mirror of
https://github.com/openssl/openssl.git
synced 2024-12-21 06:09:35 +08:00
b646179229
Reviewed-by: Neil Horman <nhorman@openssl.org>
Release: yes
(cherry picked from commit 0ce7d1f355
)
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/24034)
1358 lines
43 KiB
C
1358 lines
43 KiB
C
/*
|
|
* Copyright 2022-2024 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <openssl/ssl.h>
|
|
#include "internal/quic_record_rx.h"
|
|
#include "quic_record_shared.h"
|
|
#include "internal/common.h"
|
|
#include "internal/list.h"
|
|
#include "../ssl_local.h"
|
|
|
|
/*
|
|
* Mark a packet in a bitfield.
|
|
*
|
|
* pkt_idx: index of packet within datagram.
|
|
*/
|
|
static ossl_inline void pkt_mark(uint64_t *bitf, size_t pkt_idx)
|
|
{
|
|
assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
|
|
*bitf |= ((uint64_t)1) << pkt_idx;
|
|
}
|
|
|
|
/* Returns 1 if a packet is in the bitfield. */
|
|
static ossl_inline int pkt_is_marked(const uint64_t *bitf, size_t pkt_idx)
|
|
{
|
|
assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
|
|
return (*bitf & (((uint64_t)1) << pkt_idx)) != 0;
|
|
}
|
|
|
|
/*
|
|
* RXE
|
|
* ===
|
|
*
|
|
* RX Entries (RXEs) store processed (i.e., decrypted) data received from the
|
|
* network. One RXE is used per received QUIC packet.
|
|
*/
|
|
typedef struct rxe_st RXE;
|
|
|
|
struct rxe_st {
|
|
OSSL_QRX_PKT pkt;
|
|
OSSL_LIST_MEMBER(rxe, RXE);
|
|
size_t data_len, alloc_len, refcount;
|
|
|
|
/* Extra fields for per-packet information. */
|
|
QUIC_PKT_HDR hdr; /* data/len are decrypted payload */
|
|
|
|
/* Decoded packet number. */
|
|
QUIC_PN pn;
|
|
|
|
/* Addresses copied from URXE. */
|
|
BIO_ADDR peer, local;
|
|
|
|
/* Time we received the packet (not when we processed it). */
|
|
OSSL_TIME time;
|
|
|
|
/* Total length of the datagram which contained this packet. */
|
|
size_t datagram_len;
|
|
|
|
/*
|
|
* The key epoch the packet was received with. Always 0 for non-1-RTT
|
|
* packets.
|
|
*/
|
|
uint64_t key_epoch;
|
|
|
|
/*
|
|
* Monotonically increases with each datagram received.
|
|
* For diagnostic use only.
|
|
*/
|
|
uint64_t datagram_id;
|
|
|
|
/*
|
|
* alloc_len allocated bytes (of which data_len bytes are valid) follow this
|
|
* structure.
|
|
*/
|
|
};
|
|
|
|
DEFINE_LIST_OF(rxe, RXE);
|
|
typedef OSSL_LIST(rxe) RXE_LIST;
|
|
|
|
static ossl_inline unsigned char *rxe_data(const RXE *e)
|
|
{
|
|
return (unsigned char *)(e + 1);
|
|
}
|
|
|
|
/*
|
|
* QRL
|
|
* ===
|
|
*/
|
|
struct ossl_qrx_st {
|
|
OSSL_LIB_CTX *libctx;
|
|
const char *propq;
|
|
|
|
/* Demux to receive datagrams from. */
|
|
QUIC_DEMUX *demux;
|
|
|
|
/* Length of connection IDs used in short-header packets in bytes. */
|
|
size_t short_conn_id_len;
|
|
|
|
/* Maximum number of deferred datagrams buffered at any one time. */
|
|
size_t max_deferred;
|
|
|
|
/* Current count of deferred datagrams. */
|
|
size_t num_deferred;
|
|
|
|
/*
|
|
* List of URXEs which are filled with received encrypted data.
|
|
* These are returned to the DEMUX's free list as they are processed.
|
|
*/
|
|
QUIC_URXE_LIST urx_pending;
|
|
|
|
/*
|
|
* List of URXEs which we could not decrypt immediately and which are being
|
|
* kept in case they can be decrypted later.
|
|
*/
|
|
QUIC_URXE_LIST urx_deferred;
|
|
|
|
/*
|
|
* List of RXEs which are not currently in use. These are moved
|
|
* to the pending list as they are filled.
|
|
*/
|
|
RXE_LIST rx_free;
|
|
|
|
/*
|
|
* List of RXEs which are filled with decrypted packets ready to be passed
|
|
* to the user. A RXE is removed from all lists inside the QRL when passed
|
|
* to the user, then returned to the free list when the user returns it.
|
|
*/
|
|
RXE_LIST rx_pending;
|
|
|
|
/* Largest PN we have received and processed in a given PN space. */
|
|
QUIC_PN largest_pn[QUIC_PN_SPACE_NUM];
|
|
|
|
/* Per encryption-level state. */
|
|
OSSL_QRL_ENC_LEVEL_SET el_set;
|
|
|
|
/* Bytes we have received since this counter was last cleared. */
|
|
uint64_t bytes_received;
|
|
|
|
/*
|
|
* Number of forged packets we have received since the QRX was instantiated.
|
|
* Note that as per RFC 9001, this is connection-level state; it is not per
|
|
* EL and is not reset by a key update.
|
|
*/
|
|
uint64_t forged_pkt_count;
|
|
|
|
/*
|
|
* The PN the current key epoch started at, inclusive.
