openssl/providers/implementations/rands/drbg.c
Pauli 30ab774770 Declare FIPS option functions in their own header
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/20521)
2023-03-29 09:25:58 +11:00

954 lines
30 KiB
C

/*
* Copyright 2011-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/evp.h>
#include "crypto/rand.h"
#include <openssl/proverr.h>
#include "drbg_local.h"
#include "internal/thread_once.h"
#include "crypto/cryptlib.h"
#include "prov/seeding.h"
#include "crypto/rand_pool.h"
#include "prov/provider_ctx.h"
#include "prov/providercommon.h"
#include "prov/fipscommon.h"
#include "crypto/context.h"
/*
* Support framework for NIST SP 800-90A DRBG
*
* See manual page PROV_DRBG(7) for a general overview.
*
* The OpenSSL model is to have new and free functions, and that new
* does all initialization. That is not the NIST model, which has
* instantiation and un-instantiate, and re-use within a new/free
* lifecycle. (No doubt this comes from the desire to support hardware
* DRBG, where allocation of resources on something like an HSM is
* a much bigger deal than just re-setting an allocated resource.)
*/
/* NIST SP 800-90A DRBG recommends the use of a personalization string. */
static const char ossl_pers_string[] = DRBG_DEFAULT_PERS_STRING;
static const OSSL_DISPATCH *find_call(const OSSL_DISPATCH *dispatch,
int function);
static int rand_drbg_restart(PROV_DRBG *drbg);
int ossl_drbg_lock(void *vctx)
{
PROV_DRBG *drbg = vctx;
if (drbg == NULL || drbg->lock == NULL)
return 1;
return CRYPTO_THREAD_write_lock(drbg->lock);
}
void ossl_drbg_unlock(void *vctx)
{
PROV_DRBG *drbg = vctx;
if (drbg != NULL && drbg->lock != NULL)
CRYPTO_THREAD_unlock(drbg->lock);
}
static int ossl_drbg_lock_parent(PROV_DRBG *drbg)
{
void *parent = drbg->parent;
if (parent != NULL
&& drbg->parent_lock != NULL
&& !drbg->parent_lock(parent)) {
ERR_raise(ERR_LIB_PROV, PROV_R_PARENT_LOCKING_NOT_ENABLED);
return 0;
}
return 1;
}
static void ossl_drbg_unlock_parent(PROV_DRBG *drbg)
{
void *parent = drbg->parent;
if (parent != NULL && drbg->parent_unlock != NULL)
drbg->parent_unlock(parent);
}
static int get_parent_strength(PROV_DRBG *drbg, unsigned int *str)
{
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
void *parent = drbg->parent;
int res;
if (drbg->parent_get_ctx_params == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_GET_PARENT_STRENGTH);
return 0;
}
*params = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, str);
if (!ossl_drbg_lock_parent(drbg)) {
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOCK_PARENT);
return 0;
}
res = drbg->parent_get_ctx_params(parent, params);
ossl_drbg_unlock_parent(drbg);
if (!res) {
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_GET_PARENT_STRENGTH);
return 0;
}
return 1;
}
static unsigned int get_parent_reseed_count(PROV_DRBG *drbg)
{
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
void *parent = drbg->parent;
unsigned int r = 0;
*params = OSSL_PARAM_construct_uint(OSSL_DRBG_PARAM_RESEED_COUNTER, &r);
if (!ossl_drbg_lock_parent(drbg)) {
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOCK_PARENT);
goto err;
}
if (!drbg->parent_get_ctx_params(parent, params))
r = 0;
ossl_drbg_unlock_parent(drbg);
return r;
err:
r = tsan_load(&drbg->reseed_counter) - 2;
if (r == 0)
r = UINT_MAX;
return r;
}
/*
* Implements the get_entropy() callback
*
* If the DRBG has a parent, then the required amount of entropy input
* is fetched using the parent's ossl_prov_drbg_generate().
