mirror of
https://github.com/openssl/openssl.git
synced 2025-01-06 13:26:43 +08:00
1aa89a7a3a
They now generally conform to the following argument sequence: script.pl "$(PERLASM_SCHEME)" [ C preprocessor arguments ... ] \ $(PROCESSOR) <output file> However, in the spirit of being able to use these scripts manually, they also allow for no argument, or for only the flavour, or for only the output file. This is done by only using the last argument as output file if it's a file (it has an extension), and only using the first argument as flavour if it isn't a file (it doesn't have an extension). While we're at it, we make all $xlate calls the same, i.e. the $output argument is always quoted, and we always die on error when trying to start $xlate. There's a perl lesson in this, regarding operator priority... This will always succeed, even when it fails: open FOO, "something" || die "ERR: $!"; The reason is that '||' has higher priority than list operators (a function is essentially a list operator and gobbles up everything following it that isn't lower priority), and since a non-empty string is always true, so that ends up being exactly the same as: open FOO, "something"; This, however, will fail if "something" can't be opened: open FOO, "something" or die "ERR: $!"; The reason is that 'or' has lower priority that list operators, i.e. it's performed after the 'open' call. Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9884)
675 lines
15 KiB
Perl
Executable File
675 lines
15 KiB
Perl
Executable File
#! /usr/bin/env perl
|
|
# Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# GHASH for for PowerISA v2.07.
|
|
#
|
|
# July 2014
|
|
#
|
|
# Accurate performance measurements are problematic, because it's
|
|
# always virtualized setup with possibly throttled processor.
|
|
# Relative comparison is therefore more informative. This initial
|
|
# version is ~2.1x slower than hardware-assisted AES-128-CTR, ~12x
|
|
# faster than "4-bit" integer-only compiler-generated 64-bit code.
|
|
# "Initial version" means that there is room for further improvement.
|
|
|
|
# May 2016
|
|
#
|
|
# 2x aggregated reduction improves performance by 50% (resulting
|
|
# performance on POWER8 is 1 cycle per processed byte), and 4x
|
|
# aggregated reduction - by 170% or 2.7x (resulting in 0.55 cpb).
|
|
# POWER9 delivers 0.51 cpb.
|
|
|
|
# $output is the last argument if it looks like a file (it has an extension)
|
|
# $flavour is the first argument if it doesn't look like a file
|
|
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
|
|
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
|
|
|
|
if ($flavour =~ /64/) {
|
|
$SIZE_T=8;
|
|
$LRSAVE=2*$SIZE_T;
|
|
$STU="stdu";
|
|
$POP="ld";
|
|
$PUSH="std";
|
|
$UCMP="cmpld";
|
|
$SHRI="srdi";
|
|
} elsif ($flavour =~ /32/) {
|
|
$SIZE_T=4;
|
|
$LRSAVE=$SIZE_T;
|
|
$STU="stwu";
|
|
$POP="lwz";
|
|
$PUSH="stw";
|
|
$UCMP="cmplw";
|
|
$SHRI="srwi";
|
|
} else { die "nonsense $flavour"; }
|
|
|
|
$sp="r1";
|
|
$FRAME=6*$SIZE_T+13*16; # 13*16 is for v20-v31 offload
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or
|
|
( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or
|
|
die "can't locate ppc-xlate.pl";
|
|
|
|
open STDOUT,"| $^X $xlate $flavour \"$output\""
|
|
or die "can't call $xlate: $!";
|
|
|
|
my ($Xip,$Htbl,$inp,$len)=map("r$_",(3..6)); # argument block
|
|
|
|
my ($Xl,$Xm,$Xh,$IN)=map("v$_",(0..3));
|
|
my ($zero,$t0,$t1,$t2,$xC2,$H,$Hh,$Hl,$lemask)=map("v$_",(4..12));
|
|
my ($Xl1,$Xm1,$Xh1,$IN1,$H2,$H2h,$H2l)=map("v$_",(13..19));
|
|
my $vrsave="r12";
|
|
|
|
$code=<<___;
|
|
.machine "any"
|
|
|
|
.text
|
|
|
|
.globl .gcm_init_p8
|
|
.align 5
|
|
.gcm_init_p8:
|
|
li r0,-4096
|
|
li r8,0x10
|
|
mfspr $vrsave,256
|
|
li r9,0x20
|
|
mtspr 256,r0
|
|
li r10,0x30
|
|
lvx_u $H,0,r4 # load H
|
|
|
|
vspltisb $xC2,-16 # 0xf0
|
|
vspltisb $t0,1 # one
|
|
vaddubm $xC2,$xC2,$xC2 # 0xe0
|
|
vxor $zero,$zero,$zero
|
|
vor $xC2,$xC2,$t0 # 0xe1
|
|
vsldoi $xC2,$xC2,$zero,15 # 0xe1...