|
|
*/
|
|
uint64_t cur_epoch_start_pn;
|
|
|
|
/* Validation callback. */
|
|
ossl_qrx_late_validation_cb *validation_cb;
|
|
void *validation_cb_arg;
|
|
|
|
/* Key update callback. */
|
|
ossl_qrx_key_update_cb *key_update_cb;
|
|
void *key_update_cb_arg;
|
|
|
|
/* Initial key phase. For debugging use only; always 0 in real use. */
|
|
unsigned char init_key_phase_bit;
|
|
|
|
/* Are we allowed to process 1-RTT packets yet? */
|
|
unsigned char allow_1rtt;
|
|
|
|
/* Message callback related arguments */
|
|
ossl_msg_cb msg_callback;
|
|
void *msg_callback_arg;
|
|
SSL *msg_callback_ssl;
|
|
};
|
|
|
|
OSSL_QRX *ossl_qrx_new(const OSSL_QRX_ARGS *args)
|
|
{
|
|
OSSL_QRX *qrx;
|
|
size_t i;
|
|
|
|
if (args->demux == NULL || args->max_deferred == 0)
|
|
return NULL;
|
|
|
|
qrx = OPENSSL_zalloc(sizeof(OSSL_QRX));
|
|
if (qrx == NULL)
|
|
return NULL;
|
|
|
|
for (i = 0; i < OSSL_NELEM(qrx->largest_pn); ++i)
|
|
qrx->largest_pn[i] = args->init_largest_pn[i];
|
|
|
|
qrx->libctx = args->libctx;
|
|
qrx->propq = args->propq;
|
|
qrx->demux = args->demux;
|
|
qrx->short_conn_id_len = args->short_conn_id_len;
|
|
qrx->init_key_phase_bit = args->init_key_phase_bit;
|
|
qrx->max_deferred = args->max_deferred;
|
|
return qrx;
|
|
}
|
|
|
|
static void qrx_cleanup_rxl(RXE_LIST *l)
|
|
{
|
|
RXE *e, *enext;
|
|
|
|
for (e = ossl_list_rxe_head(l); e != NULL; e = enext) {
|
|
enext = ossl_list_rxe_next(e);
|
|
ossl_list_rxe_remove(l, e);
|
|
OPENSSL_free(e);
|
|
}
|
|
}
|
|
|
|
static void qrx_cleanup_urxl(OSSL_QRX *qrx, QUIC_URXE_LIST *l)
|
|
{
|
|
QUIC_URXE *e, *enext;
|
|
|
|
for (e = ossl_list_urxe_head(l); e != NULL; e = enext) {
|
|
enext = ossl_list_urxe_next(e);
|
|
ossl_list_urxe_remove(l, e);
|
|
ossl_quic_demux_release_urxe(qrx->demux, e);
|
|
}
|
|
}
|
|
|
|
void ossl_qrx_free(OSSL_QRX *qrx)
|
|
{
|
|
uint32_t i;
|
|
|
|
if (qrx == NULL)
|
|
return;
|
|
|
|
/* Free RXE queue data. */
|
|
qrx_cleanup_rxl(&qrx->rx_free);
|
|
qrx_cleanup_rxl(&qrx->rx_pending);
|
|
qrx_cleanup_urxl(qrx, &qrx->urx_pending);
|
|
qrx_cleanup_urxl(qrx, &qrx->urx_deferred);
|
|
|
|
/* Drop keying material and crypto resources. */
|
|
for (i = 0; i < QUIC_ENC_LEVEL_NUM; ++i)
|
|
ossl_qrl_enc_level_set_discard(&qrx->el_set, i);
|
|
|
|
OPENSSL_free(qrx);
|
|
}
|
|
|
|
void ossl_qrx_inject_urxe(OSSL_QRX *qrx, QUIC_URXE *urxe)
|
|
{
|
|
/* Initialize our own fields inside the URXE and add to the pending list. */
|
|
urxe->processed = 0;
|
|
urxe->hpr_removed = 0;
|
|
urxe->deferred = 0;
|
|
ossl_list_urxe_insert_tail(&qrx->urx_pending, urxe);
|
|
|
|
if (qrx->msg_callback != NULL)
|
|
qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_DATAGRAM, urxe + 1,
|
|
urxe->data_len, qrx->msg_callback_ssl,
|
|
qrx->msg_callback_arg);
|
|
}
|
|
|
|
static void qrx_requeue_deferred(OSSL_QRX *qrx)
|
|
{
|
|
QUIC_URXE *e;
|
|
|
|
while ((e = ossl_list_urxe_head(&qrx->urx_deferred)) != NULL) {
|
|
ossl_list_urxe_remove(&qrx->urx_deferred, e);
|
|
ossl_list_urxe_insert_tail(&qrx->urx_pending, e);
|
|
}
|
|
}
|
|
|
|
int ossl_qrx_provide_secret(OSSL_QRX *qrx, uint32_t enc_level,
|
|
uint32_t suite_id, EVP_MD *md,
|
|
const unsigned char *secret, size_t secret_len)
|
|
{
|
|
if (enc_level >= QUIC_ENC_LEVEL_NUM)
|
|
return 0;
|
|
|
|
if (!ossl_qrl_enc_level_set_provide_secret(&qrx->el_set,
|
|
qrx->libctx,
|
|
qrx->propq,
|
|
enc_level,
|
|
suite_id,
|
|
md,
|
|
secret,
|
|
secret_len,
|
|
qrx->init_key_phase_bit,
|
|
/*is_tx=*/0))
|
|
return 0;
|
|
|
|
/*
|
|
* Any packets we previously could not decrypt, we may now be able to
|
|
* decrypt, so move any datagrams containing deferred packets from the
|
|
* deferred to the pending queue.
|
|
*/
|
|
qrx_requeue_deferred(qrx);
|
|
return 1;
|
|
}
|
|
|
|
int ossl_qrx_discard_enc_level(OSSL_QRX *qrx, uint32_t enc_level)
|
|
{
|
|
if (enc_level >= QUIC_ENC_LEVEL_NUM)
|
|
return 0;
|
|
|
|
ossl_qrl_enc_level_set_discard(&qrx->el_set, enc_level);
|
|
return 1;
|
|
}
|
|
|
|
/* Returns 1 if there are one or more pending RXEs. */
|
|
int ossl_qrx_processed_read_pending(OSSL_QRX *qrx)
|
|
{
|
|
return !ossl_list_rxe_is_empty(&qrx->rx_pending);
|
|
}
|
|
|
|
/* Returns 1 if there are yet-unprocessed packets. */
|
|
int ossl_qrx_unprocessed_read_pending(OSSL_QRX *qrx)
|
|
{
|
|
return !ossl_list_urxe_is_empty(&qrx->urx_pending)
|
|
|| !ossl_list_urxe_is_empty(&qrx->urx_deferred);
|
|
}
|
|
|
|
/* Pop the next pending RXE. Returns NULL if no RXE is pending. */
|
|
static RXE *qrx_pop_pending_rxe(OSSL_QRX *qrx)
|
|
{
|
|
RXE *rxe = ossl_list_rxe_head(&qrx->rx_pending);
|
|
|
|
if (rxe == NULL)
|
|
return NULL;
|
|
|
|
ossl_list_rxe_remove(&qrx->rx_pending, rxe);
|
|
return rxe;
|
|
}
|
|
|
|
/* Allocate a new RXE. */
|
|
static RXE *qrx_alloc_rxe(size_t alloc_len)
|
|
{
|
|
RXE *rxe;
|
|
|
|
if (alloc_len >= SIZE_MAX - sizeof(RXE))
|
|
return NULL;
|
|
|
|
rxe = OPENSSL_malloc(sizeof(RXE) + alloc_len);
|
|
if (rxe == NULL)
|
|
return NULL;
|
|
|
|
ossl_list_rxe_init_elem(rxe);
|
|
rxe->alloc_len = alloc_len;
|
|
rxe->data_len = 0;
|
|
rxe->refcount = 0;
|
|
return rxe;
|
|
}
|
|
|
|
/*
|
|
* Ensures there is at least one RXE in the RX free list, allocating a new entry
|
|
* if necessary. The returned RXE is in the RX free list; it is not popped.