*
* Otherwise, the entropy is polled from the system entropy sources
* using ossl_pool_acquire_entropy().
*
* If a random pool has been added to the DRBG using RAND_add(), then
* its entropy will be used up first.
*/
size_t ossl_drbg_get_seed(void *vdrbg, unsigned char **pout,
int entropy, size_t min_len,
size_t max_len, int prediction_resistance,
const unsigned char *adin, size_t adin_len)
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
size_t bytes_needed;
unsigned char *buffer;
/* Figure out how many bytes we need */
bytes_needed = entropy >= 0 ? (entropy + 7) / 8 : 0;
if (bytes_needed < min_len)
bytes_needed = min_len;
if (bytes_needed > max_len)
bytes_needed = max_len;
/* Allocate storage */
buffer = OPENSSL_secure_malloc(bytes_needed);
if (buffer == NULL)
return 0;
/*
* Get random data. Include our DRBG address as
* additional input, in order to provide a distinction between
* different DRBG child instances.
*
* Note: using the sizeof() operator on a pointer triggers
* a warning in some static code analyzers, but it's
* intentional and correct here.
*/
if (!ossl_prov_drbg_generate(drbg, buffer, bytes_needed,
drbg->strength, prediction_resistance,
(unsigned char *)&drbg, sizeof(drbg))) {
OPENSSL_secure_clear_free(buffer, bytes_needed);
ERR_raise(ERR_LIB_PROV, PROV_R_GENERATE_ERROR);
return 0;
}
*pout = buffer;
return bytes_needed;
}
/* Implements the cleanup_entropy() callback */
void ossl_drbg_clear_seed(ossl_unused void *vdrbg,
unsigned char *out, size_t outlen)
{
OPENSSL_secure_clear_free(out, outlen);
}
static size_t get_entropy(PROV_DRBG *drbg, unsigned char **pout, int entropy,
size_t min_len, size_t max_len,
int prediction_resistance)
{
size_t bytes;
unsigned int p_str;
if (drbg->parent == NULL)
#ifdef FIPS_MODULE
return ossl_crngt_get_entropy(drbg, pout, entropy, min_len, max_len,
prediction_resistance);
#else
return ossl_prov_get_entropy(drbg->provctx, pout, entropy, min_len,
max_len);
#endif
if (drbg->parent_get_seed == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_PARENT_CANNOT_SUPPLY_ENTROPY_SEED);
return 0;
}
if (!get_parent_strength(drbg, &p_str))
return 0;
if (drbg->strength > p_str) {
/*
* We currently don't support the algorithm from NIST SP 800-90C
* 10.1.2 to use a weaker DRBG as source
*/
ERR_raise(ERR_LIB_PROV, PROV_R_PARENT_STRENGTH_TOO_WEAK);
return 0;
}
/*
* Our lock is already held, but we need to lock our parent before
* generating bits from it. Note: taking the lock will be a no-op
* if locking is not required (while drbg->parent->lock == NULL).
*/
if (!ossl_drbg_lock_parent(drbg))
return 0;
/*
* Get random data from parent. Include our DRBG address as
* additional input, in order to provide a distinction between
* different DRBG child instances.
*
* Note: using the sizeof() operator on a pointer triggers
* a warning in some static code analyzers, but it's
* intentional and correct here.
