openssl/test/threadstest.c
Neil Horman d0e1a0ae70 RCU lock implementation
Introduce an RCU lock implementation as an alternative locking mechanism
to openssl.  The api is documented in the ossl_rcu.pod
file

Read side implementaiton is comparable to that of RWLOCKS:
ossl_rcu_read_lock(lock);
<
critical section in which data can be accessed via
ossl_derefrence
>
ossl_rcu_read_unlock(lock);

Write side implementation is:
ossl_rcu_write_lock(lock);
<
critical section in which data can be updated via
ossl_assign_pointer
and stale data can optionally be scheduled for removal
via ossl_rcu_call
>
ossl_rcu_write_unlock(lock);
...
ossl_synchronize_rcu(lock);

ossl_rcu_call fixup

Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/22729)
2024-02-01 08:33:25 -05:00

1258 lines
34 KiB
C

/*
* Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* The test_multi_downgrade_shared_pkey function tests the thread safety of a
* deprecated function.
*/
#ifndef OPENSSL_NO_DEPRECATED_3_0
# define OPENSSL_SUPPRESS_DEPRECATED
#endif
#if defined(_WIN32)
# include <windows.h>
#endif
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/rsa.h>
#include <openssl/aes.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/pem.h>
#include <openssl/evp.h>
#include "internal/tsan_assist.h"
#include "internal/nelem.h"
#include "internal/time.h"
#include "internal/rcu.h"
#include "testutil.h"
#include "threadstest.h"
#ifdef __SANITIZE_THREAD__
#include <sanitizer/tsan_interface.h>
#define TSAN_ACQUIRE(s) __tsan_acquire(s)
#else
#define TSAN_ACQUIRE(s)
#endif
/* Limit the maximum number of threads */
#define MAXIMUM_THREADS 10
/* Limit the maximum number of providers loaded into a library context */
#define MAXIMUM_PROVIDERS 4
static int do_fips = 0;
static char *privkey;
static char *config_file = NULL;
static int multidefault_run = 0;
static const char *default_provider[] = { "default", NULL };
static const char *fips_provider[] = { "fips", NULL };
static const char *fips_and_default_providers[] = { "default", "fips", NULL };
static CRYPTO_RWLOCK *global_lock;
#ifdef TSAN_REQUIRES_LOCKING
static CRYPTO_RWLOCK *tsan_lock;
#endif
/* Grab a globally unique integer value, return 0 on failure */
static int get_new_uid(void)
{
/*
* Start with a nice large number to avoid potential conflicts when
* we generate a new OID.
*/
static TSAN_QUALIFIER int current_uid = 1 << (sizeof(int) * 8 - 2);
#ifdef TSAN_REQUIRES_LOCKING
int r;
if (!TEST_true(CRYPTO_THREAD_write_lock(tsan_lock)))
return 0;
r = ++current_uid;
if (!TEST_true(CRYPTO_THREAD_unlock(tsan_lock)))
return 0;
return r;
#else
return tsan_counter(&current_uid);
#endif
}
static int test_lock(void)
{
CRYPTO_RWLOCK *lock = CRYPTO_THREAD_lock_new();
int res;
res = TEST_true(CRYPTO_THREAD_read_lock(lock))
&& TEST_true(CRYPTO_THREAD_unlock(lock))
&& TEST_true(CRYPTO_THREAD_write_lock(lock))
&& TEST_true(CRYPTO_THREAD_unlock(lock));
CRYPTO_THREAD_lock_free(lock);
return res;
}
#if defined(OPENSSL_THREADS)
static int contention = 0;
static int rwwriter1_done = 0;
static int rwwriter2_done = 0;
static int rwreader1_iterations = 0;
static int rwreader2_iterations = 0;
static int rwwriter1_iterations = 0;
static int rwwriter2_iterations = 0;
static int *rwwriter_ptr = NULL;
static int rw_torture_result = 1;
static CRYPTO_RWLOCK *rwtorturelock = NULL;
static void rwwriter_fn(int id, int *iterations)
{
int count;
int *old, *new;
OSSL_TIME t1, t2;
t1 = ossl_time_now();
for (count = 0; ; count++) {
new = CRYPTO_zalloc(sizeof (int), NULL, 0);
if (contention == 0)
OSSL_sleep(1000);
if (!CRYPTO_THREAD_write_lock(rwtorturelock))
abort();
if (rwwriter_ptr != NULL) {
*new = *rwwriter_ptr + 1;
} else {
*new = 0;
}
old = rwwriter_ptr;
rwwriter_ptr = new;
if (!CRYPTO_THREAD_unlock(rwtorturelock))
