openssl/crypto/bn/asm/rsaz-3k-avx512.pl
Matt Caswell fecb3aae22 Update copyright year
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Release: yes
2022-05-03 13:34:51 +01:00

875 lines
27 KiB
Perl

# Copyright 2021-2022 The OpenSSL Project Authors. All Rights Reserved.
# Copyright (c) 2021, Intel Corporation. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
#
# Originally written by Sergey Kirillov and Andrey Matyukov
# Intel Corporation
#
# March 2021
#
# Initial release.
#
# Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
#
# IceLake-Client @ 1.3GHz
# |---------+-----------------------+---------------+-------------|
# | | OpenSSL 3.0.0-alpha15 | this | Unit |
# |---------+-----------------------+---------------+-------------|
# | rsa3072 | 6 397 637 | 2 866 593 | cycles/sign |
# | | 203.2 | 453.5 / +123% | sign/s |
# |---------+-----------------------+---------------+-------------|
#
# $output is the last argument if it looks like a file (it has an extension)
# $flavour is the first argument if it doesn't look like a file
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$avx512ifma=0;
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
$avx512ifma = ($1>=2.26);
}
if (!$avx512 && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
$avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
}
if (!$avx512 && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
$avx512ifma = ($2>=7.0);
}
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
or die "can't call $xlate: $!";
*STDOUT=*OUT;
if ($avx512ifma>0) {{{
@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
###############################################################################
# Almost Montgomery Multiplication (AMM) for 30-digit number in radix 2^52.
#
# AMM is defined as presented in the paper [1].
#
# The input and output are presented in 2^52 radix domain, i.e.
# |res|, |a|, |b|, |m| are arrays of 32 64-bit qwords with 12 high bits zeroed
#
# NOTE: the function uses zero-padded data - 2 high QWs is a padding.
#
# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
#
# NB: the AMM implementation does not perform "conditional" subtraction step
# specified in the original algorithm as according to the Lemma 1 from the paper
# [2], the result will be always < 2*m and can be used as a direct input to
# the next AMM iteration. This post-condition is true, provided the correct
# parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e. s >= n + 2 * k,
# which matches our case: 1560 > 1536 + 2 * 1.
#
# [1] Gueron, S. Efficient software implementations of modular exponentiation.
# DOI: 10.1007/s13389-012-0031-5
# [2] Gueron, S. Enhanced Montgomery Multiplication.
# DOI: 10.1007/3-540-36400-5_5
#
# void ossl_rsaz_amm52x30_x1_ifma256(BN_ULONG *res,
# const BN_ULONG *a,
# const BN_ULONG *b,
# const BN_ULONG *m,
# BN_ULONG k0);
###############################################################################
{
# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
my $mask52 = "%rax";