*/
bytes = drbg->parent_get_seed(drbg->parent, pout, drbg->strength,
min_len, max_len, prediction_resistance,
(unsigned char *)&drbg, sizeof(drbg));
ossl_drbg_unlock_parent(drbg);
return bytes;
}
static void cleanup_entropy(PROV_DRBG *drbg, unsigned char *out, size_t outlen)
{
if (drbg->parent == NULL) {
#ifdef FIPS_MODULE
ossl_crngt_cleanup_entropy(drbg, out, outlen);
#else
ossl_prov_cleanup_entropy(drbg->provctx, out, outlen);
#endif
} else if (drbg->parent_clear_seed != NULL) {
if (!ossl_drbg_lock_parent(drbg))
return;
drbg->parent_clear_seed(drbg->parent, out, outlen);
ossl_drbg_unlock_parent(drbg);
}
}
#ifndef PROV_RAND_GET_RANDOM_NONCE
typedef struct prov_drbg_nonce_global_st {
CRYPTO_RWLOCK *rand_nonce_lock;
int rand_nonce_count;
} PROV_DRBG_NONCE_GLOBAL;
/*
* drbg_ossl_ctx_new() calls drgb_setup() which calls rand_drbg_get_nonce()
* which needs to get the rand_nonce_lock out of the OSSL_LIB_CTX...but since
* drbg_ossl_ctx_new() hasn't finished running yet we need the rand_nonce_lock
* to be in a different global data object. Otherwise we will go into an
* infinite recursion loop.
*/
void *ossl_prov_drbg_nonce_ctx_new(OSSL_LIB_CTX *libctx)
{
PROV_DRBG_NONCE_GLOBAL *dngbl = OPENSSL_zalloc(sizeof(*dngbl));
if (dngbl == NULL)
return NULL;
dngbl->rand_nonce_lock = CRYPTO_THREAD_lock_new();
if (dngbl->rand_nonce_lock == NULL) {
OPENSSL_free(dngbl);
return NULL;
}
return dngbl;
}
void ossl_prov_drbg_nonce_ctx_free(void *vdngbl)
{
PROV_DRBG_NONCE_GLOBAL *dngbl = vdngbl;
if (dngbl == NULL)
return;
CRYPTO_THREAD_lock_free(dngbl->rand_nonce_lock);
OPENSSL_free(dngbl);
}
/* Get a nonce from the operating system */
static size_t prov_drbg_get_nonce(PROV_DRBG *drbg, unsigned char **pout,
size_t min_len, size_t max_len)
{
size_t ret = 0, n;
unsigned char *buf = NULL;
OSSL_LIB_CTX *libctx = ossl_prov_ctx_get0_libctx(drbg->provctx);
PROV_DRBG_NONCE_GLOBAL *dngbl
= ossl_lib_ctx_get_data(libctx, OSSL_LIB_CTX_DRBG_NONCE_INDEX);
struct {
void *drbg;
int count;
} data;
if (dngbl == NULL)
return 0;
if (drbg->parent != NULL && drbg->parent_nonce != NULL) {
n = drbg->parent_nonce(drbg->parent, NULL, 0, drbg->min_noncelen,
drbg->max_noncelen);
if (n > 0 && (buf = OPENSSL_malloc(n)) != NULL) {
ret = drbg->parent_nonce(drbg->parent, buf, 0,
drbg->min_noncelen, drbg->max_noncelen);
if (ret == n) {
*pout = buf;
return ret;
}
OPENSSL_free(buf);
}
}
/* Use the built in nonce source plus some of our specifics */
memset(&data, 0, sizeof(data));
data.drbg = drbg;
CRYPTO_atomic_add(&dngbl->rand_nonce_count, 1, &data.count,
dngbl->rand_nonce_lock);
return ossl_prov_get_nonce(drbg->provctx, pout, min_len, max_len,
&data, sizeof(data));
}
#endif /* PROV_RAND_GET_RANDOM_NONCE */
/*
* Instantiate |drbg|, after it has been initialized. Use |pers| and
* |perslen| as prediction-resistance input.