abort();
if (old != NULL)
CRYPTO_free(old, __FILE__, __LINE__);
t2 = ossl_time_now();
if ((ossl_time2seconds(t2) - ossl_time2seconds(t1)) >= 4)
break;
}
*iterations = count;
return;
}
static void rwwriter1_fn(void)
{
int local;
TEST_info("Starting writer1");
rwwriter_fn(1, &rwwriter1_iterations);
CRYPTO_atomic_add(&rwwriter1_done, 1, &local, NULL);
}
static void rwwriter2_fn(void)
{
int local;
TEST_info("Starting writer 2");
rwwriter_fn(2, &rwwriter2_iterations);
CRYPTO_atomic_add(&rwwriter2_done, 1, &local, NULL);
}
static void rwreader_fn(int *iterations)
{
unsigned int count = 0;
int old = 0;
int lw1 = 0;
int lw2 = 0;
if (CRYPTO_THREAD_read_lock(rwtorturelock) == 0)
abort();
while (lw1 != 1 || lw2 != 1) {
CRYPTO_atomic_add(&rwwriter1_done, 0, &lw1, NULL);
CRYPTO_atomic_add(&rwwriter2_done, 0, &lw2, NULL);
count++;
if (rwwriter_ptr != NULL && old > *rwwriter_ptr) {
TEST_info("rwwriter pointer went backwards\n");
rw_torture_result = 0;
}
if (CRYPTO_THREAD_unlock(rwtorturelock) == 0)
abort();
*iterations = count;
if (rw_torture_result == 0) {
*iterations = count;
return;
}
if (CRYPTO_THREAD_read_lock(rwtorturelock) == 0)
abort();
}
*iterations = count;
if (CRYPTO_THREAD_unlock(rwtorturelock) == 0)
abort();
}
static void rwreader1_fn(void)
{
TEST_info("Starting reader 1");
rwreader_fn(&rwreader1_iterations);
}
static void rwreader2_fn(void)
{
TEST_info("Starting reader 2");
rwreader_fn(&rwreader2_iterations);
}
static thread_t rwwriter1;
static thread_t rwwriter2;
static thread_t rwreader1;
static thread_t rwreader2;
static int _torture_rw(void)
{
double tottime = 0;
int ret = 0;
double avr, avw;
OSSL_TIME t1, t2;
struct timeval dtime;
rwtorturelock = CRYPTO_THREAD_lock_new();
rwwriter1_iterations = 0;
rwwriter2_iterations = 0;
rwreader1_iterations = 0;
rwreader2_iterations = 0;
rwwriter1_done = 0;
rwwriter2_done = 0;
rw_torture_result = 1;
memset(&rwwriter1, 0, sizeof(thread_t));
memset(&rwwriter2, 0, sizeof(thread_t));
memset(&rwreader1, 0, sizeof(thread_t));
memset(&rwreader2, 0, sizeof(thread_t));
TEST_info("Staring rw torture");
t1 = ossl_time_now();
if (!TEST_true(run_thread(&rwreader1, rwreader1_fn))
|| !TEST_true(run_thread(&rwreader2, rwreader2_fn))
|| !TEST_true(run_thread(&rwwriter1, rwwriter1_fn))
|| !TEST_true(run_thread(&rwwriter2, rwwriter2_fn))
|| !TEST_true(wait_for_thread(rwwriter1))
|| !TEST_true(wait_for_thread(rwwriter2))
|| !TEST_true(wait_for_thread(rwreader1))
|| !TEST_true(wait_for_thread(rwreader2)))
goto out;
t2 = ossl_time_now();
dtime = ossl_time_to_timeval(ossl_time_subtract(t2, t1));
tottime = dtime.tv_sec + (dtime.tv_usec / 1e6);
TEST_info("rw_torture_result is %d\n", rw_torture_result);
TEST_info("performed %d reads and %d writes over 2 read and 2 write threads in %e seconds",
rwreader1_iterations + rwreader2_iterations,
rwwriter1_iterations + rwwriter2_iterations, tottime);
avr = tottime / (rwreader1_iterations + rwreader2_iterations);
avw = (tottime / (rwwriter1_iterations + rwwriter2_iterations));
TEST_info("Average read time %e/read", avr);
TEST_info("Averate write time %e/write", avw);
if (TEST_int_eq(rw_torture_result, 1))
ret = 1;
out:
CRYPTO_THREAD_lock_free(rwtorturelock);
rwtorturelock = NULL;
return ret;
}
static int torture_rw_low(void)
{
contention = 0;
return _torture_rw();
}
static int torture_rw_high(void)
{
contention = 1;
return _torture_rw();
}
static CRYPTO_RCU_LOCK *rcu_lock = NULL;
static int writer1_done = 0;
static int writer2_done = 0;
static int reader1_iterations = 0;
static int reader2_iterations = 0;
static int writer1_iterations = 0;
static int writer2_iterations = 0;
static unsigned int *writer_ptr = NULL;
static unsigned int global_ctr = 0;
static int rcu_torture_result = 1;