|
|
vsldoi $t1,$zero,$t0,1 # ...1
|
|
vaddubm $xC2,$xC2,$xC2 # 0xc2...
|
|
vspltisb $t2,7
|
|
vor $xC2,$xC2,$t1 # 0xc2....01
|
|
vspltb $t1,$H,0 # most significant byte
|
|
vsl $H,$H,$t0 # H<<=1
|
|
vsrab $t1,$t1,$t2 # broadcast carry bit
|
|
vand $t1,$t1,$xC2
|
|
vxor $IN,$H,$t1 # twisted H
|
|
|
|
vsldoi $H,$IN,$IN,8 # twist even more ...
|
|
vsldoi $xC2,$zero,$xC2,8 # 0xc2.0
|
|
vsldoi $Hl,$zero,$H,8 # ... and split
|
|
vsldoi $Hh,$H,$zero,8
|
|
|
|
stvx_u $xC2,0,r3 # save pre-computed table
|
|
stvx_u $Hl,r8,r3
|
|
li r8,0x40
|
|
stvx_u $H, r9,r3
|
|
li r9,0x50
|
|
stvx_u $Hh,r10,r3
|
|
li r10,0x60
|
|
|
|
vpmsumd $Xl,$IN,$Hl # H.lo·H.lo
|
|
vpmsumd $Xm,$IN,$H # H.hi·H.lo+H.lo·H.hi
|
|
vpmsumd $Xh,$IN,$Hh # H.hi·H.hi
|
|
|
|
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
|
|
|
|
vsldoi $t0,$Xm,$zero,8
|
|
vsldoi $t1,$zero,$Xm,8
|
|
vxor $Xl,$Xl,$t0
|
|
vxor $Xh,$Xh,$t1
|
|
|
|
vsldoi $Xl,$Xl,$Xl,8
|
|
vxor $Xl,$Xl,$t2
|
|
|
|
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
|
|
vpmsumd $Xl,$Xl,$xC2
|
|
vxor $t1,$t1,$Xh
|
|
vxor $IN1,$Xl,$t1
|
|
|
|
vsldoi $H2,$IN1,$IN1,8
|
|
vsldoi $H2l,$zero,$H2,8
|
|
vsldoi $H2h,$H2,$zero,8
|
|
|
|
stvx_u $H2l,r8,r3 # save H^2
|
|
li r8,0x70
|
|
stvx_u $H2,r9,r3
|
|
li r9,0x80
|
|
stvx_u $H2h,r10,r3
|
|
li r10,0x90
|
|
___
|
|
{
|
|
my ($t4,$t5,$t6) = ($Hl,$H,$Hh);
|
|
$code.=<<___;
|
|
vpmsumd $Xl,$IN,$H2l # H.lo·H^2.lo
|
|
vpmsumd $Xl1,$IN1,$H2l # H^2.lo·H^2.lo
|
|
vpmsumd $Xm,$IN,$H2 # H.hi·H^2.lo+H.lo·H^2.hi
|
|
vpmsumd $Xm1,$IN1,$H2 # H^2.hi·H^2.lo+H^2.lo·H^2.hi
|
|
vpmsumd $Xh,$IN,$H2h # H.hi·H^2.hi
|
|
vpmsumd $Xh1,$IN1,$H2h # H^2.hi·H^2.hi
|
|
|
|
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
|
|
vpmsumd $t6,$Xl1,$xC2 # 1st reduction phase
|
|
|
|
vsldoi $t0,$Xm,$zero,8
|
|
vsldoi $t1,$zero,$Xm,8
|
|
vsldoi $t4,$Xm1,$zero,8
|
|
vsldoi $t5,$zero,$Xm1,8
|
|
vxor $Xl,$Xl,$t0
|
|
vxor $Xh,$Xh,$t1
|
|
vxor $Xl1,$Xl1,$t4
|
|
vxor $Xh1,$Xh1,$t5
|
|
|
|
vsldoi $Xl,$Xl,$Xl,8
