_type != OSSL_PARAM_UTF8_PTR
&& !verbose)
continue;
params->key = gettables->key;
params->data_type = gettables->data_type;
if (gettables->data_type == OSSL_PARAM_UNSIGNED_INTEGER
|| gettables->data_type == OSSL_PARAM_INTEGER) {
params->data = &u;
params->data_size = sizeof(u);
} else {
params->data = buf;
params->data_size = sizeof(buf);
}
params->return_size = 0;
if (EVP_RAND_get_ctx_params(drbg, params))
print_param_value(params, 2);
}
}
}
static void list_random_instances(void)
{
display_random("primary", RAND_get0_primary(NULL));
display_random("public", RAND_get0_public(NULL));
display_random("private", RAND_get0_private(NULL));
}
/*
* Encoders
*/
DEFINE_STACK_OF(OSSL_ENCODER)
static int encoder_cmp(const OSSL_ENCODER * const *a,
const OSSL_ENCODER * const *b)
{
int ret = OSSL_ENCODER_number(*a) - OSSL_ENCODER_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(OSSL_ENCODER_provider(*a)),
OSSL_PROVIDER_name(OSSL_ENCODER_provider(*b)));
return ret;
}
static void collect_encoders(OSSL_ENCODER *encoder, void *stack)
{
STACK_OF(OSSL_ENCODER) *encoder_stack = stack;
sk_OSSL_ENCODER_push(encoder_stack, encoder);
OSSL_ENCODER_up_ref(encoder);
}
static void list_encoders(void)
{
STACK_OF(OSSL_ENCODER) *encoders;
int i;
encoders = sk_OSSL_ENCODER_new(encoder_cmp);
if (encoders == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Provided ENCODERs:\n");
OSSL_ENCODER_do_all_provided(NULL, collect_encoders, encoders);
sk_OSSL_ENCODER_sort(encoders);
for (i = 0; i < sk_OSSL_ENCODER_num(encoders); i++) {
OSSL_ENCODER *k = sk_OSSL_ENCODER_value(encoders, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !OSSL_ENCODER_is_a(k, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
OSSL_ENCODER_names_do_all(k, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s (%s)\n",
OSSL_PROVIDER_name(OSSL_ENCODER_provider(k)),
OSSL_ENCODER_properties(k));
if (verbose) {
print_param_types("settable operation parameters",
OSSL_ENCODER_settable_ctx_params(k), 4);
}
}
sk_OSSL_ENCODER_pop_free(encoders, OSSL_ENCODER_free);
}
/*
* Decoders
*/
DEFINE_STACK_OF(OSSL_DECODER)
static int decoder_cmp(const OSSL_DECODER * const *a,
const OSSL_DECODER * const *b)
{
int ret = OSSL_DECODER_number(*a) - OSSL_DECODER_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(OSSL_DECODER_provider(*a)),
OSSL_PROVIDER_name(OSSL_DECODER_provider(*b)));
return ret;
}
static void collect_decoders(OSSL_DECODER *decoder, void *stack)
{
STACK_OF(OSSL_DECODER) *decoder_stack = stack;
sk_OSSL_DECODER_push(decoder_stack, decoder);
OSSL_DECODER_up_ref(decoder);
}
static void list_decoders(void)
{
STACK_OF(OSSL_DECODER) *decoders;
int i;
decoders = sk_OSSL_DECODER_new(decoder_cmp);
if (decoders == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Provided DECODERs:\n");
OSSL_DECODER_do_all_provided(NULL, collect_decoders,
decoders);
sk_OSSL_DECODER_sort(decoders);
for (i = 0; i < sk_OSSL_DECODER_num(decoders); i++) {
OSSL_DECODER *k = sk_OSSL_DECODER_value(decoders, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !OSSL_DECODER_is_a(k, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
OSSL_DECODER_names_do_all(k, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s (%s)\n",
OSSL_PROVIDER_name(OSSL_DECODER_provider(k)),
OSSL_DECODER_properties(k));
if (verbose) {
print_param_types("settable operation parameters",
OSSL_DECODER_settable_ctx_params(k), 4);
}
}
sk_OSSL_DECODER_pop_free(decoders, OSSL_DECODER_free);
}
DEFINE_STACK_OF(EVP_KEYMGMT)
static int keymanager_cmp(const EVP_KEYMGMT * const *a,
const EVP_KEYMGMT * const *b)
{
int ret = EVP_KEYMGMT_number(*a) - EVP_KEYMGMT_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_KEYMGMT_provider(*a)),
OSSL_PROVIDER_name(EVP_KEYMGMT_provider(*b)));
return ret;
}
static void collect_keymanagers(EVP_KEYMGMT *km, void *stack)