static void free_old_rcu_data(void *data)
{
CRYPTO_free(data, NULL, 0);
}
static void writer_fn(int id, int *iterations)
{
int count;
OSSL_TIME t1, t2;
unsigned int *old, *new;
t1 = ossl_time_now();
for (count = 0; ; count++) {
new = CRYPTO_zalloc(sizeof(int), NULL, 0);
if (contention == 0)
OSSL_sleep(1000);
ossl_rcu_write_lock(rcu_lock);
old = ossl_rcu_deref(&writer_ptr);
TSAN_ACQUIRE(&writer_ptr);
*new = global_ctr++;
ossl_rcu_assign_ptr(&writer_ptr, &new);
if (contention == 0)
ossl_rcu_call(rcu_lock, free_old_rcu_data, old);
ossl_rcu_write_unlock(rcu_lock);
if (contention != 0) {
ossl_synchronize_rcu(rcu_lock);
CRYPTO_free(old, NULL, 0);
}
t2 = ossl_time_now();
if ((ossl_time2seconds(t2) - ossl_time2seconds(t1)) >= 4)
break;
}
*iterations = count;
return;
}
static void writer1_fn(void)
{
int local;
TEST_info("Starting writer1");
writer_fn(1, &writer1_iterations);
CRYPTO_atomic_add(&writer1_done, 1, &local, NULL);
}
static void writer2_fn(void)
{
int local;
TEST_info("Starting writer2");
writer_fn(2, &writer2_iterations);
CRYPTO_atomic_add(&writer2_done, 1, &local, NULL);
}
static void reader_fn(int *iterations)
{
unsigned int count = 0;
unsigned int *valp;
unsigned int val;
unsigned int oldval = 0;
int lw1 = 0;
int lw2 = 0;
while (lw1 != 1 || lw2 != 1) {
CRYPTO_atomic_add(&writer1_done, 0, &lw1, NULL);
CRYPTO_atomic_add(&writer2_done, 0, &lw2, NULL);
count++;
ossl_rcu_read_lock(rcu_lock);
valp = ossl_rcu_deref(&writer_ptr);
val = (valp == NULL) ? 0 : *valp;
if (oldval > val) {
TEST_info("rcu torture value went backwards! (%p) %x : %x\n", (void *)valp, oldval, val);
rcu_torture_result = 0;
}
oldval = val; /* just try to deref the pointer */
ossl_rcu_read_unlock(rcu_lock);
if (rcu_torture_result == 0) {
*iterations = count;
return;
}
}
*iterations = count;
}
static void reader1_fn(void)
{
TEST_info("Starting reader 1");
reader_fn(&reader1_iterations);
}
static void reader2_fn(void)
{
TEST_info("Starting reader 2");
reader_fn(&reader2_iterations);
}
static thread_t writer1;
static thread_t writer2;
static thread_t reader1;
static thread_t reader2;
static int _torture_rcu(void)
{
OSSL_TIME t1, t2;
struct timeval dtime;
double tottime;
double avr, avw;
memset(&writer1, 0, sizeof(thread_t));
memset(&writer2, 0, sizeof(thread_t));
memset(&reader1, 0, sizeof(thread_t));
memset(&reader2, 0, sizeof(thread_t));
writer1_iterations = 0;
writer2_iterations = 0;
reader1_iterations = 0;
reader2_iterations = 0;
writer1_done = 0;
writer2_done = 0;
rcu_torture_result = 1;
rcu_lock = ossl_rcu_lock_new(1);
TEST_info("Staring rcu torture");
t1 = ossl_time_now();
if (!TEST_true(run_thread(&reader1, reader1_fn))
|| !TEST_true(run_thread(&reader2, reader2_fn))
|| !TEST_true(run_thread(&writer1, writer1_fn))
|| !TEST_true(run_thread(&writer2, writer2_fn))
|| !TEST_true(wait_for_thread(writer1))
|| !TEST_true(wait_for_thread(writer2))
|| !TEST_true(wait_for_thread(reader1))
|| !TEST_true(wait_for_thread(reader2)))
return 0;
t2 = ossl_time_now();
dtime = ossl_time_to_timeval(ossl_time_subtract(t2, t1));
tottime = dtime.tv_sec + (dtime.tv_usec / 1e6);
TEST_info("rcu_torture_result is %d\n", rcu_torture_result);
TEST_info("performed %d reads and %d writes over 2 read and 2 write threads in %e seconds",
reader1_iterations + reader2_iterations,
writer1_iterations + writer2_iterations, tottime);
avr = tottime / (reader1_iterations + reader2_iterations);
avw = tottime / (writer1_iterations + writer2_iterations);
TEST_info("Average read time %e/read", avr);
TEST_info("Average write time %e/write", avw);
ossl_rcu_lock_free(rcu_lock);
if (!TEST_int_eq(rcu_torture_result, 1))
return 0;
return 1;
}
static int torture_rcu_low(void)
{
contention = 0;
return _torture_rcu();
}
static int torture_rcu_high(void)
{