my $acc0_0 = "%r9";
my $acc0_0_low = "%r9d";
my $acc0_1 = "%r15";
my $acc0_1_low = "%r15d";
my $b_ptr = "%r11";
my $iter = "%ebx";
my $zero = "%ymm0";
my $Bi = "%ymm1";
my $Yi = "%ymm2";
my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h) = map("%ymm$_",(3..10));
my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h) = map("%ymm$_",(11..18));
# Registers mapping for normalization
my ($T0,$T0h,$T1,$T1h,$T2,$T2h,$T3,$T3h) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (19..23)));
sub amm52x30_x1() {
# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
# of data for corresponding AMM operation;
# _b_offset - offset in the |b| array pointing to the next qword digit;
my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h,$_k0) = @_;
my $_R0_xmm = $_R0;
$_R0_xmm =~ s/%y/%x/;
$code.=<<___;
movq $_b_offset($b_ptr), %r13 # b[i]
vpbroadcastq %r13, $Bi # broadcast b[i]
movq $_data_offset($a), %rdx
mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
addq %r13, $_acc # acc += t0
movq %r12, %r10
adcq \$0, %r10 # t2 += CF
movq $_k0, %r13
imulq $_acc, %r13 # acc * k0
andq $mask52, %r13 # yi = (acc * k0) & mask52
vpbroadcastq %r13, $Yi # broadcast y[i]
movq $_data_offset($m), %rdx
mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
addq %r13, $_acc # acc += t0
adcq %r12, %r10 # t2 += (t1 + CF)
shrq \$52, $_acc
salq \$12, %r10
or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
vpmadd52luq `$_data_offset+64*2+32`($a), $Bi, $_R2h
vpmadd52luq `$_data_offset+64*3`($a), $Bi, $_R3
vpmadd52luq `$_data_offset+64*3+32`($a), $Bi, $_R3h
vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
vpmadd52luq `$_data_offset+64*2+32`($m), $Yi, $_R2h
vpmadd52luq `$_data_offset+64*3`($m), $Yi, $_R3
vpmadd52luq `$_data_offset+64*3+32`($m), $Yi, $_R3h
# Shift accumulators right by 1 qword, zero extending the highest one
valignq \$1, $_R0, $_R0h, $_R0
valignq \$1, $_R0h, $_R1, $_R0h
valignq \$1, $_R1, $_R1h, $_R1
valignq \$1, $_R1h, $_R2, $_R1h
valignq \$1, $_R2, $_R2h, $_R2
valignq \$1, $_R2h, $_R3, $_R2h
valignq \$1, $_R3, $_R3h, $_R3
valignq \$1, $_R3h, $zero, $_R3h
vmovq $_R0_xmm, %r13
addq %r13, $_acc # acc += R0[0]
vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
vpmadd52huq `$_data_offset+64*2+32`($a), $Bi, $_R2h
vpmadd52huq `$_data_offset+64*3`($a), $Bi, $_R3
vpmadd52huq `$_data_offset+64*3+32`($a), $Bi, $_R3h
vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
vpmadd52huq `$_data_offset+64*2+32`($m), $Yi, $_R2h
vpmadd52huq `$_data_offset+64*3`($m), $Yi, $_R3
vpmadd52huq `$_data_offset+64*3+32`($m), $Yi, $_R3h
___
}
# Normalization routine: handles carry bits and gets bignum qwords to normalized
# 2^52 representation.
#
# Uses %r8-14,%e[abcd]x
sub amm52x30_x1_norm {
my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h) = @_;
$code.=<<___;
# Put accumulator to low qword in R0
vpbroadcastq $_acc, $T0
vpblendd \$3, $T0, $_R0, $_R0
# Extract "carries" (12 high bits) from each QW of the bignum
# Save them to LSB of QWs in T0..Tn
vpsrlq \$52, $_R0, $T0