|
|
vsldoi $Xl1,$Xl1,$Xl1,8
|
|
vxor $Xl,$Xl,$t2
|
|
vxor $Xl1,$Xl1,$t6
|
|
|
|
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
|
|
vsldoi $t5,$Xl1,$Xl1,8 # 2nd reduction phase
|
|
vpmsumd $Xl,$Xl,$xC2
|
|
vpmsumd $Xl1,$Xl1,$xC2
|
|
vxor $t1,$t1,$Xh
|
|
vxor $t5,$t5,$Xh1
|
|
vxor $Xl,$Xl,$t1
|
|
vxor $Xl1,$Xl1,$t5
|
|
|
|
vsldoi $H,$Xl,$Xl,8
|
|
vsldoi $H2,$Xl1,$Xl1,8
|
|
vsldoi $Hl,$zero,$H,8
|
|
vsldoi $Hh,$H,$zero,8
|
|
vsldoi $H2l,$zero,$H2,8
|
|
vsldoi $H2h,$H2,$zero,8
|
|
|
|
stvx_u $Hl,r8,r3 # save H^3
|
|
li r8,0xa0
|
|
stvx_u $H,r9,r3
|
|
li r9,0xb0
|
|
stvx_u $Hh,r10,r3
|
|
li r10,0xc0
|
|
stvx_u $H2l,r8,r3 # save H^4
|
|
stvx_u $H2,r9,r3
|
|
stvx_u $H2h,r10,r3
|
|
|
|
mtspr 256,$vrsave
|
|
blr
|
|
.long 0
|
|
.byte 0,12,0x14,0,0,0,2,0
|
|
.long 0
|
|
.size .gcm_init_p8,.-.gcm_init_p8
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
.globl .gcm_gmult_p8
|
|
.align 5
|
|
.gcm_gmult_p8:
|
|
lis r0,0xfff8
|
|
li r8,0x10
|
|
mfspr $vrsave,256
|
|
li r9,0x20
|
|
mtspr 256,r0
|
|
li r10,0x30
|
|
lvx_u $IN,0,$Xip # load Xi
|
|
|
|
lvx_u $Hl,r8,$Htbl # load pre-computed table
|
|
le?lvsl $lemask,r0,r0
|
|
lvx_u $H, r9,$Htbl
|
|
le?vspltisb $t0,0x07
|
|
lvx_u $Hh,r10,$Htbl
|
|
le?vxor $lemask,$lemask,$t0
|
|
lvx_u $xC2,0,$Htbl
|
|
le?vperm $IN,$IN,$IN,$lemask
|
|
vxor $zero,$zero,$zero
|
|
|
|
vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo
|
|
vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi
|
|
vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi
|
|
|
|
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
|
|
|
|
vsldoi $t0,$Xm,$zero,8
|
|
vsldoi $t1,$zero,$Xm,8
|
|
vxor $Xl,$Xl,$t0
|
|
vxor $Xh,$Xh,$t1
|
|
|
|
vsldoi $Xl,$Xl,$Xl,8
|
|
vxor $Xl,$Xl,$t2
|
|
|
|
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
|
|
vpmsumd $Xl,$Xl,$xC2
|
|
vxor $t1,$t1,$Xh
|
|
vxor $Xl,$Xl,$t1
|
|
|
|
le?vperm $Xl,$Xl,$Xl,$lemask
|
|
stvx_u $Xl,0,$Xip # write out Xi
|
|
|
|
mtspr 256,$vrsave
|
|