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*/
int ossl_prov_drbg_instantiate(PROV_DRBG *drbg, unsigned int strength,
int prediction_resistance,
const unsigned char *pers, size_t perslen)
{
unsigned char *nonce = NULL, *entropy = NULL;
size_t noncelen = 0, entropylen = 0;
size_t min_entropy, min_entropylen, max_entropylen;
if (strength > drbg->strength) {
ERR_raise(ERR_LIB_PROV, PROV_R_INSUFFICIENT_DRBG_STRENGTH);
goto end;
}
min_entropy = drbg->strength;
min_entropylen = drbg->min_entropylen;
max_entropylen = drbg->max_entropylen;
if (pers == NULL) {
pers = (const unsigned char *)ossl_pers_string;
perslen = sizeof(ossl_pers_string);
}
if (perslen > drbg->max_perslen) {
ERR_raise(ERR_LIB_PROV, PROV_R_PERSONALISATION_STRING_TOO_LONG);
goto end;
}
if (drbg->state != EVP_RAND_STATE_UNINITIALISED) {
if (drbg->state == EVP_RAND_STATE_ERROR)
ERR_raise(ERR_LIB_PROV, PROV_R_IN_ERROR_STATE);
else
ERR_raise(ERR_LIB_PROV, PROV_R_ALREADY_INSTANTIATED);
goto end;
}
drbg->state = EVP_RAND_STATE_ERROR;
if (drbg->min_noncelen > 0) {
if (drbg->parent_nonce != NULL) {
noncelen = drbg->parent_nonce(drbg->parent, NULL, drbg->strength,
drbg->min_noncelen,
drbg->max_noncelen);
if (noncelen == 0) {
ERR_raise(ERR_LIB_PROV, PROV_R_ERROR_RETRIEVING_NONCE);
goto end;
}
nonce = OPENSSL_malloc(noncelen);
if (nonce == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_ERROR_RETRIEVING_NONCE);
goto end;
}
if (noncelen != drbg->parent_nonce(drbg->parent, nonce,
drbg->strength,
drbg->min_noncelen,
drbg->max_noncelen)) {
ERR_raise(ERR_LIB_PROV, PROV_R_ERROR_RETRIEVING_NONCE);
goto end;
}
#ifndef PROV_RAND_GET_RANDOM_NONCE
} else if (drbg->parent != NULL) {
#endif
/*
* NIST SP800-90Ar1 section 9.1 says you can combine getting
* the entropy and nonce in 1 call by increasing the entropy
* with 50% and increasing the minimum length to accommodate
* the length of the nonce. We do this in case a nonce is
* required and there is no parental nonce capability.
*/
min_entropy += drbg->strength / 2;
min_entropylen += drbg->min_noncelen;
max_entropylen += drbg->max_noncelen;
}
#ifndef PROV_RAND_GET_RANDOM_NONCE
else { /* parent == NULL */
noncelen = prov_drbg_get_nonce(drbg, &nonce, drbg->min_noncelen,
drbg->max_noncelen);
if (noncelen < drbg->min_noncelen
|| noncelen > drbg->max_noncelen) {
ERR_raise(ERR_LIB_PROV, PROV_R_ERROR_RETRIEVING_NONCE);
goto end;
}
}
#endif
}
drbg->reseed_next_counter = tsan_load(&drbg->reseed_counter);
if (drbg->reseed_next_counter) {
drbg->reseed_next_counter++;
if (!drbg->reseed_next_counter)
drbg->reseed_next_counter = 1;
}
entropylen = get_entropy(drbg, &entropy, min_entropy,
min_entropylen, max_entropylen,
prediction_resistance);
if (entropylen < min_entropylen
|| entropylen > max_entropylen) {
ERR_raise(ERR_LIB_PROV, PROV_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
if (!drbg->instantiate(drbg, entropy, entropylen, nonce, noncelen,
pers, perslen)) {
cleanup_entropy(drbg, entropy, entropylen);
ERR_raise(ERR_LIB_PROV, PROV_R_ERROR_INSTANTIATING_DRBG);
goto end;
}
cleanup_entropy(drbg, entropy, entropylen);
drbg->state = EVP_RAND_STATE_READY;
drbg->generate_counter = 1;
drbg->reseed_time = time(NULL);
tsan_store(&drbg->reseed_counter, drbg->reseed_next_counter);
end:
if (nonce != NULL)
ossl_prov_cleanup_nonce(drbg->provctx, nonce, noncelen);
if (drbg->state == EVP_RAND_STATE_READY)
return 1;
return 0;
}
/*
* Uninstantiate |drbg|. Must be instantiated before it can be used.