{
STACK_OF(EVP_KEYMGMT) *km_stack = stack;
sk_EVP_KEYMGMT_push(km_stack, km);
EVP_KEYMGMT_up_ref(km);
}
static void list_keymanagers(void)
{
int i;
STACK_OF(EVP_KEYMGMT) *km_stack = sk_EVP_KEYMGMT_new(keymanager_cmp);
EVP_KEYMGMT_do_all_provided(NULL, collect_keymanagers, km_stack);
sk_EVP_KEYMGMT_sort(km_stack);
for (i = 0; i < sk_EVP_KEYMGMT_num(km_stack); i++) {
EVP_KEYMGMT *k = sk_EVP_KEYMGMT_value(km_stack, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !EVP_KEYMGMT_is_a(k, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
EVP_KEYMGMT_names_do_all(k, collect_names, names);
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_KEYMGMT_provider(k)));
if (verbose) {
print_param_types("settable key generation parameters",
EVP_KEYMGMT_gen_settable_params(k), 4);
print_param_types("settable operation parameters",
EVP_KEYMGMT_settable_params(k), 4);
print_param_types("retrievable operation parameters",
EVP_KEYMGMT_gettable_params(k), 4);
}
}
sk_EVP_KEYMGMT_pop_free(km_stack, EVP_KEYMGMT_free);
}
DEFINE_STACK_OF(EVP_SIGNATURE)
static int signature_cmp(const EVP_SIGNATURE * const *a,
const EVP_SIGNATURE * const *b)
{
int ret = EVP_SIGNATURE_number(*a) - EVP_SIGNATURE_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_SIGNATURE_provider(*a)),
OSSL_PROVIDER_name(EVP_SIGNATURE_provider(*b)));
return ret;
}
static void collect_signatures(EVP_SIGNATURE *km, void *stack)
{
STACK_OF(EVP_SIGNATURE) *km_stack = stack;
sk_EVP_SIGNATURE_push(km_stack, km);
EVP_SIGNATURE_up_ref(km);
}
static void list_signatures(void)
{
int i, count = 0;
STACK_OF(EVP_SIGNATURE) *sig_stack = sk_EVP_SIGNATURE_new(signature_cmp);
EVP_SIGNATURE_do_all_provided(NULL, collect_signatures, sig_stack);
sk_EVP_SIGNATURE_sort(sig_stack);
for (i = 0; i < sk_EVP_SIGNATURE_num(sig_stack); i++) {
EVP_SIGNATURE *k = sk_EVP_SIGNATURE_value(sig_stack, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !EVP_SIGNATURE_is_a(k, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
EVP_SIGNATURE_names_do_all(k, collect_names, names);
count++;
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_SIGNATURE_provider(k)));
if (verbose) {
print_param_types("settable operation parameters",
EVP_SIGNATURE_settable_ctx_params(k), 4);
print_param_types("retrievable operation parameters",
EVP_SIGNATURE_gettable_ctx_params(k), 4);
}
}
sk_EVP_SIGNATURE_pop_free(sig_stack, EVP_SIGNATURE_free);
if (count == 0)
BIO_printf(bio_out, " -\n");
}
DEFINE_STACK_OF(EVP_KEM)
static int kem_cmp(const EVP_KEM * const *a,
const EVP_KEM * const *b)
{
int ret = EVP_KEM_number(*a) - EVP_KEM_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_KEM_provider(*a)),
OSSL_PROVIDER_name(EVP_KEM_provider(*b)));
return ret;
}
static void collect_kem(EVP_KEM *km, void *stack)
{
STACK_OF(EVP_KEM) *km_stack = stack;
sk_EVP_KEM_push(km_stack, km);
EVP_KEM_up_ref(km);
}
static void list_kems(void)
{
int i, count = 0;
STACK_OF(EVP_KEM) *kem_stack = sk_EVP_KEM_new(kem_cmp);
EVP_KEM_do_all_provided(NULL, collect_kem, kem_stack);
sk_EVP_KEM_sort(kem_stack);
for (i = 0; i < sk_EVP_KEM_num(kem_stack); i++) {
EVP_KEM *k = sk_EVP_KEM_value(kem_stack, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !EVP_KEM_is_a(k, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
EVP_KEM_names_do_all(k, collect_names, names);
count++;
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_KEM_provider(k)));
if (verbose) {
print_param_types("settable operation parameters",
EVP_KEM_settable_ctx_params(k), 4);
print_param_types("retrievable operation parameters",
EVP_KEM_gettable_ctx_params(k), 4);
}
}
sk_EVP_KEM_pop_free(kem_stack, EVP_KEM_free);
if (count == 0)
BIO_printf(bio_out, " -\n");
}
DEFINE_STACK_OF(EVP_ASYM_CIPHER)
static int asymcipher_cmp(const EVP_ASYM_CIPHER * const *a,