blr
|
|
.long 0
|
|
.byte 0,12,0x14,0,0,0,2,0
|
|
.long 0
|
|
.size .gcm_gmult_p8,.-.gcm_gmult_p8
|
|
|
|
.globl .gcm_ghash_p8
|
|
.align 5
|
|
.gcm_ghash_p8:
|
|
li r0,-4096
|
|
li r8,0x10
|
|
mfspr $vrsave,256
|
|
li r9,0x20
|
|
mtspr 256,r0
|
|
li r10,0x30
|
|
lvx_u $Xl,0,$Xip # load Xi
|
|
|
|
lvx_u $Hl,r8,$Htbl # load pre-computed table
|
|
li r8,0x40
|
|
le?lvsl $lemask,r0,r0
|
|
lvx_u $H, r9,$Htbl
|
|
li r9,0x50
|
|
le?vspltisb $t0,0x07
|
|
lvx_u $Hh,r10,$Htbl
|
|
li r10,0x60
|
|
le?vxor $lemask,$lemask,$t0
|
|
lvx_u $xC2,0,$Htbl
|
|
le?vperm $Xl,$Xl,$Xl,$lemask
|
|
vxor $zero,$zero,$zero
|
|
|
|
${UCMP}i $len,64
|
|
bge Lgcm_ghash_p8_4x
|
|
|
|
lvx_u $IN,0,$inp
|
|
addi $inp,$inp,16
|
|
subic. $len,$len,16
|
|
le?vperm $IN,$IN,$IN,$lemask
|
|
vxor $IN,$IN,$Xl
|
|
beq Lshort
|
|
|
|
lvx_u $H2l,r8,$Htbl # load H^2
|
|
li r8,16
|
|
lvx_u $H2, r9,$Htbl
|
|
add r9,$inp,$len # end of input
|
|
lvx_u $H2h,r10,$Htbl
|
|
be?b Loop_2x
|
|
|
|
.align 5
|
|
Loop_2x:
|
|
lvx_u $IN1,0,$inp
|
|
le?vperm $IN1,$IN1,$IN1,$lemask
|
|
|
|
subic $len,$len,32
|
|
vpmsumd $Xl,$IN,$H2l # H^2.lo·Xi.lo
|
|
vpmsumd $Xl1,$IN1,$Hl # H.lo·Xi+1.lo
|
|
subfe r0,r0,r0 # borrow?-1:0
|
|
vpmsumd $Xm,$IN,$H2 # H^2.hi·Xi.lo+H^2.lo·Xi.hi
|
|
vpmsumd $Xm1,$IN1,$H # H.hi·Xi+1.lo+H.lo·Xi+1.hi
|
|
and r0,r0,$len
|
|
vpmsumd $Xh,$IN,$H2h # H^2.hi·Xi.hi
|
|
vpmsumd $Xh1,$IN1,$Hh # H.hi·Xi+1.hi
|
|
add $inp,$inp,r0
|
|
|
|
vxor $Xl,$Xl,$Xl1
|
|
vxor $Xm,$Xm,$Xm1
|
|
|
|
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
|
|
|
|
vsldoi $t0,$Xm,$zero,8
|
|
vsldoi $t1,$zero,$Xm,8
|
|
vxor $Xh,$Xh,$Xh1
|
|
vxor $Xl,$Xl,$t0
|
|
vxor $Xh,$Xh,$t1
|
|
|
|
vsldoi $Xl,$Xl,$Xl,8
|
|
vxor $Xl,$Xl,$t2
|
|
lvx_u $IN,r8,$inp
|
|
addi $inp,$inp,32
|
|
|
|
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
|
|
vpmsumd $Xl,$Xl,$xC2
|
|
le?vperm $IN,$IN,$IN,$lemask
|
|
vxor $t1,$t1,$Xh
|
|
vxor $IN,$IN,$t1
|
|
vxor $IN,$IN,$Xl
|
|
$UCMP r9,$inp
|
|
bgt Loop_2x # done yet?