contention = 1;
return _torture_rcu();
}
#endif
static CRYPTO_ONCE once_run = CRYPTO_ONCE_STATIC_INIT;
static unsigned once_run_count = 0;
static void once_do_run(void)
{
once_run_count++;
}
static void once_run_thread_cb(void)
{
CRYPTO_THREAD_run_once(&once_run, once_do_run);
}
static int test_once(void)
{
thread_t thread;
if (!TEST_true(run_thread(&thread, once_run_thread_cb))
|| !TEST_true(wait_for_thread(thread))
|| !CRYPTO_THREAD_run_once(&once_run, once_do_run)
|| !TEST_int_eq(once_run_count, 1))
return 0;
return 1;
}
static CRYPTO_THREAD_LOCAL thread_local_key;
static unsigned destructor_run_count = 0;
static int thread_local_thread_cb_ok = 0;
static void thread_local_destructor(void *arg)
{
unsigned *count;
if (arg == NULL)
return;
count = arg;
(*count)++;
}
static void thread_local_thread_cb(void)
{
void *ptr;
ptr = CRYPTO_THREAD_get_local(&thread_local_key);
if (!TEST_ptr_null(ptr)
|| !TEST_true(CRYPTO_THREAD_set_local(&thread_local_key,
&destructor_run_count)))
return;
ptr = CRYPTO_THREAD_get_local(&thread_local_key);
if (!TEST_ptr_eq(ptr, &destructor_run_count))
return;
thread_local_thread_cb_ok = 1;
}
static int test_thread_local(void)
{
thread_t thread;
void *ptr = NULL;
if (!TEST_true(CRYPTO_THREAD_init_local(&thread_local_key,
thread_local_destructor)))
return 0;
ptr = CRYPTO_THREAD_get_local(&thread_local_key);
if (!TEST_ptr_null(ptr)
|| !TEST_true(run_thread(&thread, thread_local_thread_cb))
|| !TEST_true(wait_for_thread(thread))
|| !TEST_int_eq(thread_local_thread_cb_ok, 1))
return 0;
#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG)
ptr = CRYPTO_THREAD_get_local(&thread_local_key);
if (!TEST_ptr_null(ptr))
return 0;
# if !defined(OPENSSL_SYS_WINDOWS)
if (!TEST_int_eq(destructor_run_count, 1))
return 0;
# endif
#endif
if (!TEST_true(CRYPTO_THREAD_cleanup_local(&thread_local_key)))
return 0;
return 1;
}
static int test_atomic(void)
{
int val = 0, ret = 0, testresult = 0;
uint64_t val64 = 1, ret64 = 0;
CRYPTO_RWLOCK *lock = CRYPTO_THREAD_lock_new();
if (!TEST_ptr(lock))
return 0;
if (CRYPTO_atomic_add(&val, 1, &ret, NULL)) {
/* This succeeds therefore we're on a platform with lockless atomics */
if (!TEST_int_eq(val, 1) || !TEST_int_eq(val, ret))
goto err;
} else {
/* This failed therefore we're on a platform without lockless atomics */
if (!TEST_int_eq(val, 0) || !TEST_int_eq(val, ret))
goto err;
}
val = 0;
ret = 0;
if (!TEST_true(CRYPTO_atomic_add(&val, 1, &ret, lock)))
goto err;
if (!TEST_int_eq(val, 1) || !TEST_int_eq(val, ret))
goto err;
if (CRYPTO_atomic_or(&val64, 2, &ret64, NULL)) {
/* This succeeds therefore we're on a platform with lockless atomics */
if (!TEST_uint_eq((unsigned int)val64, 3)
|| !TEST_uint_eq((unsigned int)val64, (unsigned int)ret64))
goto err;
} else {
/* This failed therefore we're on a platform without lockless atomics */
if (!TEST_uint_eq((unsigned int)val64, 1)
|| !TEST_int_eq((unsigned int)ret64, 0))
goto err;
}
val64 = 1;
ret64 = 0;
if (!TEST_true(CRYPTO_atomic_or(&val64, 2, &ret64, lock)))
goto err;
if (!TEST_uint_eq((unsigned int)val64, 3)
|| !TEST_uint_eq((unsigned int)val64, (unsigned int)ret64))
goto err;
ret64 = 0;
if (CRYPTO_atomic_load(&val64, &ret64, NULL)) {
/* This succeeds therefore we're on a platform with lockless atomics */
if (!TEST_uint_eq((unsigned int)val64, 3)
|| !TEST_uint_eq((unsigned int)val64, (unsigned int)ret64))
goto err;
} else {
/* This failed therefore we're on a platform without lockless atomics */
if (!TEST_uint_eq((unsigned int)val64, 3)
|| !TEST_int_eq((unsigned int)ret64, 0))
goto err;
}
ret64 = 0;
if (!TEST_true(CRYPTO_atomic_load(&val64, &ret64, lock)))
goto err;
if (!TEST_uint_eq((unsigned int)val64, 3)
|| !TEST_uint_eq((unsigned int)val64, (unsigned int)ret64))
goto err;