const EVP_ASYM_CIPHER * const *b)
{
int ret = EVP_ASYM_CIPHER_number(*a) - EVP_ASYM_CIPHER_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_ASYM_CIPHER_provider(*a)),
OSSL_PROVIDER_name(EVP_ASYM_CIPHER_provider(*b)));
return ret;
}
static void collect_asymciph(EVP_ASYM_CIPHER *km, void *stack)
{
STACK_OF(EVP_ASYM_CIPHER) *km_stack = stack;
sk_EVP_ASYM_CIPHER_push(km_stack, km);
EVP_ASYM_CIPHER_up_ref(km);
}
static void list_asymciphers(void)
{
int i, count = 0;
STACK_OF(EVP_ASYM_CIPHER) *asymciph_stack =
sk_EVP_ASYM_CIPHER_new(asymcipher_cmp);
EVP_ASYM_CIPHER_do_all_provided(NULL, collect_asymciph, asymciph_stack);
sk_EVP_ASYM_CIPHER_sort(asymciph_stack);
for (i = 0; i < sk_EVP_ASYM_CIPHER_num(asymciph_stack); i++) {
EVP_ASYM_CIPHER *k = sk_EVP_ASYM_CIPHER_value(asymciph_stack, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !EVP_ASYM_CIPHER_is_a(k, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
EVP_ASYM_CIPHER_names_do_all(k, collect_names, names);
count++;
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_ASYM_CIPHER_provider(k)));
if (verbose) {
print_param_types("settable operation parameters",
EVP_ASYM_CIPHER_settable_ctx_params(k), 4);
print_param_types("retrievable operation parameters",
EVP_ASYM_CIPHER_gettable_ctx_params(k), 4);
}
}
sk_EVP_ASYM_CIPHER_pop_free(asymciph_stack, EVP_ASYM_CIPHER_free);
if (count == 0)
BIO_printf(bio_out, " -\n");
}
DEFINE_STACK_OF(EVP_KEYEXCH)
static int kex_cmp(const EVP_KEYEXCH * const *a,
const EVP_KEYEXCH * const *b)
{
int ret = EVP_KEYEXCH_number(*a) - EVP_KEYEXCH_number(*b);
if (ret == 0)
ret = strcmp(OSSL_PROVIDER_name(EVP_KEYEXCH_provider(*a)),
OSSL_PROVIDER_name(EVP_KEYEXCH_provider(*b)));
return ret;
}
static void collect_kex(EVP_KEYEXCH *ke, void *stack)
{
STACK_OF(EVP_KEYEXCH) *kex_stack = stack;
sk_EVP_KEYEXCH_push(kex_stack, ke);
EVP_KEYEXCH_up_ref(ke);
}
static void list_keyexchanges(void)
{
int i, count = 0;
STACK_OF(EVP_KEYEXCH) *kex_stack = sk_EVP_KEYEXCH_new(kex_cmp);
EVP_KEYEXCH_do_all_provided(NULL, collect_kex, kex_stack);
sk_EVP_KEYEXCH_sort(kex_stack);
for (i = 0; i < sk_EVP_KEYEXCH_num(kex_stack); i++) {
EVP_KEYEXCH *k = sk_EVP_KEYEXCH_value(kex_stack, i);
STACK_OF(OPENSSL_CSTRING) *names = NULL;
if (select_name != NULL && !EVP_KEYEXCH_is_a(k, select_name))
continue;
names = sk_OPENSSL_CSTRING_new(name_cmp);
EVP_KEYEXCH_names_do_all(k, collect_names, names);
count++;
BIO_printf(bio_out, " ");
print_names(bio_out, names);
sk_OPENSSL_CSTRING_free(names);
BIO_printf(bio_out, " @ %s\n",
OSSL_PROVIDER_name(EVP_KEYEXCH_provider(k)));
if (verbose) {
print_param_types("settable operation parameters",
EVP_KEYEXCH_settable_ctx_params(k), 4);
print_param_types("retrievable operation parameters",
EVP_KEYEXCH_gettable_ctx_params(k), 4);
}
}
sk_EVP_KEYEXCH_pop_free(kex_stack, EVP_KEYEXCH_free);
if (count == 0)
BIO_printf(bio_out, " -\n");
}
static void list_missing_help(void)
{
const FUNCTION *fp;
const OPTIONS *o;
for (fp = functions; fp->name != NULL; fp++) {
if ((o = fp->help) != NULL) {
/* If there is help, list what flags are not documented. */
for ( ; o->name != NULL; o++) {
if (o->helpstr == NULL)
BIO_printf(bio_out, "%s %s\n", fp->name, o->name);
}
} else if (fp->func != dgst_main) {
/* If not aliased to the dgst command, */
BIO_printf(bio_out, "%s *\n", fp->name);
}
}
}
static void list_objects(void)
{
int max_nid = OBJ_new_nid(0);
int i;
char *oid_buf = NULL;
int oid_size = 0;
/* Skip 0, since that's NID_undef */
for (i = 1; i < max_nid; i++) {
const ASN1_OBJECT *obj = OBJ_nid2obj(i);
const char *sn = OBJ_nid2sn(i);
const char *ln = OBJ_nid2ln(i);
int n = 0;
/*
* If one of the retrieved objects somehow generated an error,
* we ignore it. The check for NID_undef below will detect the
* error and simply skip to the next NID.