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*/
int ossl_prov_drbg_uninstantiate(PROV_DRBG *drbg)
{
drbg->state = EVP_RAND_STATE_UNINITIALISED;
return 1;
}
/*
* Reseed |drbg|, mixing in the specified data
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*/
int ossl_prov_drbg_reseed(PROV_DRBG *drbg, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *adin, size_t adinlen)
{
unsigned char *entropy = NULL;
size_t entropylen = 0;
if (!ossl_prov_is_running())
return 0;
if (drbg->state != EVP_RAND_STATE_READY) {
/* try to recover from previous errors */
rand_drbg_restart(drbg);
if (drbg->state == EVP_RAND_STATE_ERROR) {
ERR_raise(ERR_LIB_PROV, PROV_R_IN_ERROR_STATE);
return 0;
}
if (drbg->state == EVP_RAND_STATE_UNINITIALISED) {
ERR_raise(ERR_LIB_PROV, PROV_R_NOT_INSTANTIATED);
return 0;
}
}
if (ent != NULL) {
if (ent_len < drbg->min_entropylen) {
ERR_raise(ERR_LIB_RAND, RAND_R_ENTROPY_OUT_OF_RANGE);
drbg->state = EVP_RAND_STATE_ERROR;
return 0;
}
if (ent_len > drbg->max_entropylen) {
ERR_raise(ERR_LIB_RAND, RAND_R_ENTROPY_INPUT_TOO_LONG);
drbg->state = EVP_RAND_STATE_ERROR;
return 0;
}
}
if (adin == NULL) {
adinlen = 0;
} else if (adinlen > drbg->max_adinlen) {
ERR_raise(ERR_LIB_PROV, PROV_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
drbg->state = EVP_RAND_STATE_ERROR;
drbg->reseed_next_counter = tsan_load(&drbg->reseed_counter);
if (drbg->reseed_next_counter) {
drbg->reseed_next_counter++;
if (!drbg->reseed_next_counter)
drbg->reseed_next_counter = 1;
}
if (ent != NULL) {
#ifdef FIPS_MODULE
/*
* NIST SP-800-90A mandates that entropy *shall not* be provided
* by the consuming application. Instead the data is added as additional
* input.
*
* (NIST SP-800-90Ar1, Sections 9.1 and 9.2)
*/
if (!drbg->reseed(drbg, NULL, 0, ent, ent_len)) {
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_RESEED);
return 0;
}
#else
if (!drbg->reseed(drbg, ent, ent_len, adin, adinlen)) {
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_RESEED);
return 0;
}
/* There isn't much point adding the same additional input twice */
adin = NULL;
adinlen = 0;
#endif
}
/* Reseed using our sources in addition */
entropylen = get_entropy(drbg, &entropy, drbg->strength,
drbg->min_entropylen, drbg->max_entropylen,
prediction_resistance);
if (entropylen < drbg->min_entropylen
|| entropylen > drbg->max_entropylen) {
ERR_raise(ERR_LIB_PROV, PROV_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
if (!drbg->reseed(drbg, entropy, entropylen, adin, adinlen))
goto end;
drbg->state = EVP_RAND_STATE_READY;
drbg->generate_counter = 1;
drbg->reseed_time = time(NULL);
tsan_store(&drbg->reseed_counter, drbg->reseed_next_counter);
if (drbg->parent != NULL)
drbg->parent_reseed_counter = get_parent_reseed_count(drbg);
end:
cleanup_entropy(drbg, entropy, entropylen);
if (drbg->state == EVP_RAND_STATE_READY)
return 1;
return 0;
}
/*
* Generate |outlen| bytes into the buffer at |out|. Reseed if we need
* to or if |prediction_resistance| is set. Additional input can be
* sent in |adin| and |adinlen|.