|
|
*
|
|
* alloc_len is a hint which may be used to determine the RXE size if allocation
|
|
* is necessary. Returns NULL on allocation failure.
|
|
*/
|
|
static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len)
|
|
{
|
|
RXE *rxe;
|
|
|
|
if (ossl_list_rxe_head(&qrx->rx_free) != NULL)
|
|
return ossl_list_rxe_head(&qrx->rx_free);
|
|
|
|
rxe = qrx_alloc_rxe(alloc_len);
|
|
if (rxe == NULL)
|
|
return NULL;
|
|
|
|
ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
|
|
return rxe;
|
|
}
|
|
|
|
/*
|
|
* Resize the data buffer attached to an RXE to be n bytes in size. The address
|
|
* of the RXE might change; the new address is returned, or NULL on failure, in
|
|
* which case the original RXE remains valid.
|
|
*/
|
|
static RXE *qrx_resize_rxe(RXE_LIST *rxl, RXE *rxe, size_t n)
|
|
{
|
|
RXE *rxe2, *p;
|
|
|
|
/* Should never happen. */
|
|
if (rxe == NULL)
|
|
return NULL;
|
|
|
|
if (n >= SIZE_MAX - sizeof(RXE))
|
|
return NULL;
|
|
|
|
/* Remove the item from the list to avoid accessing freed memory */
|
|
p = ossl_list_rxe_prev(rxe);
|
|
ossl_list_rxe_remove(rxl, rxe);
|
|
|
|
/* Should never resize an RXE which has been handed out. */
|
|
if (!ossl_assert(rxe->refcount == 0))
|
|
return NULL;
|
|
|
|
/*
|
|
* NOTE: We do not clear old memory, although it does contain decrypted
|
|
* data.
|
|
*/
|
|
rxe2 = OPENSSL_realloc(rxe, sizeof(RXE) + n);
|
|
if (rxe2 == NULL) {
|
|
/* Resize failed, restore old allocation. */
|
|
if (p == NULL)
|
|
ossl_list_rxe_insert_head(rxl, rxe);
|
|
else
|
|
ossl_list_rxe_insert_after(rxl, p, rxe);
|
|
return NULL;
|
|
}
|
|
|
|
if (p == NULL)
|
|
ossl_list_rxe_insert_head(rxl, rxe2);
|
|
else
|
|
ossl_list_rxe_insert_after(rxl, p, rxe2);
|
|
|
|
rxe2->alloc_len = n;
|
|
return rxe2;
|
|
}
|
|
|
|
/*
|
|
* Ensure the data buffer attached to an RXE is at least n bytes in size.
|
|
* Returns NULL on failure.
|
|
*/
|
|
static RXE *qrx_reserve_rxe(RXE_LIST *rxl,
|
|
RXE *rxe, size_t n)
|
|
{
|
|
if (rxe->alloc_len >= n)
|
|
return rxe;
|
|
|
|
return qrx_resize_rxe(rxl, rxe, n);
|
|
}
|
|
|
|
/* Return a RXE handed out to the user back to our freelist. */
|
|
static void qrx_recycle_rxe(OSSL_QRX *qrx, RXE *rxe)
|
|
{
|
|
/* RXE should not be in any list */
|
|
assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL);
|
|
rxe->pkt.hdr = NULL;
|
|
rxe->pkt.peer = NULL;
|
|
rxe->pkt.local = NULL;
|
|
ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
|
|
}
|
|
|
|
/*
|
|
* Given a pointer to a pointer pointing to a buffer and the size of that
|
|
* buffer, copy the buffer into *prxe, expanding the RXE if necessary (its
|
|
* pointer may change due to realloc). *pi is the offset in bytes to copy the
|
|
* buffer to, and on success is updated to be the offset pointing after the
|
|
* copied buffer. *pptr is updated to point to the new location of the buffer.
|
|
*/
|
|
static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi,
|
|
const unsigned char **pptr, size_t buf_len)
|
|
{
|
|
RXE *rxe;
|
|
unsigned char *dst;
|
|
|
|
if (!buf_len)
|
|
return 1;
|
|
|
|
if ((rxe = qrx_reserve_rxe(&qrx->rx_free, *prxe, *pi + buf_len)) == NULL)
|
|
return 0;
|
|
|
|
*prxe = rxe;
|
|
dst = (unsigned char *)rxe_data(rxe) + *pi;
|
|
|
|
memcpy(dst, *pptr, buf_len);
|
|
*pi += buf_len;
|
|
*pptr = dst;
|
|
return 1;
|
|
}
|
|
|
|
static uint32_t qrx_determine_enc_level(const QUIC_PKT_HDR *hdr)
|
|
{
|
|
switch (hdr->type) {
|
|
case QUIC_PKT_TYPE_INITIAL:
|
|
return QUIC_ENC_LEVEL_INITIAL;
|
|
case QUIC_PKT_TYPE_HANDSHAKE:
|
|
return QUIC_ENC_LEVEL_HANDSHAKE;
|
|
case QUIC_PKT_TYPE_0RTT:
|
|
return QUIC_ENC_LEVEL_0RTT;
|
|
case QUIC_PKT_TYPE_1RTT:
|
|
return QUIC_ENC_LEVEL_1RTT;
|
|
|
|
default:
|
|
assert(0);
|
|
case QUIC_PKT_TYPE_RETRY:
|
|
case QUIC_PKT_TYPE_VERSION_NEG:
|
|
return QUIC_ENC_LEVEL_INITIAL; /* not used */
|
|
}
|
|
}
|
|
|
|
static uint32_t rxe_determine_pn_space(RXE *rxe)
|
|
{
|
|
uint32_t enc_level;
|
|
|
|
enc_level = qrx_determine_enc_level(&rxe->hdr);
|
|
return ossl_quic_enc_level_to_pn_space(enc_level);
|
|
}
|
|
|
|
static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe,
|
|
const QUIC_CONN_ID *first_dcid)
|
|
{
|
|
/* Ensure version is what we want. */
|
|
if (rxe->hdr.version != QUIC_VERSION_1
|
|
&& rxe->hdr.version != QUIC_VERSION_NONE)
|
|
return 0;
|
|
|
|
/* Clients should never receive 0-RTT packets. */
|
|
if (rxe->hdr.type == QUIC_PKT_TYPE_0RTT)
|
|
return 0;
|
|
|
|
/* Version negotiation and retry packets must be the first packet. */
|
|
if (first_dcid != NULL && !ossl_quic_pkt_type_can_share_dgram(rxe->hdr.type))
|
|
return 0;
|
|
|
|
/*
|
|
* If this is not the first packet in a datagram, the destination connection
|
|
* ID must match the one in that packet.