|
|
|
|
cmplwi $len,0
|
|
bne Leven
|
|
|
|
Lshort:
|
|
vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo
|
|
vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi
|
|
vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi
|
|
|
|
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
|
|
|
|
vsldoi $t0,$Xm,$zero,8
|
|
vsldoi $t1,$zero,$Xm,8
|
|
vxor $Xl,$Xl,$t0
|
|
vxor $Xh,$Xh,$t1
|
|
|
|
vsldoi $Xl,$Xl,$Xl,8
|
|
vxor $Xl,$Xl,$t2
|
|
|
|
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
|
|
vpmsumd $Xl,$Xl,$xC2
|
|
vxor $t1,$t1,$Xh
|
|
|
|
Leven:
|
|
vxor $Xl,$Xl,$t1
|
|
le?vperm $Xl,$Xl,$Xl,$lemask
|
|
stvx_u $Xl,0,$Xip # write out Xi
|
|
|
|
mtspr 256,$vrsave
|
|
blr
|
|
.long 0
|
|
.byte 0,12,0x14,0,0,0,4,0
|
|
.long 0
|
|
___
|
|
{
|
|
my ($Xl3,$Xm2,$IN2,$H3l,$H3,$H3h,
|
|
$Xh3,$Xm3,$IN3,$H4l,$H4,$H4h) = map("v$_",(20..31));
|
|
my $IN0=$IN;
|
|
my ($H21l,$H21h,$loperm,$hiperm) = ($Hl,$Hh,$H2l,$H2h);
|
|
|
|
$code.=<<___;
|
|
.align 5
|
|
.gcm_ghash_p8_4x:
|
|
Lgcm_ghash_p8_4x:
|
|
$STU $sp,-$FRAME($sp)
|
|
li r10,`15+6*$SIZE_T`
|
|
li r11,`31+6*$SIZE_T`
|
|
stvx v20,r10,$sp
|
|
addi r10,r10,32
|
|
stvx v21,r11,$sp
|
|
addi r11,r11,32
|
|
stvx v22,r10,$sp
|
|
addi r10,r10,32
|
|
stvx v23,r11,$sp
|
|
addi r11,r11,32
|
|
stvx v24,r10,$sp
|
|
addi r10,r10,32
|
|
stvx v25,r11,$sp
|
|
addi r11,r11,32
|
|
stvx v26,r10,$sp
|
|
addi r10,r10,32
|
|
stvx v27,r11,$sp
|
|
addi r11,r11,32
|
|
stvx v28,r10,$sp
|
|
addi r10,r10,32
|
|
stvx v29,r11,$sp
|
|
addi r11,r11,32
|
|
stvx v30,r10,$sp
|
|
li r10,0x60
|
|
stvx v31,r11,$sp
|
|
li r0,-1
|
|
stw $vrsave,`$FRAME-4`($sp) # save vrsave
|
|
mtspr 256,r0 # preserve all AltiVec registers
|
|
|
|
lvsl $t0,0,r8 # 0x0001..0e0f
|
|
#lvx_u $H2l,r8,$Htbl # load H^2
|
|
li r8,0x70
|
|
lvx_u $H2, r9,$Htbl
|
|
li r9,0x80
|
|
vspltisb $t1,8 # 0x0808..0808
|
|
#lvx_u $H2h,r10,$Htbl
|
|
li r10,0x90
|
|
lvx_u $H3l,r8,$Htbl # load H^3
|
|
li r8,0xa0
|
|