testresult = 1;
err:
CRYPTO_THREAD_lock_free(lock);
return testresult;
}
static OSSL_LIB_CTX *multi_libctx = NULL;
static int multi_success;
static OSSL_PROVIDER *multi_provider[MAXIMUM_PROVIDERS + 1];
static size_t multi_num_threads;
static thread_t multi_threads[MAXIMUM_THREADS];
static void multi_intialise(void)
{
multi_success = 1;
multi_libctx = NULL;
multi_num_threads = 0;
memset(multi_threads, 0, sizeof(multi_threads));
memset(multi_provider, 0, sizeof(multi_provider));
}
static void multi_set_success(int ok)
{
if (CRYPTO_THREAD_write_lock(global_lock) == 0) {
/* not synchronized, but better than not reporting failure */
multi_success = ok;
return;
}
multi_success = ok;
CRYPTO_THREAD_unlock(global_lock);
}
static void thead_teardown_libctx(void)
{
OSSL_PROVIDER **p;
for (p = multi_provider; *p != NULL; p++)
OSSL_PROVIDER_unload(*p);
OSSL_LIB_CTX_free(multi_libctx);
multi_intialise();
}
static int thread_setup_libctx(int libctx, const char *providers[])
{
size_t n;
if (libctx && !TEST_true(test_get_libctx(&multi_libctx, NULL, config_file,
NULL, NULL)))
return 0;
if (providers != NULL)
for (n = 0; providers[n] != NULL; n++)
if (!TEST_size_t_lt(n, MAXIMUM_PROVIDERS)
|| !TEST_ptr(multi_provider[n] = OSSL_PROVIDER_load(multi_libctx,
providers[n]))) {
thead_teardown_libctx();
return 0;
}
return 1;
}
static int teardown_threads(void)
{
size_t i;
for (i = 0; i < multi_num_threads; i++)
if (!TEST_true(wait_for_thread(multi_threads[i])))
return 0;
return 1;
}
static int start_threads(size_t n, void (*thread_func)(void))
{
size_t i;
if (!TEST_size_t_le(multi_num_threads + n, MAXIMUM_THREADS))
return 0;
for (i = 0 ; i < n; i++)
if (!TEST_true(run_thread(multi_threads + multi_num_threads++, thread_func)))
return 0;
return 1;
}
/* Template multi-threaded test function */
static int thread_run_test(void (*main_func)(void),
size_t num_threads, void (*thread_func)(void),
int libctx, const char *providers[])
{
int testresult = 0;
multi_intialise();
if (!thread_setup_libctx(libctx, providers)
|| !start_threads(num_threads, thread_func))
goto err;
if (main_func != NULL)
main_func();
if (!teardown_threads()
|| !TEST_true(multi_success))
goto err;
testresult = 1;
err:
thead_teardown_libctx();
return testresult;
}
static void thread_general_worker(void)
{
EVP_MD_CTX *mdctx = EVP_MD_CTX_new();
EVP_MD *md = EVP_MD_fetch(multi_libctx, "SHA2-256", NULL);
EVP_CIPHER_CTX *cipherctx = EVP_CIPHER_CTX_new();
EVP_CIPHER *ciph = EVP_CIPHER_fetch(multi_libctx, "AES-128-CBC", NULL);
const char *message = "Hello World";
size_t messlen = strlen(message);
/* Should be big enough for encryption output too */
unsigned char out[EVP_MAX_MD_SIZE];
const unsigned char key[AES_BLOCK_SIZE] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f
};
const unsigned char iv[AES_BLOCK_SIZE] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f
};
unsigned int mdoutl;
int ciphoutl;
EVP_PKEY *pkey = NULL;
int testresult = 0;
int i, isfips;
isfips = OSSL_PROVIDER_available(multi_libctx, "fips");
if (!TEST_ptr(mdctx)
|| !TEST_ptr(md)
|| !TEST_ptr(cipherctx)
|| !TEST_ptr(ciph))
goto err;
/* Do some work */
for (i = 0; i < 5; i++) {
if (!TEST_true(EVP_DigestInit_ex(mdctx, md, NULL))
|| !TEST_true(EVP_DigestUpdate(mdctx, message, messlen))
|| !TEST_true(EVP_DigestFinal(mdctx, out, &mdoutl)))
goto err;
}
for (i = 0; i < 5; i++) {
if (!TEST_true(EVP_EncryptInit_ex(cipherctx, ciph, NULL, key, iv))
|| !TEST_true(EVP_EncryptUpdate(cipherctx, out, &ciphoutl,
(unsigned char *)message,
messlen))
|| !TEST_true(EVP_EncryptFinal(cipherctx, out, &ciphoutl)))
goto err;
}
/*
* We want the test to run quickly - not securely.
* Therefore we use an insecure bit length where we can (512).
* In the FIPS module though we must use a longer length.