|
|
*/
|
|
if (first_dcid != NULL) {
|
|
if (!ossl_assert(first_dcid->id_len < QUIC_MAX_CONN_ID_LEN)
|
|
|| !ossl_quic_conn_id_eq(first_dcid,
|
|
&rxe->hdr.dst_conn_id))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Validate header and decode PN. */
|
|
static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe)
|
|
{
|
|
int pn_space = rxe_determine_pn_space(rxe);
|
|
|
|
if (!ossl_quic_wire_decode_pkt_hdr_pn(rxe->hdr.pn, rxe->hdr.pn_len,
|
|
qrx->largest_pn[pn_space],
|
|
&rxe->pn))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Late packet header validation. */
|
|
static int qrx_validate_hdr_late(OSSL_QRX *qrx, RXE *rxe)
|
|
{
|
|
int pn_space = rxe_determine_pn_space(rxe);
|
|
|
|
/*
|
|
* Allow our user to decide whether to discard the packet before we try and
|
|
* decrypt it.
|
|
*/
|
|
if (qrx->validation_cb != NULL
|
|
&& !qrx->validation_cb(rxe->pn, pn_space, qrx->validation_cb_arg))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Retrieves the correct cipher context for an EL and key phase. Writes the key
|
|
* epoch number actually used for packet decryption to *rx_key_epoch.
|
|
*/
|
|
static size_t qrx_get_cipher_ctx_idx(OSSL_QRX *qrx, OSSL_QRL_ENC_LEVEL *el,
|
|
uint32_t enc_level,
|
|
unsigned char key_phase_bit,
|
|
uint64_t *rx_key_epoch,
|
|
int *is_old_key)
|
|
{
|
|
size_t idx;
|
|
|
|
*is_old_key = 0;
|
|
|
|
if (enc_level != QUIC_ENC_LEVEL_1RTT) {
|
|
*rx_key_epoch = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (!ossl_assert(key_phase_bit <= 1))
|
|
return SIZE_MAX;
|
|
|
|
/*
|
|
* RFC 9001 requires that we not create timing channels which could reveal
|
|
* the decrypted value of the Key Phase bit. We usually handle this by
|
|
* keeping the cipher contexts for both the current and next key epochs
|
|
* around, so that we just select a cipher context blindly using the key
|
|
* phase bit, which is time-invariant.
|
|
*
|
|
* In the COOLDOWN state, we only have one keyslot/cipher context. RFC 9001
|
|
* suggests an implementation strategy to avoid creating a timing channel in
|
|
* this case:
|
|
*
|
|
* Endpoints can use randomized packet protection keys in place of
|
|
* discarded keys when key updates are not yet permitted.
|
|
*
|
|
* Rather than use a randomised key, we simply use our existing key as it
|
|
* will fail AEAD verification anyway. This avoids the need to keep around a
|
|
* dedicated garbage key.
|
|
*
|
|
* Note: Accessing different cipher contexts is technically not
|
|
* timing-channel safe due to microarchitectural side channels, but this is
|
|
* the best we can reasonably do and appears to be directly suggested by the
|
|
* RFC.
|
|
*/
|
|
idx = (el->state == QRL_EL_STATE_PROV_COOLDOWN ? el->key_epoch & 1
|
|
: key_phase_bit);
|
|
|
|
/*
|
|
* We also need to determine the key epoch number which this index
|
|
* corresponds to. This is so we can report the key epoch number in the
|
|
* OSSL_QRX_PKT structure, which callers need to validate whether it was OK
|
|
* for a packet to be sent using a given key epoch's keys.
|
|
*/
|
|
switch (el->state) {
|
|
case QRL_EL_STATE_PROV_NORMAL:
|
|
/*
|
|
* If we are in the NORMAL state, usually the KP bit will match the LSB
|
|
* of our key epoch, meaning no new key update is being signalled. If it
|
|
* does not match, this means the packet (purports to) belong to
|
|
* the next key epoch.
|
|
*
|
|
* IMPORTANT: The AEAD tag has not been verified yet when this function
|
|
* is called, so this code must be timing-channel safe, hence use of
|
|
* XOR. Moreover, the value output below is not yet authenticated.
|
|
*/
|
|
*rx_key_epoch
|
|
= el->key_epoch + ((el->key_epoch & 1) ^ (uint64_t)key_phase_bit);
|
|
break;
|
|
|
|
case QRL_EL_STATE_PROV_UPDATING:
|
|
/*
|
|
* If we are in the UPDATING state, usually the KP bit will match the
|
|
* LSB of our key epoch. If it does not match, this means that the
|
|
* packet (purports to) belong to the previous key epoch.
|
|
*
|
|
* As above, must be timing-channel safe.
|
|
*/
|
|
*is_old_key = (el->key_epoch & 1) ^ (uint64_t)key_phase_bit;
|
|
*rx_key_epoch = el->key_epoch - (uint64_t)*is_old_key;
|
|
break;
|
|
|
|
case QRL_EL_STATE_PROV_COOLDOWN:
|
|
/*
|
|
* If we are in COOLDOWN, there is only one key epoch we can possibly
|
|
* decrypt with, so just try that. If AEAD decryption fails, the
|
|
* value we output here isn't used anyway.
|
|
*/
|
|
*rx_key_epoch = el->key_epoch;
|
|
break;
|
|
}
|
|
|
|
return idx;
|
|
}
|
|
|
|
/*
|
|
* Tries to decrypt a packet payload.
|
|
*
|
|
* Returns 1 on success or 0 on failure (which is permanent). The payload is
|
|
* decrypted from src and written to dst. The buffer dst must be of at least
|
|
* src_len bytes in length. The actual length of the output in bytes is written
|
|
* to *dec_len on success, which will always be equal to or less than (usually
|
|
* less than) src_len.
|
|
*/
|
|
static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst,
|
|
const unsigned char *src,
|
|
size_t src_len, size_t *dec_len,
|
|
const unsigned char *aad, size_t aad_len,
|
|
QUIC_PN pn, uint32_t enc_level,
|
|
unsigned char key_phase_bit,
|
|
uint64_t *rx_key_epoch)
|
|
{
|
|
int l = 0, l2 = 0, is_old_key, nonce_len;
|
|
unsigned char nonce[EVP_MAX_IV_LENGTH];
|
|
size_t i, cctx_idx;
|
|
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
|
|
enc_level, 1);
|
|
EVP_CIPHER_CTX *cctx;
|
|
|
|
if (src_len > INT_MAX || aad_len > INT_MAX)
|
|
return 0;
|
|
|
|
/* We should not have been called if we do not have key material. */
|
|
if (!ossl_assert(el != NULL))
|
|
return 0;
|
|
|
|
if (el->tag_len >= src_len)
|
|
return 0;
|
|
|
|
/*
|
|
* If we have failed to authenticate a certain number of ciphertexts, refuse
|
|
* to decrypt any more ciphertexts.