lvx_u $H3, r9,$Htbl
|
|
li r9,0xb0
|
|
lvx_u $H3h,r10,$Htbl
|
|
li r10,0xc0
|
|
lvx_u $H4l,r8,$Htbl # load H^4
|
|
li r8,0x10
|
|
lvx_u $H4, r9,$Htbl
|
|
li r9,0x20
|
|
lvx_u $H4h,r10,$Htbl
|
|
li r10,0x30
|
|
|
|
vsldoi $t2,$zero,$t1,8 # 0x0000..0808
|
|
vaddubm $hiperm,$t0,$t2 # 0x0001..1617
|
|
vaddubm $loperm,$t1,$hiperm # 0x0809..1e1f
|
|
|
|
$SHRI $len,$len,4 # this allows to use sign bit
|
|
# as carry
|
|
lvx_u $IN0,0,$inp # load input
|
|
lvx_u $IN1,r8,$inp
|
|
subic. $len,$len,8
|
|
lvx_u $IN2,r9,$inp
|
|
lvx_u $IN3,r10,$inp
|
|
addi $inp,$inp,0x40
|
|
le?vperm $IN0,$IN0,$IN0,$lemask
|
|
le?vperm $IN1,$IN1,$IN1,$lemask
|
|
le?vperm $IN2,$IN2,$IN2,$lemask
|
|
le?vperm $IN3,$IN3,$IN3,$lemask
|
|
|
|
vxor $Xh,$IN0,$Xl
|
|
|
|
vpmsumd $Xl1,$IN1,$H3l
|
|
vpmsumd $Xm1,$IN1,$H3
|
|
vpmsumd $Xh1,$IN1,$H3h
|
|
|
|
vperm $H21l,$H2,$H,$hiperm
|
|
vperm $t0,$IN2,$IN3,$loperm
|
|
vperm $H21h,$H2,$H,$loperm
|
|
vperm $t1,$IN2,$IN3,$hiperm
|
|
vpmsumd $Xm2,$IN2,$H2 # H^2.lo·Xi+2.hi+H^2.hi·Xi+2.lo
|
|
vpmsumd $Xl3,$t0,$H21l # H^2.lo·Xi+2.lo+H.lo·Xi+3.lo
|
|
vpmsumd $Xm3,$IN3,$H # H.hi·Xi+3.lo +H.lo·Xi+3.hi
|
|
vpmsumd $Xh3,$t1,$H21h # H^2.hi·Xi+2.hi+H.hi·Xi+3.hi
|
|
|
|
vxor $Xm2,$Xm2,$Xm1
|
|
vxor $Xl3,$Xl3,$Xl1
|
|
vxor $Xm3,$Xm3,$Xm2
|
|
vxor $Xh3,$Xh3,$Xh1
|
|
|
|
blt Ltail_4x
|
|
|
|
Loop_4x:
|
|
lvx_u $IN0,0,$inp
|
|
lvx_u $IN1,r8,$inp
|
|
subic. $len,$len,4
|
|
lvx_u $IN2,r9,$inp
|
|
lvx_u $IN3,r10,$inp
|
|
addi $inp,$inp,0x40
|
|
le?vperm $IN1,$IN1,$IN1,$lemask
|
|
le?vperm $IN2,$IN2,$IN2,$lemask
|
|
le?vperm $IN3,$IN3,$IN3,$lemask
|
|
le?vperm $IN0,$IN0,$IN0,$lemask
|
|
|
|
vpmsumd $Xl,$Xh,$H4l # H^4.lo·Xi.lo
|
|
vpmsumd $Xm,$Xh,$H4 # H^4.hi·Xi.lo+H^4.lo·Xi.hi
|
|
vpmsumd $Xh,$Xh,$H4h # H^4.hi·Xi.hi
|
|
vpmsumd $Xl1,$IN1,$H3l
|
|
vpmsumd $Xm1,$IN1,$H3
|
|
vpmsumd $Xh1,$IN1,$H3h
|
|
|
|
vxor $Xl,$Xl,$Xl3
|
|
vxor $Xm,$Xm,$Xm3
|
|
vxor $Xh,$Xh,$Xh3
|
|
vperm $t0,$IN2,$IN3,$loperm
|
|