*/
ERR_clear_error();
if (OBJ_obj2nid(obj) == NID_undef)
continue;
if ((n = OBJ_obj2txt(NULL, 0, obj, 1)) == 0) {
BIO_printf(bio_out, "# None-OID object: %s, %s\n", sn, ln);
continue;
}
if (n < 0)
break; /* Error */
if (n > oid_size) {
oid_buf = OPENSSL_realloc(oid_buf, n + 1);
if (oid_buf == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
break; /* Error */
}
oid_size = n + 1;
}
if (OBJ_obj2txt(oid_buf, oid_size, obj, 1) < 0)
break; /* Error */
if (ln == NULL || strcmp(sn, ln) == 0)
BIO_printf(bio_out, "%s = %s\n", sn, oid_buf);
else
BIO_printf(bio_out, "%s = %s, %s\n", sn, ln, oid_buf);
}
OPENSSL_free(oid_buf);
}
static void list_options_for_command(const char *command)
{
const FUNCTION *fp;
const OPTIONS *o;
for (fp = functions; fp->name != NULL; fp++)
if (strcmp(fp->name, command) == 0)
break;
if (fp->name == NULL) {
BIO_printf(bio_err, "Invalid command '%s'; type \"help\" for a list.\n",
command);
return;
}
if ((o = fp->help) == NULL)
return;
for ( ; o->name != NULL; o++) {
char c = o->valtype;
if (o->name == OPT_PARAM_STR)
break;
if (o->name == OPT_HELP_STR
|| o->name == OPT_MORE_STR
|| o->name == OPT_SECTION_STR
|| o->name[0] == '\0')
continue;
BIO_printf(bio_out, "%s %c\n", o->name, c == '\0' ? '-' : c);
}
/* Always output the -- marker since it is sometimes documented. */
BIO_printf(bio_out, "- -\n");
}
static void list_type(FUNC_TYPE ft, int one)
{
FUNCTION *fp;
int i = 0;
DISPLAY_COLUMNS dc;
memset(&dc, 0, sizeof(dc));
if (!one)
calculate_columns(functions, &dc);
for (fp = functions; fp->name != NULL; fp++) {
if (fp->type != ft)
continue;
if (one) {
BIO_printf(bio_out, "%s\n", fp->name);
} else {
if (i % dc.columns == 0 && i > 0)
BIO_printf(bio_out, "\n");
BIO_printf(bio_out, "%-*s", dc.width, fp->name);
i++;
}
}
if (!one)
BIO_printf(bio_out, "\n\n");
}
static void list_pkey(void)
{
#ifndef OPENSSL_NO_DEPRECATED_3_0
int i;
if (select_name == NULL) {
BIO_printf(bio_out, "Legacy:\n");
for (i = 0; i < EVP_PKEY_asn1_get_count(); i++) {
const EVP_PKEY_ASN1_METHOD *ameth;
int pkey_id, pkey_base_id, pkey_flags;
const char *pinfo, *pem_str;
ameth = EVP_PKEY_asn1_get0(i);
EVP_PKEY_asn1_get0_info(&pkey_id, &pkey_base_id, &pkey_flags,
&pinfo, &pem_str, ameth);
if (pkey_flags & ASN1_PKEY_ALIAS) {
BIO_printf(bio_out, " Name: %s\n", OBJ_nid2ln(pkey_id));
BIO_printf(bio_out, "\tAlias for: %s\n",
OBJ_nid2ln(pkey_base_id));
} else {
BIO_printf(bio_out, " Name: %s\n", pinfo);
BIO_printf(bio_out, "\tType: %s Algorithm\n",
pkey_flags & ASN1_PKEY_DYNAMIC ?