|
|
*/
|
|
if (qrx->forged_pkt_count >= ossl_qrl_get_suite_max_forged_pkt(el->suite_id))
|
|
return 0;
|
|
|
|
cctx_idx = qrx_get_cipher_ctx_idx(qrx, el, enc_level, key_phase_bit,
|
|
rx_key_epoch, &is_old_key);
|
|
if (!ossl_assert(cctx_idx < OSSL_NELEM(el->cctx)))
|
|
return 0;
|
|
|
|
if (is_old_key && pn >= qrx->cur_epoch_start_pn)
|
|
/*
|
|
* RFC 9001 s. 5.5: Once an endpoint successfully receives a packet with
|
|
* a given PN, it MUST discard all packets in the same PN space with
|
|
* higher PNs if they cannot be successfully unprotected with the same
|
|
* key, or -- if there is a key update -- a subsequent packet protection
|
|
* key.
|
|
*
|
|
* In other words, once a PN x triggers a KU, it is invalid for us to
|
|
* receive a packet with a newer PN y (y > x) using the old keys.
|
|
*/
|
|
return 0;
|
|
|
|
cctx = el->cctx[cctx_idx];
|
|
|
|
/* Construct nonce (nonce=IV ^ PN). */
|
|
nonce_len = EVP_CIPHER_CTX_get_iv_length(cctx);
|
|
if (!ossl_assert(nonce_len >= (int)sizeof(QUIC_PN)))
|
|
return 0;
|
|
|
|
memcpy(nonce, el->iv[cctx_idx], nonce_len);
|
|
for (i = 0; i < sizeof(QUIC_PN); ++i)
|
|
nonce[nonce_len - i - 1] ^= (unsigned char)(pn >> (i * 8));
|
|
|
|
/* type and key will already have been setup; feed the IV. */
|
|
if (EVP_CipherInit_ex(cctx, NULL,
|
|
NULL, NULL, nonce, /*enc=*/0) != 1)
|
|
return 0;
|
|
|
|
/* Feed the AEAD tag we got so the cipher can validate it. */
|
|
if (EVP_CIPHER_CTX_ctrl(cctx, EVP_CTRL_AEAD_SET_TAG,
|
|
el->tag_len,
|
|
(unsigned char *)src + src_len - el->tag_len) != 1)
|
|
return 0;
|
|
|
|
/* Feed AAD data. */
|
|
if (EVP_CipherUpdate(cctx, NULL, &l, aad, aad_len) != 1)
|
|
return 0;
|
|
|
|
/* Feed encrypted packet body. */
|
|
if (EVP_CipherUpdate(cctx, dst, &l, src, src_len - el->tag_len) != 1)
|
|
return 0;
|
|
|
|
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
|
|
/*
|
|
* Throw away what we just decrypted and just use the ciphertext instead
|
|
* (which should be unencrypted)
|
|
*/
|
|
memcpy(dst, src, l);
|
|
|
|
/* Pretend to authenticate the tag but ignore it */
|
|
if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
|
|
/* We don't care */
|
|
}
|
|
#else
|
|
/* Ensure authentication succeeded. */
|
|
if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
|
|
/* Authentication failed, increment failed auth counter. */
|
|
++qrx->forged_pkt_count;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
*dec_len = l;
|
|
return 1;
|
|
}
|
|
|
|
static ossl_inline void ignore_res(int x)
|
|
{
|
|
/* No-op. */
|
|
}
|
|
|
|
static void qrx_key_update_initiated(OSSL_QRX *qrx, QUIC_PN pn)
|
|
{
|
|
if (!ossl_qrl_enc_level_set_key_update(&qrx->el_set, QUIC_ENC_LEVEL_1RTT))
|
|
/* We are already in RXKU, so we don't call the callback again. */
|
|
return;
|
|
|
|
qrx->cur_epoch_start_pn = pn;
|
|
|
|
if (qrx->key_update_cb != NULL)
|
|
qrx->key_update_cb(pn, qrx->key_update_cb_arg);
|
|
}
|
|
|
|
/* Process a single packet in a datagram. */
|
|
static int qrx_process_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe,
|
|
PACKET *pkt, size_t pkt_idx,
|
|
QUIC_CONN_ID *first_dcid,
|
|
size_t datagram_len)
|
|
{
|
|
RXE *rxe;
|
|
const unsigned char *eop = NULL;
|
|
size_t i, aad_len = 0, dec_len = 0;
|
|
PACKET orig_pkt = *pkt;
|
|
const unsigned char *sop = PACKET_data(pkt);
|
|
unsigned char *dst;
|
|
char need_second_decode = 0, already_processed = 0;
|
|
QUIC_PKT_HDR_PTRS ptrs;
|
|
uint32_t pn_space, enc_level;
|
|
OSSL_QRL_ENC_LEVEL *el = NULL;
|
|
uint64_t rx_key_epoch = UINT64_MAX;
|
|
|
|
/*
|
|
* Get a free RXE. If we need to allocate a new one, use the packet length
|
|
* as a good ballpark figure.
|
|
*/
|
|
rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(pkt));
|
|
if (rxe == NULL)
|
|
return 0;
|
|
|
|
/* Have we already processed this packet? */
|
|
if (pkt_is_marked(&urxe->processed, pkt_idx))
|
|
already_processed = 1;
|
|
|
|
/*
|
|
* Decode the header into the RXE structure. We first decrypt and read the
|
|
* unprotected part of the packet header (unless we already removed header
|
|
* protection, in which case we decode all of it).
|
|
*/
|
|
need_second_decode = !pkt_is_marked(&urxe->hpr_removed, pkt_idx);
|
|
if (!ossl_quic_wire_decode_pkt_hdr(pkt,
|
|
qrx->short_conn_id_len,
|
|
need_second_decode, 0, &rxe->hdr, &ptrs))
|
|
goto malformed;
|
|
|
|
/*
|
|
* Our successful decode above included an intelligible length and the
|
|
* PACKET is now pointing to the end of the QUIC packet.
|
|
*/
|
|
eop = PACKET_data(pkt);
|
|
|
|
/*
|
|
* Make a note of the first packet's DCID so we can later ensure the
|
|
* destination connection IDs of all packets in a datagram match.
|
|
*/
|
|
if (pkt_idx == 0)
|
|
*first_dcid = rxe->hdr.dst_conn_id;
|
|
|
|
/*
|
|
* Early header validation. Since we now know the packet length, we can also
|
|
* now skip over it if we already processed it.
|
|
*/
|
|
if (already_processed
|
|
|| !qrx_validate_hdr_early(qrx, rxe, pkt_idx == 0 ? NULL : first_dcid))
|
|
/*
|
|
* Already processed packets are handled identically to malformed
|
|
* packets; i.e., they are ignored.
|
|
*/
|
|
goto malformed;
|
|
|
|
if (!ossl_quic_pkt_type_is_encrypted(rxe->hdr.type)) {
|
|
/*
|
|
* Version negotiation and retry packets are a special case. They do not
|
|
* contain a payload which needs decrypting and have no header
|
|
* protection.