*/
pkey = EVP_PKEY_Q_keygen(multi_libctx, NULL, "RSA", isfips ? 2048 : 512);
if (!TEST_ptr(pkey))
goto err;
testresult = 1;
err:
EVP_MD_CTX_free(mdctx);
EVP_MD_free(md);
EVP_CIPHER_CTX_free(cipherctx);
EVP_CIPHER_free(ciph);
EVP_PKEY_free(pkey);
if (!testresult)
multi_set_success(0);
}
static void thread_multi_simple_fetch(void)
{
EVP_MD *md = EVP_MD_fetch(multi_libctx, "SHA2-256", NULL);
if (md != NULL)
EVP_MD_free(md);
else
multi_set_success(0);
}
static EVP_PKEY *shared_evp_pkey = NULL;
static void thread_shared_evp_pkey(void)
{
char *msg = "Hello World";
unsigned char ctbuf[256];
unsigned char ptbuf[256];
size_t ptlen, ctlen = sizeof(ctbuf);
EVP_PKEY_CTX *ctx = NULL;
int success = 0;
int i;
for (i = 0; i < 1 + do_fips; i++) {
if (i > 0)
EVP_PKEY_CTX_free(ctx);
ctx = EVP_PKEY_CTX_new_from_pkey(multi_libctx, shared_evp_pkey,
i == 0 ? "provider=default"
: "provider=fips");
if (!TEST_ptr(ctx))
goto err;
if (!TEST_int_ge(EVP_PKEY_encrypt_init(ctx), 0)
|| !TEST_int_ge(EVP_PKEY_encrypt(ctx, ctbuf, &ctlen,
(unsigned char *)msg, strlen(msg)),
0))
goto err;
EVP_PKEY_CTX_free(ctx);
ctx = EVP_PKEY_CTX_new_from_pkey(multi_libctx, shared_evp_pkey, NULL);
if (!TEST_ptr(ctx))
goto err;
ptlen = sizeof(ptbuf);
if (!TEST_int_ge(EVP_PKEY_decrypt_init(ctx), 0)
|| !TEST_int_gt(EVP_PKEY_decrypt(ctx, ptbuf, &ptlen, ctbuf, ctlen),
0)
|| !TEST_mem_eq(msg, strlen(msg), ptbuf, ptlen))
goto err;
}
success = 1;
err:
EVP_PKEY_CTX_free(ctx);
if (!success)
multi_set_success(0);
}
static void thread_provider_load_unload(void)
{
OSSL_PROVIDER *deflt = OSSL_PROVIDER_load(multi_libctx, "default");
if (!TEST_ptr(deflt)
|| !TEST_true(OSSL_PROVIDER_available(multi_libctx, "default")))
multi_set_success(0);
OSSL_PROVIDER_unload(deflt);
}
static int test_multi_general_worker_default_provider(void)
{
return thread_run_test(&thread_general_worker, 2, &thread_general_worker,
1, default_provider);
}
static int test_multi_general_worker_fips_provider(void)
{
if (!do_fips)
return TEST_skip("FIPS not supported");
return thread_run_test(&thread_general_worker, 2, &thread_general_worker,
1, fips_provider);
}
static int test_multi_fetch_worker(void)
{
return thread_run_test(&thread_multi_simple_fetch,
2, &thread_multi_simple_fetch, 1, default_provider);
}
static int test_multi_shared_pkey_common(void (*worker)(void))
{
int testresult = 0;
multi_intialise();
if (!thread_setup_libctx(1, do_fips ? fips_and_default_providers
: default_provider)
|| !TEST_ptr(shared_evp_pkey = load_pkey_pem(privkey, multi_libctx))
|| !start_threads(1, &thread_shared_evp_pkey)
|| !start_threads(1, worker))
goto err;
thread_shared_evp_pkey();
if (!teardown_threads()
|| !TEST_true(multi_success))
goto err;
testresult = 1;
err:
EVP_PKEY_free(shared_evp_pkey);
thead_teardown_libctx();
return testresult;
}
#ifndef OPENSSL_NO_DEPRECATED_3_0
static void thread_downgrade_shared_evp_pkey(void)
{
/*
* This test is only relevant for deprecated functions that perform
* downgrading
*/
if (EVP_PKEY_get0_RSA(shared_evp_pkey) == NULL)
multi_set_success(0);
}
static int test_multi_downgrade_shared_pkey(void)
{
return test_multi_shared_pkey_common(&thread_downgrade_shared_evp_pkey);
}
#endif
static int test_multi_shared_pkey(void)
{
return test_multi_shared_pkey_common(&thread_shared_evp_pkey);
}
static int test_multi_load_unload_provider(void)
{
EVP_MD *sha256 = NULL;
OSSL_PROVIDER *prov = NULL;
int testresult = 0;
multi_intialise();
if (!thread_setup_libctx(1, NULL)
|| !TEST_ptr(prov = OSSL_PROVIDER_load(multi_libctx, "default"))
|| !TEST_ptr(sha256 = EVP_MD_fetch(multi_libctx, "SHA2-256", NULL))
|| !TEST_true(OSSL_PROVIDER_unload(prov)))
goto err;
prov = NULL;
if (!start_threads(2, &thread_provider_load_unload))
goto err;
thread_provider_load_unload();
if (!teardown_threads()
|| !TEST_true(multi_success))
goto err;
testresult = 1;
err:
OSSL_PROVIDER_unload(prov);
EVP_MD_free(sha256);
thead_teardown_libctx();
return testresult;
}
static char *multi_load_provider = "legacy";
/*
* This test attempts to load several providers at the same time, and if
* run with a thread sanitizer, should crash if the core provider code
* doesn't synchronize well enough.