*
* Requires that drbg->lock is already locked for write, if non-null.
*
* Returns 1 on success, 0 on failure.
*
*/
int ossl_prov_drbg_generate(PROV_DRBG *drbg, unsigned char *out, size_t outlen,
unsigned int strength, int prediction_resistance,
const unsigned char *adin, size_t adinlen)
{
int fork_id;
int reseed_required = 0;
if (!ossl_prov_is_running())
return 0;
if (drbg->state != EVP_RAND_STATE_READY) {
/* try to recover from previous errors */
rand_drbg_restart(drbg);
if (drbg->state == EVP_RAND_STATE_ERROR) {
ERR_raise(ERR_LIB_PROV, PROV_R_IN_ERROR_STATE);
return 0;
}
if (drbg->state == EVP_RAND_STATE_UNINITIALISED) {
ERR_raise(ERR_LIB_PROV, PROV_R_NOT_INSTANTIATED);
return 0;
}
}
if (strength > drbg->strength) {
ERR_raise(ERR_LIB_PROV, PROV_R_INSUFFICIENT_DRBG_STRENGTH);
return 0;
}
if (outlen > drbg->max_request) {
ERR_raise(ERR_LIB_PROV, PROV_R_REQUEST_TOO_LARGE_FOR_DRBG);
return 0;
}
if (adinlen > drbg->max_adinlen) {
ERR_raise(ERR_LIB_PROV, PROV_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
fork_id = openssl_get_fork_id();
if (drbg->fork_id != fork_id) {
drbg->fork_id = fork_id;
reseed_required = 1;
}
if (drbg->reseed_interval > 0) {
if (drbg->generate_counter >= drbg->reseed_interval)
reseed_required = 1;
}
if (drbg->reseed_time_interval > 0) {
time_t now = time(NULL);
if (now < drbg->reseed_time
|| now - drbg->reseed_time >= drbg->reseed_time_interval)
reseed_required = 1;
}
if (drbg->parent != NULL
&& get_parent_reseed_count(drbg) != drbg->parent_reseed_counter)
reseed_required = 1;
if (reseed_required || prediction_resistance) {
if (!ossl_prov_drbg_reseed(drbg, prediction_resistance, NULL, 0,
adin, adinlen)) {
ERR_raise(ERR_LIB_PROV, PROV_R_RESEED_ERROR);
return 0;
}
adin = NULL;
adinlen = 0;
}
if (!drbg->generate(drbg, out, outlen, adin, adinlen)) {
drbg->state = EVP_RAND_STATE_ERROR;
ERR_raise(ERR_LIB_PROV, PROV_R_GENERATE_ERROR);
return 0;
}
drbg->generate_counter++;
return 1;
}
/*
* Restart |drbg|, using the specified entropy or additional input
*
* Tries its best to get the drbg instantiated by all means,
* regardless of its current state.
*
* Optionally, a |buffer| of |len| random bytes can be passed,
* which is assumed to contain at least |entropy| bits of entropy.
*
* If |entropy| > 0, the buffer content is used as entropy input.
*
* If |entropy| == 0, the buffer content is used as additional input
*
* Returns 1 on success, 0 on failure.
*
* This function is used internally only.
