openssl/crypto/rsa/rsa_oaep.c
Dimitri John Ledkov 1bfc8d17f3 rsa-oaep: block SHAKE usage in FIPS mode
NIST SP 800-56 rev2 only allows using approved hash algorithms in
OAEP. Unlike FIPS 186-5 it doesn't have text allowing to use XOF SHAKE
functions. Maybe future revisions of SP 800-56 will adopt similar text
to FIPS 186-5 and allow XOF as MD and MGF (not MGF1).

RFC documents do not specify if SHAKE is allowed or blocked for usage
(i.e. there is no equivalent of RFC 8692 or RFC 8702 for OAEP). Status
quo allows their usage.

Add test cases for SHAKE in RSA-OAEP as allowed in default provider,
and blocked in fips.

Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/24387)
2024-05-22 15:31:00 +02:00

394 lines
13 KiB
C

/*
* Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
/*
* See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
* http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
* proof for the original OAEP scheme, which EME-OAEP is based on. A new
* proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
* "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
* http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
* for the underlying permutation: "partial-one-wayness" instead of
* one-wayness. For the RSA function, this is an equivalent notion.
*/
/*
* RSA low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include "internal/constant_time.h"
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/bn.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/sha.h>
#include "rsa_local.h"
int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
const unsigned char *from, int flen,
const unsigned char *param, int plen)
{
return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
param, plen, NULL, NULL);
}
/*
* Perform the padding as per NIST 800-56B 7.2.2.3
* from (K) is the key material.
* param (A) is the additional input.
* Step numbers are included here but not in the constant time inverse below
* to avoid complicating an already difficult enough function.
*/
int ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(OSSL_LIB_CTX *libctx,
unsigned char *to, int tlen,
const unsigned char *from, int flen,
const unsigned char *param,
int plen, const EVP_MD *md,
const EVP_MD *mgf1md)
{
int rv = 0;
int i, emlen = tlen - 1;
unsigned char *db, *seed;
unsigned char *dbmask = NULL;
unsigned char seedmask[EVP_MAX_MD_SIZE];
int mdlen, dbmask_len = 0;
if (md == NULL) {
#ifndef FIPS_MODULE
md = EVP_sha1();
#else
ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
return 0;
#endif
}
if (mgf1md == NULL)
mgf1md = md;
#ifdef FIPS_MODULE
/* XOF are approved as standalone; Shake256 in Ed448; MGF */
if ((EVP_MD_get_flags(md) & EVP_MD_FLAG_XOF) != 0) {
ERR_raise(ERR_LIB_RSA, RSA_R_DIGEST_NOT_ALLOWED);
return 0;
}
if ((EVP_MD_get_flags(mgf1md) & EVP_MD_FLAG_XOF) != 0) {
ERR_raise(ERR_LIB_RSA, RSA_R_MGF1_DIGEST_NOT_ALLOWED);
return 0;
}
#endif
mdlen = EVP_MD_get_size(md);
if (mdlen <= 0) {
ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);
return 0;
}
/* step 2b: check KLen > nLen - 2 HLen - 2 */
if (flen > emlen - 2 * mdlen - 1) {
ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
}
if (emlen < 2 * mdlen + 1) {
ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
/* step 3i: EM = 00000000 || maskedMGF || maskedDB */
to[0] = 0;
seed = to + 1;
db = to + mdlen + 1;
/* step 3a: hash the additional input */
if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
goto err;
/* step 3b: zero bytes array of length nLen - KLen - 2 HLen -2 */
memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
/* step 3c: DB = HA || PS || 00000001 || K */
db[emlen - flen - mdlen - 1] = 0x01;
memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