|
|
*/
|
|
|
|
/* Just copy the payload from the URXE to the RXE. */
|
|
if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len)) == NULL)
|
|
/*
|
|
* Allocation failure. EOP will be pointing to the end of the
|
|
* datagram so processing of this datagram will end here.
|
|
*/
|
|
goto malformed;
|
|
|
|
/* We are now committed to returning the packet. */
|
|
memcpy(rxe_data(rxe), rxe->hdr.data, rxe->hdr.len);
|
|
pkt_mark(&urxe->processed, pkt_idx);
|
|
|
|
rxe->hdr.data = rxe_data(rxe);
|
|
rxe->pn = QUIC_PN_INVALID;
|
|
|
|
rxe->data_len = rxe->hdr.len;
|
|
rxe->datagram_len = datagram_len;
|
|
rxe->key_epoch = 0;
|
|
rxe->peer = urxe->peer;
|
|
rxe->local = urxe->local;
|
|
rxe->time = urxe->time;
|
|
rxe->datagram_id = urxe->datagram_id;
|
|
|
|
/* Move RXE to pending. */
|
|
ossl_list_rxe_remove(&qrx->rx_free, rxe);
|
|
ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
|
|
return 0; /* success, did not defer */
|
|
}
|
|
|
|
/* Determine encryption level of packet. */
|
|
enc_level = qrx_determine_enc_level(&rxe->hdr);
|
|
|
|
/* If we do not have keying material for this encryption level yet, defer. */
|
|
switch (ossl_qrl_enc_level_set_have_el(&qrx->el_set, enc_level)) {
|
|
case 1:
|
|
/* We have keys. */
|
|
if (enc_level == QUIC_ENC_LEVEL_1RTT && !qrx->allow_1rtt)
|
|
/*
|
|
* But we cannot process 1-RTT packets until the handshake is
|
|
* completed (RFC 9000 s. 5.7).
|
|
*/
|
|
goto cannot_decrypt;
|
|
|
|
break;
|
|
case 0:
|
|
/* No keys yet. */
|
|
goto cannot_decrypt;
|
|
default:
|
|
/* We already discarded keys for this EL, we will never process this.*/
|
|
goto malformed;
|
|
}
|
|
|
|
/*
|
|
* We will copy any token included in the packet to the start of our RXE
|
|
* data buffer (so that we don't reference the URXE buffer any more and can
|
|
* recycle it). Track our position in the RXE buffer by index instead of
|
|
* pointer as the pointer may change as reallocs occur.
|
|
*/
|
|
i = 0;
|
|
|
|
/*
|
|
* rxe->hdr.data is now pointing at the (encrypted) packet payload. rxe->hdr
|
|
* also has fields pointing into the PACKET buffer which will be going away
|
|
* soon (the URXE will be reused for another incoming packet).
|
|
*
|
|
* Firstly, relocate some of these fields into the RXE as needed.
|
|
*
|
|
* Relocate token buffer and fix pointer.
|
|
*/
|
|
if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL) {
|
|
const unsigned char *token = rxe->hdr.token;
|
|
|
|
/*
|
|
* This may change the value of rxe and change the value of the token
|
|
* pointer as well. So we must make a temporary copy of the pointer to
|
|
* the token, and then copy it back into the new location of the rxe
|
|
*/
|
|
if (!qrx_relocate_buffer(qrx, &rxe, &i, &token, rxe->hdr.token_len))
|
|
goto malformed;
|
|
|
|
rxe->hdr.token = token;
|
|
}
|
|
|
|
/* Now remove header protection. */
|
|
*pkt = orig_pkt;
|
|
|
|
el = ossl_qrl_enc_level_set_get(&qrx->el_set, enc_level, 1);
|
|
assert(el != NULL); /* Already checked above */
|
|
|
|
if (need_second_decode) {
|
|
if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs))
|
|
goto malformed;
|
|
|
|
/*
|
|
* We have removed header protection, so don't attempt to do it again if
|
|
* the packet gets deferred and processed again.
|
|
*/
|
|
pkt_mark(&urxe->hpr_removed, pkt_idx);
|
|
|
|
/* Decode the now unprotected header. */
|
|
if (ossl_quic_wire_decode_pkt_hdr(pkt, qrx->short_conn_id_len,
|
|
0, 0, &rxe->hdr, NULL) != 1)
|
|
goto malformed;
|
|
}
|
|
|
|
/* Validate header and decode PN. */
|
|
if (!qrx_validate_hdr(qrx, rxe))
|
|
goto malformed;
|
|
|
|
if (qrx->msg_callback != NULL)
|
|
qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_PACKET, sop,
|
|
eop - sop - rxe->hdr.len, qrx->msg_callback_ssl,
|
|
qrx->msg_callback_arg);
|
|
|
|
/*
|
|
* The AAD data is the entire (unprotected) packet header including the PN.
|
|
* The packet header has been unprotected in place, so we can just reuse the
|
|
* PACKET buffer. The header ends where the payload begins.
|
|
*/
|
|
aad_len = rxe->hdr.data - sop;
|
|
|
|
/* Ensure the RXE buffer size is adequate for our payload. */
|
|
if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL) {
|
|
/*
|
|
* Allocation failure, treat as malformed and do not bother processing
|
|
* any further packets in the datagram as they are likely to also
|
|
* encounter allocation failures.
|
|
*/
|
|
eop = NULL;
|
|
goto malformed;
|
|
}
|
|
|
|
/*
|
|
* We decrypt the packet body to immediately after the token at the start of
|
|
* the RXE buffer (where present).
|
|
*
|
|
* Do the decryption from the PACKET (which points into URXE memory) to our
|
|
* RXE payload (single-copy decryption), then fixup the pointers in the
|
|
* header to point to our new buffer.
|
|
*
|
|
* If decryption fails this is considered a permanent error; we defer
|
|
* packets we don't yet have decryption keys for above, so if this fails,
|
|
* something has gone wrong with the handshake process or a packet has been
|
|
* corrupted.
|
|
*/
|
|
dst = (unsigned char *)rxe_data(rxe) + i;
|
|
if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len,
|
|
&dec_len, sop, aad_len, rxe->pn, enc_level,
|
|
rxe->hdr.key_phase, &rx_key_epoch))
|
|
goto malformed;
|
|
|
|
/*
|
|
* -----------------------------------------------------
|
|
* IMPORTANT: ANYTHING ABOVE THIS LINE IS UNVERIFIED
|
|
* AND MUST BE TIMING-CHANNEL SAFE.
|
|
* -----------------------------------------------------
|
|
*
|
|
* At this point, we have successfully authenticated the AEAD tag and no
|
|
* longer need to worry about exposing the PN, PN length or Key Phase bit in
|
|
* timing channels. Invoke any configured validation callback to allow for
|
|
* rejection of duplicate PNs.