vpsrlq \$52, $_R0h, $T0h
vpsrlq \$52, $_R1, $T1
vpsrlq \$52, $_R1h, $T1h
vpsrlq \$52, $_R2, $T2
vpsrlq \$52, $_R2h, $T2h
vpsrlq \$52, $_R3, $T3
vpsrlq \$52, $_R3h, $T3h
# "Shift left" T0..Tn by 1 QW
valignq \$3, $T3, $T3h, $T3h
valignq \$3, $T2h, $T3, $T3
valignq \$3, $T2, $T2h, $T2h
valignq \$3, $T1h, $T2, $T2
valignq \$3, $T1, $T1h, $T1h
valignq \$3, $T0h, $T1, $T1
valignq \$3, $T0, $T0h, $T0h
valignq \$3, .Lzeros(%rip), $T0, $T0
# Drop "carries" from R0..Rn QWs
vpandq .Lmask52x4(%rip), $_R0, $_R0
vpandq .Lmask52x4(%rip), $_R0h, $_R0h
vpandq .Lmask52x4(%rip), $_R1, $_R1
vpandq .Lmask52x4(%rip), $_R1h, $_R1h
vpandq .Lmask52x4(%rip), $_R2, $_R2
vpandq .Lmask52x4(%rip), $_R2h, $_R2h
vpandq .Lmask52x4(%rip), $_R3, $_R3
vpandq .Lmask52x4(%rip), $_R3h, $_R3h
# Sum R0..Rn with corresponding adjusted carries
vpaddq $T0, $_R0, $_R0
vpaddq $T0h, $_R0h, $_R0h
vpaddq $T1, $_R1, $_R1
vpaddq $T1h, $_R1h, $_R1h
vpaddq $T2, $_R2, $_R2
vpaddq $T2h, $_R2h, $_R2h
vpaddq $T3, $_R3, $_R3
vpaddq $T3h, $_R3h, $_R3h
# Now handle carry bits from this addition
# Get mask of QWs whose 52-bit parts overflow
vpcmpuq \$6,.Lmask52x4(%rip),${_R0},%k1 # OP=nle (i.e. gt)
vpcmpuq \$6,.Lmask52x4(%rip),${_R0h},%k2
kmovb %k1,%r14d
kmovb %k2,%r13d
shl \$4,%r13b
or %r13b,%r14b
vpcmpuq \$6,.Lmask52x4(%rip),${_R1},%k1
vpcmpuq \$6,.Lmask52x4(%rip),${_R1h},%k2
kmovb %k1,%r13d
kmovb %k2,%r12d
shl \$4,%r12b
or %r12b,%r13b
vpcmpuq \$6,.Lmask52x4(%rip),${_R2},%k1
vpcmpuq \$6,.Lmask52x4(%rip),${_R2h},%k2
kmovb %k1,%r12d
kmovb %k2,%r11d
shl \$4,%r11b
or %r11b,%r12b
vpcmpuq \$6,.Lmask52x4(%rip),${_R3},%k1
vpcmpuq \$6,.Lmask52x4(%rip),${_R3h},%k2
kmovb %k1,%r11d
kmovb %k2,%r10d
shl \$4,%r10b
or %r10b,%r11b
addb %r14b,%r14b
adcb %r13b,%r13b
adcb %r12b,%r12b
adcb %r11b,%r11b
# Get mask of QWs whose 52-bit parts saturated
vpcmpuq \$0,.Lmask52x4(%rip),${_R0},%k1 # OP=eq
vpcmpuq \$0,.Lmask52x4(%rip),${_R0h},%k2
kmovb %k1,%r9d
kmovb %k2,%r8d
shl \$4,%r8b
or %r8b,%r9b
vpcmpuq \$0,.Lmask52x4(%rip),${_R1},%k1
vpcmpuq \$0,.Lmask52x4(%rip),${_R1h},%k2
kmovb %k1,%r8d
kmovb %k2,%edx
shl \$4,%dl
or %dl,%r8b
vpcmpuq \$0,.Lmask52x4(%rip),${_R2},%k1
vpcmpuq \$0,.Lmask52x4(%rip),${_R2h},%k2
kmovb %k1,%edx
kmovb %k2,%ecx
shl \$4,%cl
or %cl,%dl
vpcmpuq \$0,.Lmask52x4(%rip),${_R3},%k1
vpcmpuq \$0,.Lmask52x4(%rip),${_R3h},%k2
kmovb %k1,%ecx
kmovb %k2,%ebx
shl \$4,%bl
or %bl,%cl
addb %r9b,%r14b
adcb %r8b,%r13b
adcb %dl,%r12b
adcb %cl,%r11b
xor %r9b,%r14b
xor %r8b,%r13b
xor %dl,%r12b
xor %cl,%r11b
kmovb %r14d,%k1
shr \$4,%r14b
kmovb %r14d,%k2
kmovb %r13d,%k3
shr \$4,%r13b
kmovb %r13d,%k4
kmovb %r12d,%k5
shr \$4,%r12b
kmovb %r12d,%k6
kmovb %r11d,%k7
vpsubq .Lmask52x4(%rip), $_R0, ${_R0}{%k1}
vpsubq .Lmask52x4(%rip), $_R0h, ${_R0h}{%k2}
vpsubq .Lmask52x4(%rip), $_R1, ${_R1}{%k3}
vpsubq .Lmask52x4(%rip), $_R1h, ${_R1h}{%k4}
vpsubq .Lmask52x4(%rip), $_R2, ${_R2}{%k5}
vpsubq .Lmask52x4(%rip), $_R2h, ${_R2h}{%k6}
vpsubq .Lmask52x4(%rip), $_R3, ${_R3}{%k7}
vpandq .Lmask52x4(%rip), $_R0, $_R0
vpandq .Lmask52x4(%rip), $_R0h, $_R0h