/* step 3d: generate random byte string */
if (RAND_bytes_ex(libctx, seed, mdlen, 0) <= 0)
goto err;
dbmask_len = emlen - mdlen;
dbmask = OPENSSL_malloc(dbmask_len);
if (dbmask == NULL)
goto err;
/* step 3e: dbMask = MGF(mgfSeed, nLen - HLen - 1) */
if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
goto err;
/* step 3f: maskedDB = DB XOR dbMask */
for (i = 0; i < dbmask_len; i++)
db[i] ^= dbmask[i];
/* step 3g: mgfSeed = MGF(maskedDB, HLen) */
if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
goto err;
/* stepo 3h: maskedMGFSeed = mgfSeed XOR mgfSeedMask */
for (i = 0; i < mdlen; i++)
seed[i] ^= seedmask[i];
rv = 1;
err:
OPENSSL_cleanse(seedmask, sizeof(seedmask));
OPENSSL_clear_free(dbmask, dbmask_len);
return rv;
}
int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
const unsigned char *from, int flen,
const unsigned char *param, int plen,
const EVP_MD *md, const EVP_MD *mgf1md)
{
return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
param, plen, md, mgf1md);
}
int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
const unsigned char *from, int flen, int num,
const unsigned char *param, int plen)
{
return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
param, plen, NULL, NULL);
}
int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
const unsigned char *from, int flen,
int num, const unsigned char *param,
int plen, const EVP_MD *md,
const EVP_MD *mgf1md)
{
int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
unsigned int good = 0, found_one_byte, mask;
const unsigned char *maskedseed, *maskeddb;
/*
* |em| is the encoded message, zero-padded to exactly |num| bytes: em =
* Y || maskedSeed || maskedDB
*/
unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
phash[EVP_MAX_MD_SIZE];
int mdlen;
if (md == NULL) {
#ifndef FIPS_MODULE
md = EVP_sha1();
#else
ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
return -1;
#endif
}
if (mgf1md == NULL)
mgf1md = md;
#ifdef FIPS_MODULE
/* XOF are approved as standalone; Shake256 in Ed448; MGF */
if ((EVP_MD_get_flags(md) & EVP_MD_FLAG_XOF) != 0) {
ERR_raise(ERR_LIB_RSA, RSA_R_DIGEST_NOT_ALLOWED);
return -1;
}
if ((EVP_MD_get_flags(mgf1md) & EVP_MD_FLAG_XOF) != 0) {
ERR_raise(ERR_LIB_RSA, RSA_R_MGF1_DIGEST_NOT_ALLOWED);
return -1;
}
#endif
mdlen = EVP_MD_get_size(md);
if (tlen <= 0 || flen <= 0)
return -1;
/*
* |num| is the length of the modulus; |flen| is the length of the
* encoded message. Therefore, for any |from| that was obtained by
* decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
* |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
* the ciphertext, see PKCS #1 v2.2, section 7.1.2.
* This does not leak any side-channel information.
*/
if (num < flen || num < 2 * mdlen + 2) {
ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
return -1;
}
dblen = num - mdlen - 1;
db = OPENSSL_malloc(dblen);
if (db == NULL)
goto cleanup;
em = OPENSSL_malloc(num);
if (em == NULL)
goto cleanup;
/*
* Caller is encouraged to pass zero-padded message created with
* BN_bn2binpad. Trouble is that since we can't read out of |from|'s
* bounds, it's impossible to have an invariant memory access pattern
* in case |from| was not zero-padded in advance.
*/
for (from += flen, em += num, i = 0; i < num; i++) {
mask = ~constant_time_is_zero(flen);
flen -= 1 & mask;
from -= 1 & mask;
*--em = *from & mask;
}
/*
* The first byte must be zero, however we must not leak if this is
* true. See James H. Manger, "A Chosen Ciphertext Attack on RSA
* Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
*/
good = constant_time_is_zero(em[0]);
maskedseed = em + 1;
maskeddb = em + 1 + mdlen;
if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
goto cleanup;
for (i = 0; i < mdlen; i++)
seed[i] ^= maskedseed[i];