vperm $t1,$IN2,$IN3,$hiperm
|
|
|
|
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
|
|
vpmsumd $Xl3,$t0,$H21l # H.lo·Xi+3.lo +H^2.lo·Xi+2.lo
|
|
vpmsumd $Xh3,$t1,$H21h # H.hi·Xi+3.hi +H^2.hi·Xi+2.hi
|
|
|
|
vsldoi $t0,$Xm,$zero,8
|
|
vsldoi $t1,$zero,$Xm,8
|
|
vxor $Xl,$Xl,$t0
|
|
vxor $Xh,$Xh,$t1
|
|
|
|
vsldoi $Xl,$Xl,$Xl,8
|
|
vxor $Xl,$Xl,$t2
|
|
|
|
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
|
|
vpmsumd $Xm2,$IN2,$H2 # H^2.hi·Xi+2.lo+H^2.lo·Xi+2.hi
|
|
vpmsumd $Xm3,$IN3,$H # H.hi·Xi+3.lo +H.lo·Xi+3.hi
|
|
vpmsumd $Xl,$Xl,$xC2
|
|
|
|
vxor $Xl3,$Xl3,$Xl1
|
|
vxor $Xh3,$Xh3,$Xh1
|
|
vxor $Xh,$Xh,$IN0
|
|
vxor $Xm2,$Xm2,$Xm1
|
|
vxor $Xh,$Xh,$t1
|
|
vxor $Xm3,$Xm3,$Xm2
|
|
vxor $Xh,$Xh,$Xl
|
|
bge Loop_4x
|
|
|
|
Ltail_4x:
|
|
vpmsumd $Xl,$Xh,$H4l # H^4.lo·Xi.lo
|
|
vpmsumd $Xm,$Xh,$H4 # H^4.hi·Xi.lo+H^4.lo·Xi.hi
|
|
vpmsumd $Xh,$Xh,$H4h # H^4.hi·Xi.hi
|
|
|
|
vxor $Xl,$Xl,$Xl3
|
|
vxor $Xm,$Xm,$Xm3
|
|
|
|
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
|
|
|
|
vsldoi $t0,$Xm,$zero,8
|
|
vsldoi $t1,$zero,$Xm,8
|
|
vxor $Xh,$Xh,$Xh3
|
|
vxor $Xl,$Xl,$t0
|
|
vxor $Xh,$Xh,$t1
|
|
|
|
vsldoi $Xl,$Xl,$Xl,8
|
|
vxor $Xl,$Xl,$t2
|
|
|
|
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
|
|
vpmsumd $Xl,$Xl,$xC2
|
|
vxor $t1,$t1,$Xh
|
|
vxor $Xl,$Xl,$t1
|
|
|
|
addic. $len,$len,4
|
|
beq Ldone_4x
|
|
|
|
lvx_u $IN0,0,$inp
|
|
${UCMP}i $len,2
|
|
li $len,-4
|
|
blt Lone
|
|
lvx_u $IN1,r8,$inp
|
|
beq Ltwo
|
|
|
|
Lthree:
|
|
lvx_u $IN2,r9,$inp
|
|
le?vperm $IN0,$IN0,$IN0,$lemask
|
|
le?vperm $IN1,$IN1,$IN1,$lemask
|
|
le?vperm $IN2,$IN2,$IN2,$lemask
|
|
|
|
vxor $Xh,$IN0,$Xl
|
|
vmr $H4l,$H3l
|
|
vmr $H4, $H3
|
|
vmr $H4h,$H3h
|
|
|
|
vperm $t0,$IN1,$IN2,$loperm
|
|
vperm $t1,$IN1,$IN2,$hiperm
|
|
vpmsumd $Xm2,$IN1,$H2 # H^2.lo·Xi+1.hi+H^2.hi·Xi+1.lo
|
|
vpmsumd $Xm3,$IN2,$H # H.hi·Xi+2.lo +H.lo·Xi+2.hi
|
|
vpmsumd $Xl3,$t0,$H21l # H^2.lo·Xi+1.lo+H.lo·Xi+2.lo
|
|