*/
static void test_multi_load_worker(void)
{
OSSL_PROVIDER *prov;
if (!TEST_ptr(prov = OSSL_PROVIDER_load(multi_libctx, multi_load_provider))
|| !TEST_true(OSSL_PROVIDER_unload(prov)))
multi_set_success(0);
}
static int test_multi_default(void)
{
/* Avoid running this test twice */
if (multidefault_run) {
TEST_skip("multi default test already run");
return 1;
}
multidefault_run = 1;
return thread_run_test(&thread_multi_simple_fetch,
2, &thread_multi_simple_fetch, 0, default_provider);
}
static int test_multi_load(void)
{
int res = 1;
OSSL_PROVIDER *prov;
/* The multidefault test must run prior to this test */
if (!multidefault_run) {
TEST_info("Running multi default test first");
res = test_multi_default();
}
/*
* We use the legacy provider in test_multi_load_worker because it uses a
* child libctx that might hit more codepaths that might be sensitive to
* threading issues. But in a no-legacy build that won't be loadable so
* we use the default provider instead.
*/
prov = OSSL_PROVIDER_load(NULL, "legacy");
if (prov == NULL) {
TEST_info("Cannot load legacy provider - assuming this is a no-legacy build");
multi_load_provider = "default";
}
OSSL_PROVIDER_unload(prov);
return thread_run_test(NULL, MAXIMUM_THREADS, &test_multi_load_worker, 0,
NULL) && res;
}
static void test_obj_create_one(void)
{
char tids[12], oid[40], sn[30], ln[30];
int id = get_new_uid();
BIO_snprintf(tids, sizeof(tids), "%d", id);
BIO_snprintf(oid, sizeof(oid), "1.3.6.1.4.1.16604.%s", tids);
BIO_snprintf(sn, sizeof(sn), "short-name-%s", tids);
BIO_snprintf(ln, sizeof(ln), "long-name-%s", tids);
if (!TEST_int_ne(id, 0)
|| !TEST_true(id = OBJ_create(oid, sn, ln))
|| !TEST_true(OBJ_add_sigid(id, NID_sha3_256, NID_rsa)))
multi_set_success(0);
}
static int test_obj_add(void)
{
return thread_run_test(&test_obj_create_one,
MAXIMUM_THREADS, &test_obj_create_one,
1, default_provider);
}
static void test_lib_ctx_load_config_worker(void)
{
if (!TEST_int_eq(OSSL_LIB_CTX_load_config(multi_libctx, config_file), 1))
multi_set_success(0);
}
static int test_lib_ctx_load_config(void)
{
return thread_run_test(&test_lib_ctx_load_config_worker,
MAXIMUM_THREADS, &test_lib_ctx_load_config_worker,
1, default_provider);
}
#if !defined(OPENSSL_NO_DGRAM) && !defined(OPENSSL_NO_SOCK)
static BIO *multi_bio1, *multi_bio2;
static void test_bio_dgram_pair_worker(void)
{
ossl_unused int r;
int ok = 0;
uint8_t ch = 0;
uint8_t scratch[64];
BIO_MSG msg = {0};
size_t num_processed = 0;
if (!TEST_int_eq(RAND_bytes_ex(multi_libctx, &ch, 1, 64), 1))
goto err;
msg.data = scratch;
msg.data_len = sizeof(scratch);
/*
* We do not test for failure here as recvmmsg may fail if no sendmmsg
* has been called yet. The purpose of this code is to exercise tsan.
