openssl/providers/implementations/kdfs/scrypt.c
Hugo Landau e04c2c02e8 Fix bug in scrypt KDF provider dup method
The scrypt KDF provider's dup method calls kdf_scrypt_new passing a
libctx, but a provider context is expected. Since the provider context
is passed as void *, this was not caught.

Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/17873)
2022-03-14 10:14:44 +01:00

558 lines
16 KiB
C

/*
* Copyright 2017-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <openssl/evp.h>
#include <openssl/kdf.h>
#include <openssl/err.h>
#include <openssl/core_names.h>
#include <openssl/proverr.h>
#include "crypto/evp.h"
#include "internal/numbers.h"
#include "prov/implementations.h"
#include "prov/provider_ctx.h"
#include "prov/providercommon.h"
#include "prov/implementations.h"
#include "prov/provider_util.h"
#ifndef OPENSSL_NO_SCRYPT
static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup;
static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
static int scrypt_alg(const char *pass, size_t passlen,
const unsigned char *salt, size_t saltlen,
uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
unsigned char *key, size_t keylen, EVP_MD *sha256,
OSSL_LIB_CTX *libctx, const char *propq);
typedef struct {
OSSL_LIB_CTX *libctx;
char *propq;
unsigned char *pass;
size_t pass_len;
unsigned char *salt;
size_t salt_len;
uint64_t N;
uint64_t r, p;
uint64_t maxmem_bytes;
EVP_MD *sha256;
} KDF_SCRYPT;
static void kdf_scrypt_init(KDF_SCRYPT *ctx);
static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx)
{
KDF_SCRYPT *ctx;
if (!ossl_prov_is_running())
return NULL;
ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return NULL;
}
ctx->libctx = libctx;
kdf_scrypt_init(ctx);
return ctx;
}
static void *kdf_scrypt_new(void *provctx)
{
return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx));
}
static void kdf_scrypt_free(void *vctx)
{
KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
if (ctx != NULL) {
OPENSSL_free(ctx->propq);
EVP_MD_free(ctx->sha256);
kdf_scrypt_reset(ctx);
OPENSSL_free(ctx);
}
}
static void kdf_scrypt_reset(void *vctx)
{
KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
OPENSSL_free(ctx->salt);
OPENSSL_clear_free(ctx->pass, ctx->pass_len);
kdf_scrypt_init(ctx);
}
static void *kdf_scrypt_dup(void *vctx)
{
const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx;
KDF_SCRYPT *dest;
dest = kdf_scrypt_new_inner(src->libctx);
if (dest != NULL) {
if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256))
goto err;
if (src->propq != NULL) {
dest->propq = OPENSSL_strdup(src->propq);
if (dest->propq == NULL)
goto err;
}
if (!ossl_prov_memdup(src->salt, src->salt_len,
&dest->salt, &dest->salt_len)
|| !ossl_prov_memdup(src->pass, src->pass_len,
&dest->pass , &dest->pass_len))
goto err;
dest->N = src->N;
dest->r = src->r;
dest->p = src->p;
dest->maxmem_bytes = src->maxmem_bytes;
dest->sha256 = src->sha256;
}
return dest;
err:
kdf_scrypt_free(dest);
return NULL;
}
static void kdf_scrypt_init(KDF_SCRYPT *ctx)
{
/* Default values are the most conservative recommendation given in the
* original paper of C. Percival. Derivation uses roughly 1 GiB of memory
* for this parameter choice (approx. 128 * r * N * p bytes).