"External" : "Builtin");
BIO_printf(bio_out, "\tOID: %s\n", OBJ_nid2ln(pkey_id));
if (pem_str == NULL)
pem_str = "(none)";
BIO_printf(bio_out, "\tPEM string: %s\n", pem_str);
}
}
}
#endif
BIO_printf(bio_out, "Provided:\n");
BIO_printf(bio_out, " Key Managers:\n");
list_keymanagers();
}
static void list_pkey_meth(void)
{
#ifndef OPENSSL_NO_DEPRECATED_3_0
size_t i;
size_t meth_count = EVP_PKEY_meth_get_count();
if (select_name == NULL) {
BIO_printf(bio_out, "Legacy:\n");
for (i = 0; i < meth_count; i++) {
const EVP_PKEY_METHOD *pmeth = EVP_PKEY_meth_get0(i);
int pkey_id, pkey_flags;
EVP_PKEY_meth_get0_info(&pkey_id, &pkey_flags, pmeth);
BIO_printf(bio_out, " %s\n", OBJ_nid2ln(pkey_id));
BIO_printf(bio_out, "\tType: %s Algorithm\n",
pkey_flags & ASN1_PKEY_DYNAMIC ? "External" : "Builtin");
}
}
#endif
BIO_printf(bio_out, "Provided:\n");
BIO_printf(bio_out, " Encryption:\n");
list_asymciphers();
BIO_printf(bio_out, " Key Exchange:\n");
list_keyexchanges();
BIO_printf(bio_out, " Signatures:\n");
list_signatures();
BIO_printf(bio_out, " Key encapsulation:\n");
list_kems();
}
DEFINE_STACK_OF(OSSL_PROVIDER)
static int provider_cmp(const OSSL_PROVIDER * const *a,
const OSSL_PROVIDER * const *b)
{
return strcmp(OSSL_PROVIDER_name(*a), OSSL_PROVIDER_name(*b));
}
static int collect_providers(OSSL_PROVIDER *provider, void *stack)
{
STACK_OF(OSSL_PROVIDER) *provider_stack = stack;
sk_OSSL_PROVIDER_push(provider_stack, provider);
return 1;
}
static void list_provider_info(void)
{
STACK_OF(OSSL_PROVIDER) *providers = sk_OSSL_PROVIDER_new(provider_cmp);
OSSL_PARAM params[5];
char *name, *version, *buildinfo;
int status;
int i;
if (providers == NULL) {
BIO_printf(bio_err, "ERROR: Memory allocation\n");
return;
}
BIO_printf(bio_out, "Providers:\n");
OSSL_PROVIDER_do_all(NULL, &collect_providers, providers);
sk_OSSL_PROVIDER_sort(providers);
for (i = 0; i < sk_OSSL_PROVIDER_num(providers); i++) {
const OSSL_PROVIDER *prov = sk_OSSL_PROVIDER_value(providers, i);
/* Query the "known" information parameters, the order matches below */
params[0] = OSSL_PARAM_construct_utf8_ptr(OSSL_PROV_PARAM_NAME,
&name, 0);
params[1] = OSSL_PARAM_construct_utf8_ptr(OSSL_PROV_PARAM_VERSION,
&version, 0);
params[2] = OSSL_PARAM_construct_int(OSSL_PROV_PARAM_STATUS, &status);
params[3] = OSSL_PARAM_construct_utf8_ptr(OSSL_PROV_PARAM_BUILDINFO,
&buildinfo, 0);
params[4] = OSSL_PARAM_construct_end();
OSSL_PARAM_set_all_unmodified(params);
if (!OSSL_PROVIDER_get_params(prov, params)) {
BIO_printf(bio_err, "ERROR: Unable to query provider parameters\n");
return;
}
/* Print out the provider information, the params order matches above */
BIO_printf(bio_out, " %s\n", OSSL_PROVIDER_name(prov));
if (OSSL_PARAM_modified(params))
BIO_printf(bio_out, " name: %s\n", name);
if (OSSL_PARAM_modified(params + 1))
BIO_printf(bio_out, " version: %s\n", version);
if (OSSL_PARAM_modified(params + 2))
BIO_printf(bio_out, " status: %sactive\n", status ? "" : "in");
if (verbose) {
if (OSSL_PARAM_modified(params + 3))
BIO_printf(bio_out, " build info: %s\n", buildinfo);
print_param_types("gettable provider parameters",
OSSL_PROVIDER_gettable_params(prov), 4);
}
}
sk_OSSL_PROVIDER_free(providers);
}
#ifndef OPENSSL_NO_DEPRECATED_3_0
static void list_engines(void)
{
# ifndef OPENSSL_NO_ENGINE
ENGINE *e;
BIO_puts(bio_out, "Engines:\n");
e = ENGINE_get_first();
while (e) {
BIO_printf(bio_out, "%s\n", ENGINE_get_id(e));