if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
goto cleanup;
for (i = 0; i < dblen; i++)
db[i] ^= maskeddb[i];
if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
goto cleanup;
good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
found_one_byte = 0;
for (i = mdlen; i < dblen; i++) {
/*
* Padding consists of a number of 0-bytes, followed by a 1.
*/
unsigned int equals1 = constant_time_eq(db[i], 1);
unsigned int equals0 = constant_time_is_zero(db[i]);
one_index = constant_time_select_int(~found_one_byte & equals1,
i, one_index);
found_one_byte |= equals1;
good &= (found_one_byte | equals0);
}
good &= found_one_byte;
/*
* At this point |good| is zero unless the plaintext was valid,
* so plaintext-awareness ensures timing side-channels are no longer a
* concern.
*/
msg_index = one_index + 1;
mlen = dblen - msg_index;
/*
* For good measure, do this check in constant time as well.
*/
good &= constant_time_ge(tlen, mlen);
/*
* Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
* Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
* Otherwise leave |to| unchanged.
* Copy the memory back in a way that does not reveal the size of
* the data being copied via a timing side channel. This requires copying
* parts of the buffer multiple times based on the bits set in the real
* length. Clear bits do a non-copy with identical access pattern.
* The loop below has overall complexity of O(N*log(N)).
*/
tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
dblen - mdlen - 1, tlen);
for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
for (i = mdlen + 1; i < dblen - msg_index; i++)
db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
}
for (i = 0; i < tlen; i++) {
mask = good & constant_time_lt(i, mlen);
to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
}
#ifndef FIPS_MODULE
/*
* To avoid chosen ciphertext attacks, the error message should not
* reveal which kind of decoding error happened.
*
* This trick doesn't work in the FIPS provider because libcrypto manages
* the error stack. Instead we opt not to put an error on the stack at all
* in case of padding failure in the FIPS provider.
*/
ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
err_clear_last_constant_time(1 & good);
#endif
cleanup:
OPENSSL_cleanse(seed, sizeof(seed));
OPENSSL_clear_free(db, dblen);
OPENSSL_clear_free(em, num);
return constant_time_select_int(good, mlen, -1);
}
/*
* Mask Generation Function corresponding to section 7.2.2.2 of NIST SP 800-56B.
* The variables are named differently to NIST:
* mask (T) and len (maskLen)are the returned mask.
* seed (mgfSeed).
* The range checking steps inm the process are performed outside.
*/
int PKCS1_MGF1(unsigned char *mask, long len,
const unsigned char *seed, long seedlen, const EVP_MD *dgst)
{
long i, outlen = 0;
unsigned char cnt[4];
EVP_MD_CTX *c = EVP_MD_CTX_new();
unsigned char md[EVP_MAX_MD_SIZE];
int mdlen;
int rv = -1;
if (c == NULL)
goto err;
mdlen = EVP_MD_get_size(dgst);
if (mdlen < 0)
goto err;
/* step 4 */
for (i = 0; outlen < len; i++) {
/* step 4a: D = I2BS(counter, 4) */
cnt[0] = (unsigned char)((i >> 24) & 255);
cnt[1] = (unsigned char)((i >> 16) & 255);
cnt[2] = (unsigned char)((i >> 8)) & 255;
cnt[3] = (unsigned char)(i & 255);
/* step 4b: T =T || hash(mgfSeed || D) */
if (!EVP_DigestInit_ex(c, dgst, NULL)
|| !EVP_DigestUpdate(c, seed, seedlen)
|| !EVP_DigestUpdate(c, cnt, 4))
goto err;
if (outlen + mdlen <= len) {
if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
goto err;
outlen += mdlen;
} else {
if (!EVP_DigestFinal_ex(c, md, NULL))
goto err;
memcpy(mask + outlen, md, len - outlen);
outlen = len;
}
}
rv = 0;
err:
OPENSSL_cleanse(md, sizeof(md));
EVP_MD_CTX_free(c);
return rv;
}