vpandq .Lmask52x4(%rip), $_R1, $_R1
vpandq .Lmask52x4(%rip), $_R1h, $_R1h
vpandq .Lmask52x4(%rip), $_R2, $_R2
vpandq .Lmask52x4(%rip), $_R2h, $_R2h
vpandq .Lmask52x4(%rip), $_R3, $_R3
shr \$4,%r11b
kmovb %r11d,%k1
vpsubq .Lmask52x4(%rip), $_R3h, ${_R3h}{%k1}
vpandq .Lmask52x4(%rip), $_R3h, $_R3h
___
}
$code.=<<___;
.text
.globl ossl_rsaz_amm52x30_x1_ifma256
.type ossl_rsaz_amm52x30_x1_ifma256,\@function,5
.align 32
ossl_rsaz_amm52x30_x1_ifma256:
.cfi_startproc
endbranch
push %rbx
.cfi_push %rbx
push %rbp
.cfi_push %rbp
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
___
$code.=<<___ if ($win64);
lea -168(%rsp),%rsp # 16*10 + (8 bytes to get correct 16-byte SIMD alignment)
vmovdqa64 %xmm6, `0*16`(%rsp) # save non-volatile registers
vmovdqa64 %xmm7, `1*16`(%rsp)
vmovdqa64 %xmm8, `2*16`(%rsp)
vmovdqa64 %xmm9, `3*16`(%rsp)
vmovdqa64 %xmm10,`4*16`(%rsp)
vmovdqa64 %xmm11,`5*16`(%rsp)
vmovdqa64 %xmm12,`6*16`(%rsp)
vmovdqa64 %xmm13,`7*16`(%rsp)
vmovdqa64 %xmm14,`8*16`(%rsp)
vmovdqa64 %xmm15,`9*16`(%rsp)
.Lossl_rsaz_amm52x30_x1_ifma256_body:
___
$code.=<<___;
# Zeroing accumulators
vpxord $zero, $zero, $zero
vmovdqa64 $zero, $R0_0
vmovdqa64 $zero, $R0_0h
vmovdqa64 $zero, $R1_0
vmovdqa64 $zero, $R1_0h
vmovdqa64 $zero, $R2_0
vmovdqa64 $zero, $R2_0h
vmovdqa64 $zero, $R3_0
vmovdqa64 $zero, $R3_0h
xorl $acc0_0_low, $acc0_0_low
movq $b, $b_ptr # backup address of b
movq \$0xfffffffffffff, $mask52 # 52-bit mask
# Loop over 30 digits unrolled by 4
mov \$7, $iter
.align 32
.Lloop7:
___
foreach my $idx (0..3) {
&amm52x30_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$k0);
}
$code.=<<___;
lea `4*8`($b_ptr), $b_ptr
dec $iter
jne .Lloop7
___
&amm52x30_x1(0,8*0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$k0);
&amm52x30_x1(0,8*1,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$k0);
&amm52x30_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h);
$code.=<<___;
vmovdqu64 $R0_0, `0*32`($res)
vmovdqu64 $R0_0h, `1*32`($res)
vmovdqu64 $R1_0, `2*32`($res)
vmovdqu64 $R1_0h, `3*32`($res)
vmovdqu64 $R2_0, `4*32`($res)
vmovdqu64 $R2_0h, `5*32`($res)
vmovdqu64 $R3_0, `6*32`($res)
vmovdqu64 $R3_0h, `7*32`($res)
vzeroupper
lea (%rsp),%rax
.cfi_def_cfa_register %rax
___
$code.=<<___ if ($win64);
vmovdqa64 `0*16`(%rax),%xmm6
vmovdqa64 `1*16`(%rax),%xmm7
vmovdqa64 `2*16`(%rax),%xmm8
vmovdqa64 `3*16`(%rax),%xmm9
vmovdqa64 `4*16`(%rax),%xmm10
vmovdqa64 `5*16`(%rax),%xmm11
vmovdqa64 `6*16`(%rax),%xmm12
vmovdqa64 `7*16`(%rax),%xmm13
vmovdqa64 `8*16`(%rax),%xmm14
vmovdqa64 `9*16`(%rax),%xmm15
lea 168(%rsp),%rax
___
$code.=<<___;
mov 0(%rax),%r15
.cfi_restore %r15
mov 8(%rax),%r14
.cfi_restore %r14
mov 16(%rax),%r13
.cfi_restore %r13
mov 24(%rax),%r12
.cfi_restore %r12
mov 32(%rax),%rbp
.cfi_restore %rbp
mov 40(%rax),%rbx
.cfi_restore %rbx
lea 48(%rax),%rsp # restore rsp
.cfi_def_cfa %rsp,8
.Lossl_rsaz_amm52x30_x1_ifma256_epilogue:
ret
.cfi_endproc
.size ossl_rsaz_amm52x30_x1_ifma256, .-ossl_rsaz_amm52x30_x1_ifma256
___
$code.=<<___;
.data
.align 32
.Lmask52x4:
.quad 0xfffffffffffff
.quad 0xfffffffffffff
.quad 0xfffffffffffff
.quad 0xfffffffffffff
___
###############################################################################
# Dual Almost Montgomery Multiplication for 30-digit number in radix 2^52
#
# See description of ossl_rsaz_amm52x30_x1_ifma256() above for details about Almost
# Montgomery Multiplication algorithm and function input parameters description.
#
# This function does two AMMs for two independent inputs, hence dual.
#
# NOTE: the function uses zero-padded data - 2 high QWs is a padding.
#
# void ossl_rsaz_amm52x30_x2_ifma256(BN_ULONG out[2][32],
# const BN_ULONG a[2][32],
# const BN_ULONG b[2][32],
# const BN_ULONG m[2][32],
# const BN_ULONG k0[2]);
###############################################################################
$code.=<<___;
.text
.globl ossl_rsaz_amm52x30_x2_ifma256
.type ossl_rsaz_amm52x30_x2_ifma256,\@function,5
.align 32
ossl_rsaz_amm52x30_x2_ifma256:
.cfi_startproc
endbranch
push %rbx
.cfi_push %rbx
push %rbp
.cfi_push %rbp
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
___
$code.=<<___ if ($win64);
lea -168(%rsp),%rsp
vmovdqa64 %xmm6, `0*16`(%rsp) # save non-volatile registers
vmovdqa64 %xmm7, `1*16`(%rsp)
vmovdqa64 %xmm8, `2*16`(%rsp)
vmovdqa64 %xmm9, `3*16`(%rsp)
vmovdqa64 %xmm10,`4*16`(%rsp)
vmovdqa64 %xmm11,`5*16`(%rsp)
vmovdqa64 %xmm12,`6*16`(%rsp)
vmovdqa64 %xmm13,`7*16`(%rsp)
vmovdqa64 %xmm14,`8*16`(%rsp)
vmovdqa64 %xmm15,`9*16`(%rsp)
.Lossl_rsaz_amm52x30_x2_ifma256_body:
___
$code.=<<___;
# Zeroing accumulators
vpxord $zero, $zero, $zero
vmovdqa64 $zero, $R0_0
vmovdqa64 $zero, $R0_0h
vmovdqa64 $zero, $R1_0
vmovdqa64 $zero, $R1_0h
vmovdqa64 $zero, $R2_0
vmovdqa64 $zero, $R2_0h
vmovdqa64 $zero, $R3_0
vmovdqa64 $zero, $R3_0h
vmovdqa64 $zero, $R0_1
vmovdqa64 $zero, $R0_1h
vmovdqa64 $zero, $R1_1
vmovdqa64 $zero, $R1_1h
vmovdqa64 $zero, $R2_1
vmovdqa64 $zero, $R2_1h
vmovdqa64 $zero, $R3_1
vmovdqa64 $zero, $R3_1h
xorl $acc0_0_low, $acc0_0_low
xorl $acc0_1_low, $acc0_1_low
movq $b, $b_ptr # backup address of b
movq \$0xfffffffffffff, $mask52 # 52-bit mask
mov \$30, $iter
.align 32
.Lloop30:
___
&amm52x30_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,"($k0)");
# 32*8 = offset of the next dimension in two-dimension array
&amm52x30_x1(32*8,32*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h,"8($k0)");
$code.=<<___;
lea 8($b_ptr), $b_ptr
dec $iter
jne .Lloop30
___
&amm52x30_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h);
&amm52x30_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h);
$code.=<<___;
vmovdqu64 $R0_0, `0*32`($res)
vmovdqu64 $R0_0h, `1*32`($res)
vmovdqu64 $R1_0, `2*32`($res)
vmovdqu64 $R1_0h, `3*32`($res)
vmovdqu64 $R2_0, `4*32`($res)
vmovdqu64 $R2_0h, `5*32`($res)