*/
ctx->N = 1 << 20;
ctx->r = 8;
ctx->p = 1;
ctx->maxmem_bytes = 1025 * 1024 * 1024;
}
static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
const OSSL_PARAM *p)
{
OPENSSL_clear_free(*buffer, *buflen);
*buffer = NULL;
*buflen = 0;
if (p->data_size == 0) {
if ((*buffer = OPENSSL_malloc(1)) == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
} else if (p->data != NULL) {
if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
return 0;
}
return 1;
}
static int set_digest(KDF_SCRYPT *ctx)
{
EVP_MD_free(ctx->sha256);
ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
if (ctx->sha256 == NULL) {
OPENSSL_free(ctx);
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
return 0;
}
return 1;
}
static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
{
OPENSSL_free(ctx->propq);
ctx->propq = NULL;
if (propq != NULL) {
ctx->propq = OPENSSL_strdup(propq);
if (ctx->propq == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
}
return 1;
}
static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
const OSSL_PARAM params[])
{
KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
return 0;
if (ctx->pass == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
return 0;
}
if (ctx->salt == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
return 0;
}
if (ctx->sha256 == NULL && !set_digest(ctx))
return 0;
return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
ctx->salt_len, ctx->N, ctx->r, ctx->p,
ctx->maxmem_bytes, key, keylen, ctx->sha256,
ctx->libctx, ctx->propq);
}
static int is_power_of_two(uint64_t value)
{
return (value != 0) && ((value & (value - 1)) == 0);
}
static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
const OSSL_PARAM *p;
KDF_SCRYPT *ctx = vctx;
uint64_t u64_value;
if (params == NULL)
return 1;
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
return 0;
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
return 0;
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
!= NULL) {
if (!OSSL_PARAM_get_uint64(p, &u64_value)
|| u64_value <= 1
|| !is_power_of_two(u64_value))
return 0;
ctx->N = u64_value;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
!= NULL) {
if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
return 0;
ctx->r = u64_value;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
!= NULL) {
if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
return 0;
ctx->p = u64_value;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
!= NULL) {
if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
return 0;
ctx->maxmem_bytes = u64_value;
}
p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
if (p != NULL) {
if (p->data_type != OSSL_PARAM_UTF8_STRING
|| !set_property_query(ctx, p->data)
|| !set_digest(ctx))
return 0;
}
return 1;
}
static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
ossl_unused void *p_ctx)
{
static const OSSL_PARAM known_settable_ctx_params[] = {
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
OSSL_PARAM_END
};
return known_settable_ctx_params;
}
static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
{
OSSL_PARAM *p;
if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
return OSSL_PARAM_set_size_t(p, SIZE_MAX);
return -2;
}
static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
ossl_unused void *p_ctx)
{
static const OSSL_PARAM known_gettable_ctx_params[] = {
OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
OSSL_PARAM_END
};
return known_gettable_ctx_params;
}
const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
{ OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
{ OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup },
{ OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
{ OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
{ OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
(void(*)(void))kdf_scrypt_settable_ctx_params },
{ OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
(void(*)(void))kdf_scrypt_gettable_ctx_params },
{ OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
{ 0, NULL }
};
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
static void salsa208_word_specification(uint32_t inout[16])
{
int i;
uint32_t x[16];
memcpy(x, inout, sizeof(x));
for (i = 8; i > 0; i -= 2) {
x[4] ^= R(x[0] + x[12], 7);
x[8] ^= R(x[4] + x[0], 9);
x[12] ^= R(x[8] + x[4], 13);
x[0] ^= R(x[12] + x[8], 18);
x[9] ^= R(x[5] + x[1], 7);
x[13] ^= R(x[9] + x[5], 9);
x[1] ^= R(x[13] + x[9], 13);
x[5] ^= R(x[1] + x[13], 18);
x[14] ^= R(x[10] + x[6], 7);
x[2] ^= R(x[14] + x[10], 9);
x[6] ^= R(x[2] + x[14], 13);
x[10] ^= R(x[6] + x[2], 18);
x[3] ^= R(x[15] + x[11], 7);
x[7] ^= R(x[3] + x[15], 9);
x[11] ^= R(x[7] + x[3], 13);
x[15] ^= R(x[11] + x[7], 18);
x[1] ^= R(x[0] + x[3], 7);