*/
static int rand_drbg_restart(PROV_DRBG *drbg)
{
/* repair error state */
if (drbg->state == EVP_RAND_STATE_ERROR)
drbg->uninstantiate(drbg);
/* repair uninitialized state */
if (drbg->state == EVP_RAND_STATE_UNINITIALISED)
/* reinstantiate drbg */
ossl_prov_drbg_instantiate(drbg, drbg->strength, 0, NULL, 0);
return drbg->state == EVP_RAND_STATE_READY;
}
/* Provider support from here down */
static const OSSL_DISPATCH *find_call(const OSSL_DISPATCH *dispatch,
int function)
{
if (dispatch != NULL)
while (dispatch->function_id != 0) {
if (dispatch->function_id == function)
return dispatch;
dispatch++;
}
return NULL;
}
int ossl_drbg_enable_locking(void *vctx)
{
PROV_DRBG *drbg = vctx;
if (drbg != NULL && drbg->lock == NULL) {
if (drbg->parent_enable_locking != NULL)
if (!drbg->parent_enable_locking(drbg->parent)) {
ERR_raise(ERR_LIB_PROV, PROV_R_PARENT_LOCKING_NOT_ENABLED);
return 0;
}
drbg->lock = CRYPTO_THREAD_lock_new();
if (drbg->lock == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_CREATE_LOCK);
return 0;
}
}
return 1;
}
/*
* Allocate memory and initialize a new DRBG. The DRBG is allocated on
* the secure heap if |secure| is nonzero and the secure heap is enabled.
* The |parent|, if not NULL, will be used as random source for reseeding.
* This also requires the parent's provider context and the parent's lock.
*
* Returns a pointer to the new DRBG instance on success, NULL on failure.
*/
PROV_DRBG *ossl_rand_drbg_new
(void *provctx, void *parent, const OSSL_DISPATCH *p_dispatch,
int (*dnew)(PROV_DRBG *ctx),
int (*instantiate)(PROV_DRBG *drbg,
const unsigned char *entropy, size_t entropylen,
const unsigned char *nonce, size_t noncelen,
const unsigned char *pers, size_t perslen),
int (*uninstantiate)(PROV_DRBG *ctx),
int (*reseed)(PROV_DRBG *drbg, const unsigned char *ent, size_t ent_len,
const unsigned char *adin, size_t adin_len),
int (*generate)(PROV_DRBG *, unsigned char *out, size_t outlen,
const unsigned char *adin, size_t adin_len))
{
PROV_DRBG *drbg;
unsigned int p_str;
const OSSL_DISPATCH *pfunc;
if (!ossl_prov_is_running())
return NULL;
drbg = OPENSSL_zalloc(sizeof(*drbg));
if (drbg == NULL)
return NULL;
drbg->provctx = provctx;
drbg->instantiate = instantiate;
drbg->uninstantiate = uninstantiate;
drbg->reseed = reseed;
drbg->generate = generate;
drbg->fork_id = openssl_get_fork_id();
/* Extract parent's functions */
drbg->parent = parent;
if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_ENABLE_LOCKING)) != NULL)
drbg->parent_enable_locking = OSSL_FUNC_rand_enable_locking(pfunc);
if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_LOCK)) != NULL)
drbg->parent_lock = OSSL_FUNC_rand_lock(pfunc);
if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_UNLOCK)) != NULL)
drbg->parent_unlock = OSSL_FUNC_rand_unlock(pfunc);
if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_GET_CTX_PARAMS)) != NULL)
drbg->parent_get_ctx_params = OSSL_FUNC_rand_get_ctx_params(pfunc);
if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_NONCE)) != NULL)
drbg->parent_nonce = OSSL_FUNC_rand_nonce(pfunc);
if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_GET_SEED)) != NULL)
drbg->parent_get_seed = OSSL_FUNC_rand_get_seed(pfunc);
if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_CLEAR_SEED)) != NULL)
drbg->parent_clear_seed = OSSL_FUNC_rand_clear_seed(pfunc);
/* Set some default maximums up */
drbg->max_entropylen = DRBG_MAX_LENGTH;
drbg->max_noncelen = DRBG_MAX_LENGTH;
drbg->max_perslen = DRBG_MAX_LENGTH;
drbg->max_adinlen = DRBG_MAX_LENGTH;
drbg->generate_counter = 1;
drbg->reseed_counter = 1;
drbg->reseed_interval = RESEED_INTERVAL;
drbg->reseed_time_interval = TIME_INTERVAL;