|
|
*/
|
|
if (!qrx_validate_hdr_late(qrx, rxe))
|
|
goto malformed;
|
|
|
|
/* Check for a Key Phase bit differing from our expectation. */
|
|
if (rxe->hdr.type == QUIC_PKT_TYPE_1RTT
|
|
&& rxe->hdr.key_phase != (el->key_epoch & 1))
|
|
qrx_key_update_initiated(qrx, rxe->pn);
|
|
|
|
/*
|
|
* We have now successfully decrypted the packet payload. If there are
|
|
* additional packets in the datagram, it is possible we will fail to
|
|
* decrypt them and need to defer them until we have some key material we
|
|
* don't currently possess. If this happens, the URXE will be moved to the
|
|
* deferred queue. Since a URXE corresponds to one datagram, which may
|
|
* contain multiple packets, we must ensure any packets we have already
|
|
* processed in the URXE are not processed again (this is an RFC
|
|
* requirement). We do this by marking the nth packet in the datagram as
|
|
* processed.
|
|
*
|
|
* We are now committed to returning this decrypted packet to the user,
|
|
* meaning we now consider the packet processed and must mark it
|
|
* accordingly.
|
|
*/
|
|
pkt_mark(&urxe->processed, pkt_idx);
|
|
|
|
/*
|
|
* Update header to point to the decrypted buffer, which may be shorter
|
|
* due to AEAD tags, block padding, etc.
|
|
*/
|
|
rxe->hdr.data = dst;
|
|
rxe->hdr.len = dec_len;
|
|
rxe->data_len = dec_len;
|
|
rxe->datagram_len = datagram_len;
|
|
rxe->key_epoch = rx_key_epoch;
|
|
|
|
/* We processed the PN successfully, so update largest processed PN. */
|
|
pn_space = rxe_determine_pn_space(rxe);
|
|
if (rxe->pn > qrx->largest_pn[pn_space])
|
|
qrx->largest_pn[pn_space] = rxe->pn;
|
|
|
|
/* Copy across network addresses and RX time from URXE to RXE. */
|
|
rxe->peer = urxe->peer;
|
|
rxe->local = urxe->local;
|
|
rxe->time = urxe->time;
|
|
rxe->datagram_id = urxe->datagram_id;
|
|
|
|
/* Move RXE to pending. */
|
|
ossl_list_rxe_remove(&qrx->rx_free, rxe);
|
|
ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
|
|
return 0; /* success, did not defer; not distinguished from failure */
|
|
|
|
cannot_decrypt:
|
|
/*
|
|
* We cannot process this packet right now (but might be able to later). We
|
|
* MUST attempt to process any other packets in the datagram, so defer it
|
|
* and skip over it.
|
|
*/
|
|
assert(eop != NULL && eop >= PACKET_data(pkt));
|
|
/*
|
|
* We don't care if this fails as it will just result in the packet being at
|
|
* the end of the datagram buffer.
|
|
*/
|
|
ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
|
|
return 1; /* deferred */
|
|
|
|
malformed:
|
|
if (eop != NULL) {
|
|
/*
|
|
* This packet cannot be processed and will never be processable. We
|
|
* were at least able to decode its header and determine its length, so
|
|
* we can skip over it and try to process any subsequent packets in the
|
|
* datagram.
|
|
*
|
|
* Mark as processed as an optimization.
|
|
*/
|
|
assert(eop >= PACKET_data(pkt));
|
|
pkt_mark(&urxe->processed, pkt_idx);
|
|
/* We don't care if this fails (see above) */
|
|
ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
|
|
} else {
|
|
/*
|
|
* This packet cannot be processed and will never be processable.
|
|
* Because even its header is not intelligible, we cannot examine any
|
|
* further packets in the datagram because its length cannot be
|
|
* discerned.
|
|
*
|
|
* Advance over the entire remainder of the datagram, and mark it as
|
|
* processed as an optimization.
|
|
*/
|
|
pkt_mark(&urxe->processed, pkt_idx);
|
|
/* We don't care if this fails (see above) */
|
|
ignore_res(PACKET_forward(pkt, PACKET_remaining(pkt)));
|
|
}
|
|
return 0; /* failure, did not defer; not distinguished from success */
|
|
}
|
|
|
|
/* Process a datagram which was received. */
|
|
static int qrx_process_datagram(OSSL_QRX *qrx, QUIC_URXE *e,
|
|
const unsigned char *data,
|
|
size_t data_len)
|
|
{
|
|
int have_deferred = 0;
|
|
PACKET pkt;
|
|
size_t pkt_idx = 0;
|
|
QUIC_CONN_ID first_dcid = { 255 };
|
|
|
|
qrx->bytes_received += data_len;
|
|
|
|
if (!PACKET_buf_init(&pkt, data, data_len))
|
|
return 0;
|
|
|
|
for (; PACKET_remaining(&pkt) > 0; ++pkt_idx) {
|
|
/*
|
|
* A packet smaller than the minimum possible QUIC packet size is not
|
|
* considered valid. We also ignore more than a certain number of
|
|
* packets within the same datagram.
|
|
*/
|
|
if (PACKET_remaining(&pkt) < QUIC_MIN_VALID_PKT_LEN
|
|
|| pkt_idx >= QUIC_MAX_PKT_PER_URXE)
|
|
break;
|
|
|
|
/*
|
|
* We note whether packet processing resulted in a deferral since
|
|
* this means we need to move the URXE to the deferred list rather
|
|
* than the free list after we're finished dealing with it for now.
|
|
*
|
|
* However, we don't otherwise care here whether processing succeeded or
|
|
* failed, as the RFC says even if a packet in a datagram is malformed,
|
|
* we should still try to process any packets following it.
|
|
*
|
|
* In the case where the packet is so malformed we can't determine its
|
|
* length, qrx_process_pkt will take care of advancing to the end of
|
|
* the packet, so we will exit the loop automatically in this case.
|
|
*/
|
|
if (qrx_process_pkt(qrx, e, &pkt, pkt_idx, &first_dcid, data_len))
|
|
have_deferred = 1;
|
|
}
|
|
|
|
/* Only report whether there were any deferrals. */
|
|
return have_deferred;
|
|
}
|
|
|
|
/* Process a single pending URXE. */
|
|
static int qrx_process_one_urxe(OSSL_QRX *qrx, QUIC_URXE *e)
|
|
{
|
|
int was_deferred;
|
|
|
|
/* The next URXE we process should be at the head of the pending list. */
|
|
if (!ossl_assert(e == ossl_list_urxe_head(&qrx->urx_pending)))
|
|
return 0;
|
|
|
|
/*
|
|
* Attempt to process the datagram. The return value indicates only if
|
|
* processing of the datagram was deferred. If we failed to process the
|
|
* datagram, we do not attempt to process it again and silently eat the
|
|
* error.
|
|
*/
|
|
was_deferred = qrx_process_datagram(qrx, e, ossl_quic_urxe_data(e),
|
|
e->data_len);
|
|
|
|
/*
|
|
* Remove the URXE from the pending list and return it to
|
|
* either the free or deferred list.