vmovdqu64 $R3_0, `6*32`($res)
vmovdqu64 $R3_0h, `7*32`($res)
vmovdqu64 $R0_1, `8*32`($res)
vmovdqu64 $R0_1h, `9*32`($res)
vmovdqu64 $R1_1, `10*32`($res)
vmovdqu64 $R1_1h, `11*32`($res)
vmovdqu64 $R2_1, `12*32`($res)
vmovdqu64 $R2_1h, `13*32`($res)
vmovdqu64 $R3_1, `14*32`($res)
vmovdqu64 $R3_1h, `15*32`($res)
vzeroupper
lea (%rsp),%rax
.cfi_def_cfa_register %rax
___
$code.=<<___ if ($win64);
vmovdqa64 `0*16`(%rax),%xmm6
vmovdqa64 `1*16`(%rax),%xmm7
vmovdqa64 `2*16`(%rax),%xmm8
vmovdqa64 `3*16`(%rax),%xmm9
vmovdqa64 `4*16`(%rax),%xmm10
vmovdqa64 `5*16`(%rax),%xmm11
vmovdqa64 `6*16`(%rax),%xmm12
vmovdqa64 `7*16`(%rax),%xmm13
vmovdqa64 `8*16`(%rax),%xmm14
vmovdqa64 `9*16`(%rax),%xmm15
lea 168(%rsp),%rax
___
$code.=<<___;
mov 0(%rax),%r15
.cfi_restore %r15
mov 8(%rax),%r14
.cfi_restore %r14
mov 16(%rax),%r13
.cfi_restore %r13
mov 24(%rax),%r12
.cfi_restore %r12
mov 32(%rax),%rbp
.cfi_restore %rbp
mov 40(%rax),%rbx
.cfi_restore %rbx
lea 48(%rax),%rsp
.cfi_def_cfa %rsp,8
.Lossl_rsaz_amm52x30_x2_ifma256_epilogue:
ret
.cfi_endproc
.size ossl_rsaz_amm52x30_x2_ifma256, .-ossl_rsaz_amm52x30_x2_ifma256
___
}
###############################################################################
# Constant time extraction from the precomputed table of powers base^i, where
# i = 0..2^EXP_WIN_SIZE-1
#
# The input |red_table| contains precomputations for two independent base values.
# |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
#
# Extracted value (output) is 2 (30 + 2) digits numbers in 2^52 radix.
# (2 high QW is zero padding)
#
# void ossl_extract_multiplier_2x30_win5(BN_ULONG *red_Y,
# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][32],
# int red_table_idx1, int red_table_idx2);
#
# EXP_WIN_SIZE = 5
###############################################################################
{
# input parameters
my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
("%rdi","%rsi","%rdx","%rcx"); # Unix order
my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
my ($t6,$t7,$t8,$t9,$t10,$t11,$t12,$t13,$t14,$t15) = map("%ymm$_", (16..25));
my ($tmp,$cur_idx,$idx1,$idx2,$ones) = map("%ymm$_", (26..30));
my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9,$t10,$t11,$t12,$t13,$t14,$t15);
my $t0xmm = $t0;
$t0xmm =~ s/%y/%x/;
$code.=<<___;
.text
.align 32
.globl ossl_extract_multiplier_2x30_win5
.type ossl_extract_multiplier_2x30_win5,\@abi-omnipotent
ossl_extract_multiplier_2x30_win5:
.cfi_startproc
endbranch
vmovdqa64 .Lones(%rip), $ones # broadcast ones
vpbroadcastq $red_tbl_idx1, $idx1
vpbroadcastq $red_tbl_idx2, $idx2
leaq `(1<<5)*2*32*8`($red_tbl), %rax # holds end of the tbl
# zeroing t0..n, cur_idx
vpxor $t0xmm, $t0xmm, $t0xmm
vmovdqa64 $t0, $cur_idx
___
foreach (1..15) {
$code.="vmovdqa64 $t0, $t[$_] \n";
}
$code.=<<___;