if (!dnew(drbg))
goto err;
if (parent != NULL) {
if (!get_parent_strength(drbg, &p_str))
goto err;
if (drbg->strength > p_str) {
/*
* We currently don't support the algorithm from NIST SP 800-90C
* 10.1.2 to use a weaker DRBG as source
*/
ERR_raise(ERR_LIB_PROV, PROV_R_PARENT_STRENGTH_TOO_WEAK);
goto err;
}
}
#ifdef TSAN_REQUIRES_LOCKING
if (!ossl_drbg_enable_locking(drbg))
goto err;
#endif
return drbg;
err:
ossl_rand_drbg_free(drbg);
return NULL;
}
void ossl_rand_drbg_free(PROV_DRBG *drbg)
{
if (drbg == NULL)
return;
CRYPTO_THREAD_lock_free(drbg->lock);
OPENSSL_free(drbg);
}
int ossl_drbg_get_ctx_params(PROV_DRBG *drbg, OSSL_PARAM params[])
{
OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_STATE);
if (p != NULL && !OSSL_PARAM_set_int(p, drbg->state))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_STRENGTH);
if (p != NULL && !OSSL_PARAM_set_int(p, drbg->strength))
return 0;
p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_MAX_REQUEST);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_request))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MIN_ENTROPYLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->min_entropylen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MAX_ENTROPYLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_entropylen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MIN_NONCELEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->min_noncelen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MAX_NONCELEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_noncelen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MAX_PERSLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_perslen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MAX_ADINLEN);
if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_adinlen))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_RESEED_REQUESTS);
if (p != NULL && !OSSL_PARAM_set_uint(p, drbg->reseed_interval))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_RESEED_TIME);
if (p != NULL && !OSSL_PARAM_set_time_t(p, drbg->reseed_time))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL);
if (p != NULL && !OSSL_PARAM_set_time_t(p, drbg->reseed_time_interval))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_RESEED_COUNTER);
if (p != NULL
&& !OSSL_PARAM_set_uint(p, tsan_load(&drbg->reseed_counter)))
return 0;
return 1;
}
int ossl_drbg_set_ctx_params(PROV_DRBG *drbg, const OSSL_PARAM params[])
{
const OSSL_PARAM *p;
if (params == NULL)
return 1;
p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_RESEED_REQUESTS);
if (p != NULL && !OSSL_PARAM_get_uint(p, &drbg->reseed_interval))
return 0;
p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL);
if (p != NULL && !OSSL_PARAM_get_time_t(p, &drbg->reseed_time_interval))
return 0;
return 1;
}
/* Confirm digest is allowed to be used with a DRBG */
int ossl_drbg_verify_digest(ossl_unused OSSL_LIB_CTX *libctx, const EVP_MD *md)
{
#ifdef FIPS_MODULE
/* FIPS 140-3 IG D.R limited DRBG digests to a specific set */
static const char *const allowed_digests[] = {
"SHA1", /* SHA 1 allowed */
"SHA2-256", "SHA2-512", /* non-truncated SHA2 allowed */
"SHA3-256", "SHA3-512", /* non-truncated SHA3 allowed */
};
size_t i;
if (FIPS_restricted_drbg_digests_enabled(libctx)) {
for (i = 0; i < OSSL_NELEM(allowed_digests); i++)
if (EVP_MD_is_a(md, allowed_digests[i]))
return 1;
ERR_raise(ERR_LIB_PROV, PROV_R_DIGEST_NOT_ALLOWED);
return 0;
}
#endif
/* Outside of FIPS, any digests that are not XOF are allowed */
if ((EVP_MD_get_flags(md) & EVP_MD_FLAG_XOF) != 0) {
ERR_raise(ERR_LIB_PROV, PROV_R_XOF_DIGESTS_NOT_ALLOWED);
return 0;
}
return 1;
}