|
|
*/
|
|
ossl_list_urxe_remove(&qrx->urx_pending, e);
|
|
if (was_deferred > 0 &&
|
|
(e->deferred || qrx->num_deferred < qrx->max_deferred)) {
|
|
ossl_list_urxe_insert_tail(&qrx->urx_deferred, e);
|
|
if (!e->deferred) {
|
|
e->deferred = 1;
|
|
++qrx->num_deferred;
|
|
}
|
|
} else {
|
|
if (e->deferred) {
|
|
e->deferred = 0;
|
|
--qrx->num_deferred;
|
|
}
|
|
ossl_quic_demux_release_urxe(qrx->demux, e);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Process any pending URXEs to generate pending RXEs. */
|
|
static int qrx_process_pending_urxl(OSSL_QRX *qrx)
|
|
{
|
|
QUIC_URXE *e;
|
|
|
|
while ((e = ossl_list_urxe_head(&qrx->urx_pending)) != NULL)
|
|
if (!qrx_process_one_urxe(qrx, e))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ossl_qrx_read_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT **ppkt)
|
|
{
|
|
RXE *rxe;
|
|
|
|
if (!ossl_qrx_processed_read_pending(qrx)) {
|
|
if (!qrx_process_pending_urxl(qrx))
|
|
return 0;
|
|
|
|
if (!ossl_qrx_processed_read_pending(qrx))
|
|
return 0;
|
|
}
|
|
|
|
rxe = qrx_pop_pending_rxe(qrx);
|
|
if (!ossl_assert(rxe != NULL))
|
|
return 0;
|
|
|
|
assert(rxe->refcount == 0);
|
|
rxe->refcount = 1;
|
|
|
|
rxe->pkt.hdr = &rxe->hdr;
|
|
rxe->pkt.pn = rxe->pn;
|
|
rxe->pkt.time = rxe->time;
|
|
rxe->pkt.datagram_len = rxe->datagram_len;
|
|
rxe->pkt.peer
|
|
= BIO_ADDR_family(&rxe->peer) != AF_UNSPEC ? &rxe->peer : NULL;
|
|
rxe->pkt.local
|
|
= BIO_ADDR_family(&rxe->local) != AF_UNSPEC ? &rxe->local : NULL;
|
|
rxe->pkt.key_epoch = rxe->key_epoch;
|
|
rxe->pkt.datagram_id = rxe->datagram_id;
|
|
rxe->pkt.qrx = qrx;
|
|
*ppkt = &rxe->pkt;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void ossl_qrx_pkt_release(OSSL_QRX_PKT *pkt)
|
|
{
|
|
RXE *rxe;
|
|
|
|
if (pkt == NULL)
|
|
return;
|
|
|
|
rxe = (RXE *)pkt;
|
|
assert(rxe->refcount > 0);
|
|
if (--rxe->refcount == 0)
|
|
qrx_recycle_rxe(pkt->qrx, rxe);
|
|
}
|
|
|
|
void ossl_qrx_pkt_up_ref(OSSL_QRX_PKT *pkt)
|
|
{
|
|
RXE *rxe = (RXE *)pkt;
|
|
|
|
assert(rxe->refcount > 0);
|
|
++rxe->refcount;
|
|
}
|
|
|
|
uint64_t ossl_qrx_get_bytes_received(OSSL_QRX *qrx, int clear)
|
|
{
|
|
uint64_t v = qrx->bytes_received;
|
|
|
|
if (clear)
|
|
qrx->bytes_received = 0;
|
|
|
|
return v;
|
|
}
|
|
|
|
int ossl_qrx_set_late_validation_cb(OSSL_QRX *qrx,
|
|
ossl_qrx_late_validation_cb *cb,
|
|
void *cb_arg)
|
|
{
|
|
qrx->validation_cb = cb;
|
|
qrx->validation_cb_arg = cb_arg;
|
|
return 1;
|
|
}
|
|
|
|
int ossl_qrx_set_key_update_cb(OSSL_QRX *qrx,
|
|
ossl_qrx_key_update_cb *cb,
|
|
void *cb_arg)
|
|
{
|
|
qrx->key_update_cb = cb;
|
|
qrx->key_update_cb_arg = cb_arg;
|
|
return 1;
|
|
}
|
|
|
|
uint64_t ossl_qrx_get_key_epoch(OSSL_QRX *qrx)
|
|
{
|
|
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
|
|
QUIC_ENC_LEVEL_1RTT, 1);
|
|
|
|
return el == NULL ? UINT64_MAX : el->key_epoch;
|
|
}
|
|
|
|
int ossl_qrx_key_update_timeout(OSSL_QRX *qrx, int normal)
|
|
{
|
|
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
|
|
QUIC_ENC_LEVEL_1RTT, 1);
|
|
|
|
if (el == NULL)
|
|
return 0;
|
|
|
|
if (el->state == QRL_EL_STATE_PROV_UPDATING
|
|
&& !ossl_qrl_enc_level_set_key_update_done(&qrx->el_set,
|
|
QUIC_ENC_LEVEL_1RTT))
|
|
return 0;
|
|
|
|
if (normal && el->state == QRL_EL_STATE_PROV_COOLDOWN
|
|
&& !ossl_qrl_enc_level_set_key_cooldown_done(&qrx->el_set,
|
|
QUIC_ENC_LEVEL_1RTT))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
uint64_t ossl_qrx_get_cur_forged_pkt_count(OSSL_QRX *qrx)
|
|
{
|
|
return qrx->forged_pkt_count;
|
|
}
|
|
|
|
uint64_t ossl_qrx_get_max_forged_pkt_count(OSSL_QRX *qrx,
|
|
uint32_t enc_level)
|
|
{
|
|
OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
|
|
enc_level, 1);
|
|
|
|
return el == NULL ? UINT64_MAX
|
|
: ossl_qrl_get_suite_max_forged_pkt(el->suite_id);
|
|
}
|
|
|
|
void ossl_qrx_allow_1rtt_processing(OSSL_QRX *qrx)
|
|
{
|
|
if (qrx->allow_1rtt)
|
|
return;
|
|
|
|
qrx->allow_1rtt = 1;
|
|
qrx_requeue_deferred(qrx);
|
|
}
|
|
|
|
void ossl_qrx_set_msg_callback(OSSL_QRX *qrx, ossl_msg_cb msg_callback,
|
|
SSL *msg_callback_ssl)
|
|
{
|
|
qrx->msg_callback = msg_callback;
|
|
qrx->msg_callback_ssl = msg_callback_ssl;
|
|
}
|
|
|
|
void ossl_qrx_set_msg_callback_arg(OSSL_QRX *qrx, void *msg_callback_arg)
|
|
{
|
|
qrx->msg_callback_arg = msg_callback_arg;
|
|
}
|