e = ENGINE_get_next(e);
}
# else
BIO_puts(bio_out, "Engine support is disabled.\n");
# endif
}
#endif
static void list_disabled(void)
{
BIO_puts(bio_out, "Disabled algorithms:\n");
#ifdef OPENSSL_NO_ARIA
BIO_puts(bio_out, "ARIA\n");
#endif
#ifdef OPENSSL_NO_BF
BIO_puts(bio_out, "BF\n");
#endif
#ifdef OPENSSL_NO_BLAKE2
BIO_puts(bio_out, "BLAKE2\n");
#endif
#ifdef OPENSSL_NO_CAMELLIA
BIO_puts(bio_out, "CAMELLIA\n");
#endif
#ifdef OPENSSL_NO_CAST
BIO_puts(bio_out, "CAST\n");
#endif
#ifdef OPENSSL_NO_CMAC
BIO_puts(bio_out, "CMAC\n");
#endif
#ifdef OPENSSL_NO_CMS
BIO_puts(bio_out, "CMS\n");
#endif
#ifdef OPENSSL_NO_COMP
BIO_puts(bio_out, "COMP\n");
#endif
#ifdef OPENSSL_NO_DES
BIO_puts(bio_out, "DES\n");
#endif
#ifdef OPENSSL_NO_DGRAM
BIO_puts(bio_out, "DGRAM\n");
#endif
#ifdef OPENSSL_NO_DH
BIO_puts(bio_out, "DH\n");
#endif
#ifdef OPENSSL_NO_DSA
BIO_puts(bio_out, "DSA\n");
#endif
#if defined(OPENSSL_NO_DTLS)
BIO_puts(bio_out, "DTLS\n");
#endif
#if defined(OPENSSL_NO_DTLS1)
BIO_puts(bio_out, "DTLS1\n");
#endif
#if defined(OPENSSL_NO_DTLS1_2)
BIO_puts(bio_out, "DTLS1_2\n");
#endif
#ifdef OPENSSL_NO_EC
BIO_puts(bio_out, "EC\n");
#endif
#ifdef OPENSSL_NO_EC2M
BIO_puts(bio_out, "EC2M\n");
#endif
#if defined(OPENSSL_NO_ENGINE) && !defined(OPENSSL_NO_DEPRECATED_3_0)
BIO_puts(bio_out, "ENGINE\n");
#endif
#ifdef OPENSSL_NO_GOST
BIO_puts(bio_out, "GOST\n");
#endif
#ifdef OPENSSL_NO_IDEA
BIO_puts(bio_out, "IDEA\n");
#endif
#ifdef OPENSSL_NO_MD2
BIO_puts(bio_out, "MD2\n");
#endif
#ifdef OPENSSL_NO_MD4
BIO_puts(bio_out, "MD4\n");
#endif
#ifdef OPENSSL_NO_MD5
BIO_puts(bio_out, "MD5\n");
#endif
#ifdef OPENSSL_NO_MDC2
BIO_puts(bio_out, "MDC2\n");
#endif
#ifdef OPENSSL_NO_OCB
BIO_puts(bio_out, "OCB\n");
#endif
#ifdef OPENSSL_NO_OCSP
BIO_puts(bio_out, "OCSP\n");
#endif
#ifdef OPENSSL_NO_PSK
BIO_puts(bio_out, "PSK\n");
#endif
#ifdef OPENSSL_NO_RC2
BIO_puts(bio_out, "RC2\n");
#endif
#ifdef OPENSSL_NO_RC4
BIO_puts(bio_out, "RC4\n");
#endif
#ifdef OPENSSL_NO_RC5
BIO_puts(bio_out, "RC5\n");
#endif
#ifdef OPENSSL_NO_RMD160
BIO_puts(bio_out, "RMD160\n");
#endif
#ifdef OPENSSL_NO_RSA
BIO_puts(bio_out, "RSA\n");
#endif
#ifdef OPENSSL_NO_SCRYPT
BIO_puts(bio_out, "SCRYPT\n");
#endif
#ifdef OPENSSL_NO_SCTP
BIO_puts(bio_out, "SCTP\n");
#endif
#ifdef OPENSSL_NO_SEED
BIO_puts(bio_out, "SEED\n");
#endif
#ifdef OPENSSL_NO_SM2
BIO_puts(bio_out, "SM2\n");
#endif
#ifdef OPENSSL_NO_SM3
BIO_puts(bio_out, "SM3\n");
#endif
#ifdef OPENSSL_NO_SM4
BIO_puts(bio_out, "SM4\n");
#endif
#ifdef OPENSSL_NO_SOCK
BIO_puts(bio_out, "SOCK\n");
#endif
#ifdef OPENSSL_NO_SRP
BIO_puts(bio_out, "SRP\n");
#endif
#ifdef OPENSSL_NO_SRTP
BIO_puts(bio_out, "SRTP\n");
#endif
#ifdef OPENSSL_NO_SSL3
BIO_puts(bio_out, "SSL3\n");
#endif
#ifdef OPENSSL_NO_TLS1
BIO_puts(bio_out, "TLS1\n");
#endif
#ifdef OPENSSL_NO_TLS1_1
BIO_puts(bio_out, "TLS1_1\n");
#endif
#ifdef OPENSSL_NO_TLS1_2
BIO_puts(bio_out, "TLS1_2\n");
#endif
#ifdef OPENSSL_NO_WHIRLPOOL
BIO_puts(bio_out, "WHIRLPOOL\n");
#endif
#ifndef ZLIB
BIO_puts(bio_out, "ZLIB\n");
#endif
}
/* Unified enum for help and list commands. */
typedef enum HELPLIST_CHOICE {
OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ONE, OPT_VERBOSE,
OPT_COMMANDS, OPT_DIGEST_COMMANDS, OPT_MAC_ALGORITHMS, OPT_OPTIONS,
OPT_DIGEST_ALGORITHMS, OPT_CIPHER_COMMANDS, OPT_CIPHER_ALGORITHMS,
OPT_PK_ALGORITHMS, OPT_PK_METHOD, OPT_DISABLED,