vpmsumd $Xh3,$t1,$H21h # H^2.hi·Xi+1.hi+H.hi·Xi+2.hi
|
|
|
|
vxor $Xm3,$Xm3,$Xm2
|
|
b Ltail_4x
|
|
|
|
.align 4
|
|
Ltwo:
|
|
le?vperm $IN0,$IN0,$IN0,$lemask
|
|
le?vperm $IN1,$IN1,$IN1,$lemask
|
|
|
|
vxor $Xh,$IN0,$Xl
|
|
vperm $t0,$zero,$IN1,$loperm
|
|
vperm $t1,$zero,$IN1,$hiperm
|
|
|
|
vsldoi $H4l,$zero,$H2,8
|
|
vmr $H4, $H2
|
|
vsldoi $H4h,$H2,$zero,8
|
|
|
|
vpmsumd $Xl3,$t0, $H21l # H.lo·Xi+1.lo
|
|
vpmsumd $Xm3,$IN1,$H # H.hi·Xi+1.lo+H.lo·Xi+2.hi
|
|
vpmsumd $Xh3,$t1, $H21h # H.hi·Xi+1.hi
|
|
|
|
b Ltail_4x
|
|
|
|
.align 4
|
|
Lone:
|
|
le?vperm $IN0,$IN0,$IN0,$lemask
|
|
|
|
vsldoi $H4l,$zero,$H,8
|
|
vmr $H4, $H
|
|
vsldoi $H4h,$H,$zero,8
|
|
|
|
vxor $Xh,$IN0,$Xl
|
|
vxor $Xl3,$Xl3,$Xl3
|
|
vxor $Xm3,$Xm3,$Xm3
|
|
vxor $Xh3,$Xh3,$Xh3
|
|
|
|
b Ltail_4x
|
|
|
|
Ldone_4x:
|
|
le?vperm $Xl,$Xl,$Xl,$lemask
|
|
stvx_u $Xl,0,$Xip # write out Xi
|
|
|
|
li r10,`15+6*$SIZE_T`
|
|
li r11,`31+6*$SIZE_T`
|
|
mtspr 256,$vrsave
|
|
lvx v20,r10,$sp
|
|
addi r10,r10,32
|
|
lvx v21,r11,$sp
|
|
addi r11,r11,32
|
|
lvx v22,r10,$sp
|
|
addi r10,r10,32
|
|
lvx v23,r11,$sp
|
|
addi r11,r11,32
|
|
lvx v24,r10,$sp
|
|
addi r10,r10,32
|
|
lvx v25,r11,$sp
|
|
addi r11,r11,32
|
|
lvx v26,r10,$sp
|
|
addi r10,r10,32
|
|
lvx v27,r11,$sp
|
|
addi r11,r11,32
|
|
lvx v28,r10,$sp
|
|
addi r10,r10,32
|
|
lvx v29,r11,$sp
|
|
addi r11,r11,32
|
|
lvx v30,r10,$sp
|
|
lvx v31,r11,$sp
|
|
addi $sp,$sp,$FRAME
|
|
blr
|
|
.long 0
|
|
.byte 0,12,0x04,0,0x80,0,4,0
|
|
.long 0
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
.size .gcm_ghash_p8,.-.gcm_ghash_p8
|
|
|
|
.asciz "GHASH for PowerISA 2.07, CRYPTOGAMS by <appro\@openssl.org>"
|
|
.align 2
|
|
___
|
|
|
|
foreach (split("\n",$code)) {
|
|
s/\`([^\`]*)\`/eval $1/geo;
|
|
|
|
if ($flavour =~ /le$/o) { # little-endian
|
|
s/le\?//o or
|
|
s/be\?/#be#/o;
|
|
} else {
|
|
s/le\?/#le#/o or
|
|
s/be\?//o;
|
|
}
|
|
print $_,"\n";
|
|
}
|
|
|
|
close STDOUT; # enforce flush
|