.align 32
.Lloop:
vpcmpq \$0, $cur_idx, $idx1, %k1 # mask of (idx1 == cur_idx)
vpcmpq \$0, $cur_idx, $idx2, %k2 # mask of (idx2 == cur_idx)
___
foreach (0..15) {
my $mask = $_<8?"%k1":"%k2";
$code.=<<___;
vmovdqu64 `${_}*32`($red_tbl), $tmp # load data from red_tbl
vpblendmq $tmp, $t[$_], ${t[$_]}{$mask} # extract data when mask is not zero
___
}
$code.=<<___;
vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
addq \$`2*32*8`, $red_tbl
cmpq $red_tbl, %rax
jne .Lloop
___
# store t0..n
foreach (0..15) {
$code.="vmovdqu64 $t[$_], `${_}*32`($out) \n";
}
$code.=<<___;
ret
.cfi_endproc
.size ossl_extract_multiplier_2x30_win5, .-ossl_extract_multiplier_2x30_win5
___
$code.=<<___;
.data
.align 32
.Lones:
.quad 1,1,1,1
.Lzeros:
.quad 0,0,0,0
___
}
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type rsaz_avx_handler,\@abi-omnipotent
.align 16
rsaz_avx_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<.Lprologue
jb .Lcommon_seh_tail
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=.Lepilogue
jae .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
lea (%rax),%rsi # %xmm save area
lea 512($context),%rdi # & context.Xmm6
mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
.long 0xa548f3fc # cld; rep movsq
lea `48+168`(%rax),%rax
mov -8(%rax),%rbx
mov -16(%rax),%rbp
mov -24(%rax),%r12
mov -32(%rax),%r13
mov -40(%rax),%r14
mov -48(%rax),%r15
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
mov %r15,240($context) # restore context->R14
.Lcommon_seh_tail:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size rsaz_avx_handler,.-rsaz_avx_handler
.section .pdata
.align 4
.rva .LSEH_begin_ossl_rsaz_amm52x30_x1_ifma256
.rva .LSEH_end_ossl_rsaz_amm52x30_x1_ifma256
.rva .LSEH_info_ossl_rsaz_amm52x30_x1_ifma256
.rva .LSEH_begin_ossl_rsaz_amm52x30_x2_ifma256
.rva .LSEH_end_ossl_rsaz_amm52x30_x2_ifma256
.rva .LSEH_info_ossl_rsaz_amm52x30_x2_ifma256
.section .xdata
.align 8
.LSEH_info_ossl_rsaz_amm52x30_x1_ifma256:
.byte 9,0,0,0
.rva rsaz_avx_handler
.rva .Lossl_rsaz_amm52x30_x1_ifma256_body,.Lossl_rsaz_amm52x30_x1_ifma256_epilogue
.LSEH_info_ossl_rsaz_amm52x30_x2_ifma256:
.byte 9,0,0,0
.rva rsaz_avx_handler
.rva .Lossl_rsaz_amm52x30_x2_ifma256_body,.Lossl_rsaz_amm52x30_x2_ifma256_epilogue
___
}
}}} else {{{ # fallback for old assembler
$code.=<<___;
.text
.globl ossl_rsaz_amm52x30_x1_ifma256
.globl ossl_rsaz_amm52x30_x2_ifma256
.globl ossl_extract_multiplier_2x30_win5
.type ossl_rsaz_amm52x30_x1_ifma256,\@abi-omnipotent
ossl_rsaz_amm52x30_x1_ifma256:
ossl_rsaz_amm52x30_x2_ifma256:
ossl_extract_multiplier_2x30_win5:
.byte 0x0f,0x0b # ud2
ret
.size ossl_rsaz_amm52x30_x1_ifma256, .-ossl_rsaz_amm52x30_x1_ifma256
___
}}}
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT or die "error closing STDOUT: $!";