OPT_KDF_ALGORITHMS, OPT_RANDOM_INSTANCES, OPT_RANDOM_GENERATORS,
OPT_ENCODERS, OPT_DECODERS, OPT_KEYMANAGERS, OPT_KEYEXCHANGE_ALGORITHMS,
OPT_KEM_ALGORITHMS, OPT_SIGNATURE_ALGORITHMS, OPT_ASYM_CIPHER_ALGORITHMS,
OPT_PROVIDER_INFO,
OPT_MISSING_HELP, OPT_OBJECTS, OPT_SELECT_NAME,
#ifndef OPENSSL_NO_DEPRECATED_3_0
OPT_ENGINES,
#endif
OPT_PROV_ENUM
} HELPLIST_CHOICE;
const OPTIONS list_options[] = {
OPT_SECTION("General"),
{"help", OPT_HELP, '-', "Display this summary"},
OPT_SECTION("Output"),
{"1", OPT_ONE, '-', "List in one column"},
{"verbose", OPT_VERBOSE, '-', "Verbose listing"},
{"select", OPT_SELECT_NAME, 's', "Select a single algorithm"},
{"commands", OPT_COMMANDS, '-', "List of standard commands"},
{"standard-commands", OPT_COMMANDS, '-', "List of standard commands"},
{"digest-commands", OPT_DIGEST_COMMANDS, '-',
"List of message digest commands"},
{"digest-algorithms", OPT_DIGEST_ALGORITHMS, '-',
"List of message digest algorithms"},
{"kdf-algorithms", OPT_KDF_ALGORITHMS, '-',
"List of key derivation and pseudo random function algorithms"},
{"random-instances", OPT_RANDOM_INSTANCES, '-',
"List the primary, pubic and private random number generator details"},
{"random-generators", OPT_RANDOM_GENERATORS, '-',
"List of random number generators"},
{"mac-algorithms", OPT_MAC_ALGORITHMS, '-',
"List of message authentication code algorithms"},
{"cipher-commands", OPT_CIPHER_COMMANDS, '-', "List of cipher commands"},
{"cipher-algorithms", OPT_CIPHER_ALGORITHMS, '-',
"List of cipher algorithms"},
{"encoders", OPT_ENCODERS, '-', "List of encoding methods" },
{"decoders", OPT_DECODERS, '-', "List of decoding methods" },
{"key-managers", OPT_KEYMANAGERS, '-', "List of key managers" },
{"key-exchange-algorithms", OPT_KEYEXCHANGE_ALGORITHMS, '-',
"List of key exchange algorithms" },
{"kem-algorithms", OPT_KEM_ALGORITHMS, '-',
"List of key encapsulation mechanism algorithms" },
{"signature-algorithms", OPT_SIGNATURE_ALGORITHMS, '-',
"List of signature algorithms" },
{ "asymcipher-algorithms", OPT_ASYM_CIPHER_ALGORITHMS, '-',
"List of asymmetric cipher algorithms" },
{"public-key-algorithms", OPT_PK_ALGORITHMS, '-',
"List of public key algorithms"},
{"public-key-methods", OPT_PK_METHOD, '-',
"List of public key methods"},
{"providers", OPT_PROVIDER_INFO, '-',
"List of provider information"},
#ifndef OPENSSL_NO_DEPRECATED_3_0
{"engines", OPT_ENGINES, '-',
"List of loaded engines"},
#endif
{"disabled", OPT_DISABLED, '-', "List of disabled features"},
{"missing-help", OPT_MISSING_HELP, '-',
"List missing detailed help strings"},
{"options", OPT_OPTIONS, 's',
"List options for specified command"},
{"objects", OPT_OBJECTS, '-',
"List built in objects (OID<->name mappings)"},
OPT_PROV_OPTIONS,
{NULL}
};
int list_main(int argc, char **argv)
{
char *prog;
HELPLIST_CHOICE o;
int one = 0, done = 0;
struct {
unsigned int commands:1;
unsigned int random_instances:1;
unsigned int random_generators:1;
unsigned int digest_commands:1;
unsigned int digest_algorithms:1;
unsigned int kdf_algorithms:1;
unsigned int mac_algorithms:1;
unsigned int cipher_commands:1;
unsigned int cipher_algorithms:1;
unsigned int encoder_algorithms:1;
unsigned int decoder_algorithms:1;
unsigned int keymanager_algorithms:1;
unsigned int signature_algorithms:1;
unsigned int keyexchange_algorithms:1;
unsigned int kem_algorithms:1;
unsigned int asym_cipher_algorithms:1;
unsigned int pk_algorithms:1;