x[2] ^= R(x[1] + x[0], 9);
x[3] ^= R(x[2] + x[1], 13);
x[0] ^= R(x[3] + x[2], 18);
x[6] ^= R(x[5] + x[4], 7);
x[7] ^= R(x[6] + x[5], 9);
x[4] ^= R(x[7] + x[6], 13);
x[5] ^= R(x[4] + x[7], 18);
x[11] ^= R(x[10] + x[9], 7);
x[8] ^= R(x[11] + x[10], 9);
x[9] ^= R(x[8] + x[11], 13);
x[10] ^= R(x[9] + x[8], 18);
x[12] ^= R(x[15] + x[14], 7);
x[13] ^= R(x[12] + x[15], 9);
x[14] ^= R(x[13] + x[12], 13);
x[15] ^= R(x[14] + x[13], 18);
}
for (i = 0; i < 16; ++i)
inout[i] += x[i];
OPENSSL_cleanse(x, sizeof(x));
}
static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
{
uint64_t i, j;
uint32_t X[16], *pB;
memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
pB = B;
for (i = 0; i < r * 2; i++) {
for (j = 0; j < 16; j++)
X[j] ^= *pB++;
salsa208_word_specification(X);
memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
}
OPENSSL_cleanse(X, sizeof(X));
}
static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
uint32_t *X, uint32_t *T, uint32_t *V)
{
unsigned char *pB;
uint32_t *pV;
uint64_t i, k;
/* Convert from little endian input */
for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
*pV = *pB++;
*pV |= *pB++ << 8;
*pV |= *pB++ << 16;
*pV |= (uint32_t)*pB++ << 24;
}
for (i = 1; i < N; i++, pV += 32 * r)
scryptBlockMix(pV, pV - 32 * r, r);
scryptBlockMix(X, V + (N - 1) * 32 * r, r);
for (i = 0; i < N; i++) {
uint32_t j;
j = X[16 * (2 * r - 1)] % N;
pV = V + 32 * r * j;
for (k = 0; k < 32 * r; k++)
T[k] = X[k] ^ *pV++;
scryptBlockMix(X, T, r);
}
/* Convert output to little endian */
for (i = 0, pB = B; i < 32 * r; i++) {
uint32_t xtmp = X[i];
*pB++ = xtmp & 0xff;
*pB++ = (xtmp >> 8) & 0xff;
*pB++ = (xtmp >> 16) & 0xff;
*pB++ = (xtmp >> 24) & 0xff;
}
}
#ifndef SIZE_MAX
# define SIZE_MAX ((size_t)-1)
#endif
/*
* Maximum power of two that will fit in uint64_t: this should work on
* most (all?) platforms.
*/
#define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1)
/*
* Maximum value of p * r:
* p <= ((2^32-1) * hLen) / MFLen =>
* p <= ((2^32-1) * 32) / (128 * r) =>
* p * r <= (2^30-1)
*/
#define SCRYPT_PR_MAX ((1 << 30) - 1)
static int scrypt_alg(const char *pass, size_t passlen,
const unsigned char *salt, size_t saltlen,
uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
unsigned char *key, size_t keylen, EVP_MD *sha256,
OSSL_LIB_CTX *libctx, const char *propq)
{
int rv = 0;
unsigned char *B;
uint32_t *X, *V, *T;
uint64_t i, Blen, Vlen;
/* Sanity check parameters */
/* initial check, r,p must be non zero, N >= 2 and a power of 2 */
if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
return 0;
/* Check p * r < SCRYPT_PR_MAX avoiding overflow */
if (p > SCRYPT_PR_MAX / r) {
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
return 0;
}
/*
* Need to check N: if 2^(128 * r / 8) overflows limit this is
* automatically satisfied since N <= UINT64_MAX.
*/
if (16 * r <= LOG2_UINT64_MAX) {
if (N >= (((uint64_t)1) << (16 * r))) {
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
return 0;
}
}
/* Memory checks: check total allocated buffer size fits in uint64_t */
/*
* B size in section 5 step 1.S
* Note: we know p * 128 * r < UINT64_MAX because we already checked
* p * r < SCRYPT_PR_MAX
*/
Blen = p * 128 * r;
/*
* Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
* have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
*/
if (Blen > INT_MAX) {
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
return 0;
}
/*
* Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
* This is combined size V, X and T (section 4)
*/
i = UINT64_MAX / (32 * sizeof(uint32_t));
if (N + 2 > i / r) {
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
return 0;
}
Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
/* check total allocated size fits in uint64_t */
if (Blen > UINT64_MAX - Vlen) {
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
return 0;
}
/* Check that the maximum memory doesn't exceed a size_t limits */
if (maxmem > SIZE_MAX)
maxmem = SIZE_MAX;
if (Blen + Vlen > maxmem) {
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
return 0;
}
/* If no key return to indicate parameters are OK */
if (key == NULL)
return 1;
B = OPENSSL_malloc((size_t)(Blen + Vlen));
if (B == NULL) {
ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
return 0;
}
X = (uint32_t *)(B + Blen);
T = X + 32 * r;
V = T + 32 * r;
if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
(int)Blen, B, libctx, propq) == 0)
goto err;
for (i = 0; i < p; i++)
scryptROMix(B + 128 * r * i, r, N, X, T, V);
if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
keylen, key, libctx, propq) == 0)
goto err;
rv = 1;
err:
if (rv == 0)
ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
return rv;
}
#endif