*/
if (ch & 2)
r = BIO_sendmmsg(ch & 1 ? multi_bio2 : multi_bio1, &msg,
sizeof(BIO_MSG), 1, 0, &num_processed);
else
r = BIO_recvmmsg(ch & 1 ? multi_bio2 : multi_bio1, &msg,
sizeof(BIO_MSG), 1, 0, &num_processed);
ok = 1;
err:
if (ok == 0)
multi_set_success(0);
}
static int test_bio_dgram_pair(void)
{
int r;
BIO *bio1 = NULL, *bio2 = NULL;
r = BIO_new_bio_dgram_pair(&bio1, 0, &bio2, 0);
if (!TEST_int_eq(r, 1))
goto err;
multi_bio1 = bio1;
multi_bio2 = bio2;
r = thread_run_test(&test_bio_dgram_pair_worker,
MAXIMUM_THREADS, &test_bio_dgram_pair_worker,
1, default_provider);
err:
BIO_free(bio1);
BIO_free(bio2);
return r;
}
#endif
static const char *pemdataraw[] = {
"-----BEGIN RSA PRIVATE KEY-----\n",
"MIIBOgIBAAJBAMFcGsaxxdgiuuGmCkVImy4h99CqT7jwY3pexPGcnUFtR2Fh36Bp\n",
"oncwtkZ4cAgtvd4Qs8PkxUdp6p/DlUmObdkCAwEAAQJAUR44xX6zB3eaeyvTRzms\n",
"kHADrPCmPWnr8dxsNwiDGHzrMKLN+i/HAam+97HxIKVWNDH2ba9Mf1SA8xu9dcHZ\n",
"AQIhAOHPCLxbtQFVxlnhSyxYeb7O323c3QulPNn3bhOipElpAiEA2zZpBE8ZXVnL\n",
"74QjG4zINlDfH+EOEtjJJ3RtaYDugvECIBtsQDxXytChsRgDQ1TcXdStXPcDppie\n",
"dZhm8yhRTTBZAiAZjE/U9rsIDC0ebxIAZfn3iplWh84yGB3pgUI3J5WkoQIhAInE\n",
"HTUY5WRj5riZtkyGnbm3DvF+1eMtO2lYV+OuLcfE\n",
"-----END RSA PRIVATE KEY-----\n",
NULL
};
static void test_pem_read_one(void)
{
EVP_PKEY *key = NULL;
BIO *pem = NULL;
char *pemdata;
size_t len;
pemdata = glue_strings(pemdataraw, &len);
if (pemdata == NULL) {
multi_set_success(0);
goto err;
}
pem = BIO_new_mem_buf(pemdata, len);
if (pem == NULL) {
multi_set_success(0);
goto err;
}
key = PEM_read_bio_PrivateKey(pem, NULL, NULL, NULL);
if (key == NULL)
multi_set_success(0);
err:
EVP_PKEY_free(key);
BIO_free(pem);
OPENSSL_free(pemdata);
}
/* Test reading PEM files in multiple threads */
static int test_pem_read(void)
{
return thread_run_test(&test_pem_read_one, MAXIMUM_THREADS,
&test_pem_read_one, 1, default_provider);
}
typedef enum OPTION_choice {
OPT_ERR = -1,
OPT_EOF = 0,
OPT_FIPS, OPT_CONFIG_FILE,
OPT_TEST_ENUM
} OPTION_CHOICE;
const OPTIONS *test_get_options(void)
{
static const OPTIONS options[] = {
OPT_TEST_OPTIONS_DEFAULT_USAGE,
{ "fips", OPT_FIPS, '-', "Test the FIPS provider" },
{ "config", OPT_CONFIG_FILE, '<',
"The configuration file to use for the libctx" },
{ NULL }
};
return options;
}
int setup_tests(void)
{
OPTION_CHOICE o;
char *datadir;
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_FIPS:
do_fips = 1;
break;
case OPT_CONFIG_FILE:
config_file = opt_arg();
break;
case OPT_TEST_CASES:
break;
default:
return 0;
}
}
if (!TEST_ptr(datadir = test_get_argument(0)))
return 0;
privkey = test_mk_file_path(datadir, "rsakey.pem");
if (!TEST_ptr(privkey))
return 0;
if (!TEST_ptr(global_lock = CRYPTO_THREAD_lock_new()))
return 0;
#ifdef TSAN_REQUIRES_LOCKING
if (!TEST_ptr(tsan_lock = CRYPTO_THREAD_lock_new()))
return 0;
#endif
/* Keep first to validate auto creation of default library context */
ADD_TEST(test_multi_default);
ADD_TEST(test_lock);
#if defined(OPENSSL_THREADS)
ADD_TEST(torture_rw_low);
ADD_TEST(torture_rw_high);
ADD_TEST(torture_rcu_low);
ADD_TEST(torture_rcu_high);
#endif
ADD_TEST(test_once);
ADD_TEST(test_thread_local);
ADD_TEST(test_atomic);
ADD_TEST(test_multi_load);
ADD_TEST(test_multi_general_worker_default_provider);
ADD_TEST(test_multi_general_worker_fips_provider);
ADD_TEST(test_multi_fetch_worker);
ADD_TEST(test_multi_shared_pkey);
#ifndef OPENSSL_NO_DEPRECATED_3_0
ADD_TEST(test_multi_downgrade_shared_pkey);
#endif
ADD_TEST(test_multi_load_unload_provider);
ADD_TEST(test_obj_add);
ADD_TEST(test_lib_ctx_load_config);
#if !defined(OPENSSL_NO_DGRAM) && !defined(OPENSSL_NO_SOCK)
ADD_TEST(test_bio_dgram_pair);
#endif
ADD_TEST(test_pem_read);
return 1;
}
void cleanup_tests(void)
{
OPENSSL_free(privkey);
#ifdef TSAN_REQUIRES_LOCKING
CRYPTO_THREAD_lock_free(tsan_lock);
#endif
CRYPTO_THREAD_lock_free(global_lock);
}