unsigned int pk_method:1;
unsigned int provider_info:1;
#ifndef OPENSSL_NO_DEPRECATED_3_0
unsigned int engines:1;
#endif
unsigned int disabled:1;
unsigned int missing_help:1;
unsigned int objects:1;
unsigned int options:1;
} todo = { 0, };
verbose = 0; /* Clear a possible previous call */
prog = opt_init(argc, argv, list_options);
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_EOF: /* Never hit, but suppresses warning */
case OPT_ERR:
opthelp:
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
return 1;
case OPT_HELP:
opt_help(list_options);
break;
case OPT_ONE:
one = 1;
break;
case OPT_COMMANDS:
todo.commands = 1;
break;
case OPT_DIGEST_COMMANDS:
todo.digest_commands = 1;
break;
case OPT_DIGEST_ALGORITHMS:
todo.digest_algorithms = 1;
break;
case OPT_KDF_ALGORITHMS:
todo.kdf_algorithms = 1;
break;
case OPT_RANDOM_INSTANCES:
todo.random_instances = 1;
break;
case OPT_RANDOM_GENERATORS:
todo.random_generators = 1;
break;
case OPT_MAC_ALGORITHMS:
todo.mac_algorithms = 1;
break;
case OPT_CIPHER_COMMANDS:
todo.cipher_commands = 1;
break;
case OPT_CIPHER_ALGORITHMS:
todo.cipher_algorithms = 1;
break;
case OPT_ENCODERS:
todo.encoder_algorithms = 1;
break;
case OPT_DECODERS:
todo.decoder_algorithms = 1;
break;
case OPT_KEYMANAGERS:
todo.keymanager_algorithms = 1;
break;
case OPT_SIGNATURE_ALGORITHMS:
todo.signature_algorithms = 1;
break;
case OPT_KEYEXCHANGE_ALGORITHMS:
todo.keyexchange_algorithms = 1;
break;
case OPT_KEM_ALGORITHMS:
todo.kem_algorithms = 1;
break;
case OPT_ASYM_CIPHER_ALGORITHMS:
todo.asym_cipher_algorithms = 1;
break;
case OPT_PK_ALGORITHMS:
todo.pk_algorithms = 1;
break;
case OPT_PK_METHOD:
todo.pk_method = 1;
break;
case OPT_PROVIDER_INFO:
todo.provider_info = 1;
break;
#ifndef OPENSSL_NO_DEPRECATED_3_0
case OPT_ENGINES:
todo.engines = 1;
break;
#endif
case OPT_DISABLED:
todo.disabled = 1;
break;
case OPT_MISSING_HELP:
todo.missing_help = 1;
break;
case OPT_OBJECTS:
todo.objects = 1;
break;
case OPT_OPTIONS:
list_options_for_command(opt_arg());
break;
case OPT_VERBOSE:
verbose = 1;
break;
case OPT_SELECT_NAME:
select_name = opt_arg();
break;
case OPT_PROV_CASES:
if (!opt_provider(o))
return 1;
break;
}
done = 1;
}
if (opt_num_rest() != 0) {
BIO_printf(bio_err, "Extra arguments given.\n");
goto opthelp;
}
if (todo.commands)
list_type(FT_general, one);
if (todo.random_instances)
list_random_instances();
if (todo.random_generators)
list_random_generators();
if (todo.digest_commands)
list_type(FT_md, one);
if (todo.digest_algorithms)
list_digests();
if (todo.kdf_algorithms)
list_kdfs();
if (todo.mac_algorithms)
list_macs();
if (todo.cipher_commands)
list_type(FT_cipher, one);
if (todo.cipher_algorithms)
list_ciphers();
if (todo.encoder_algorithms)
list_encoders();
if (todo.decoder_algorithms)
list_decoders();
if (todo.keymanager_algorithms)
list_keymanagers();
if (todo.signature_algorithms)
list_signatures();
if (todo.asym_cipher_algorithms)
list_asymciphers();
if (todo.keyexchange_algorithms)
list_keyexchanges();
if (todo.kem_algorithms)
list_kems();
if (todo.pk_algorithms)
list_pkey();
if (todo.pk_method)
list_pkey_meth();
if (todo.provider_info)
list_provider_info();
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (todo.engines)
list_engines();
#endif
if (todo.disabled)
list_disabled();
if (todo.missing_help)
list_missing_help();
if (todo.objects)
list_objects();
if (!done)
goto opthelp;
return 0;
}