openssl/providers/implementations/rands/drbg_ctr.c
Pauli 00f5f3cd00 drbg: allow the ctr derivation function to be disabled in FIPS mode
Word from the lab is:

    The use of the derivation function is optional if either an approved
    RBG or an entropy source provides full entropy output when entropy
    input is requested by the DRBG mechanism. Otherwise, the derivation
    function shall be used.

So our disallowing it's use was more than required.

Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/16096)
2021-07-20 18:34:07 +10:00

757 lines
23 KiB
C

/*
* Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdlib.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/aes.h>
#include <openssl/proverr.h>
#include "e_os.h" /* strcasecmp */
#include "crypto/modes.h"
#include "internal/thread_once.h"
#include "prov/implementations.h"
#include "prov/providercommon.h"
#include "prov/provider_ctx.h"
#include "drbg_local.h"
static OSSL_FUNC_rand_newctx_fn drbg_ctr_new_wrapper;
static OSSL_FUNC_rand_freectx_fn drbg_ctr_free;
static OSSL_FUNC_rand_instantiate_fn drbg_ctr_instantiate_wrapper;
static OSSL_FUNC_rand_uninstantiate_fn drbg_ctr_uninstantiate_wrapper;
static OSSL_FUNC_rand_generate_fn drbg_ctr_generate_wrapper;
static OSSL_FUNC_rand_reseed_fn drbg_ctr_reseed_wrapper;
static OSSL_FUNC_rand_settable_ctx_params_fn drbg_ctr_settable_ctx_params;
static OSSL_FUNC_rand_set_ctx_params_fn drbg_ctr_set_ctx_params;
static OSSL_FUNC_rand_gettable_ctx_params_fn drbg_ctr_gettable_ctx_params;
static OSSL_FUNC_rand_get_ctx_params_fn drbg_ctr_get_ctx_params;
static OSSL_FUNC_rand_verify_zeroization_fn drbg_ctr_verify_zeroization;
/*
* The state of a DRBG AES-CTR.
*/
typedef struct rand_drbg_ctr_st {
EVP_CIPHER_CTX *ctx_ecb;
EVP_CIPHER_CTX *ctx_ctr;
EVP_CIPHER_CTX *ctx_df;
EVP_CIPHER *cipher_ecb;
EVP_CIPHER *cipher_ctr;
size_t keylen;
int use_df;
unsigned char K[32];
unsigned char V[16];
/* Temporary block storage used by ctr_df */
unsigned char bltmp[16];
size_t bltmp_pos;
unsigned char KX[48];
} PROV_DRBG_CTR;
/*
* Implementation of NIST SP 800-90A CTR DRBG.
*/
static void inc_128(PROV_DRBG_CTR *ctr)
{
unsigned char *p = &ctr->V[0];
u32 n = 16, c = 1;
do {
--n;
c += p[n];
p[n] = (u8)c;
c >>= 8;
} while (n);
}
static void ctr_XOR(PROV_DRBG_CTR *ctr, const unsigned char *in, size_t inlen)
{
size_t i, n;
if (in == NULL || inlen == 0)
return;
/*
* Any zero padding will have no effect on the result as we
* are XORing. So just process however much input we have.
*/
n = inlen < ctr->keylen ? inlen : ctr->keylen;
for (i = 0; i < n; i++)
ctr->K[i] ^= in[i];
if (inlen <= ctr->keylen)
return;
n = inlen - ctr->keylen;
if (n > 16) {
/* Should never happen */
n = 16;
}
for (i = 0; i < n; i++)
ctr->V[i] ^= in[i + ctr->keylen];
}
/*
* Process a complete block using BCC algorithm of SP 800-90A 10.3.3
*/
__owur static int ctr_BCC_block(PROV_DRBG_CTR *ctr, unsigned char *out,
const unsigned char *in, int len)
{
int i, outlen = AES_BLOCK_SIZE;
for (i = 0; i < len; i++)
out[i] ^= in[i];
if (!EVP_CipherUpdate(ctr->ctx_df, out, &outlen, out, len)
|| outlen != len)
return 0;
return 1;
}
/*
* Handle several BCC operations for as much data as we need for K and X
*/
__owur static int ctr_BCC_blocks(PROV_DRBG_CTR *ctr, const unsigned char *in)
{
unsigned char in_tmp[48];
unsigned char num_of_blk = 2;
memcpy(in_tmp, in, 16);
memcpy(in_tmp + 16, in, 16);
if (ctr->keylen != 16) {
memcpy(in_tmp + 32, in, 16);
num_of_blk = 3;
}
return ctr_BCC_block(ctr, ctr->KX, in_tmp, AES_BLOCK_SIZE * num_of_blk);
}
/*
* Initialise BCC blocks: these have the value 0,1,2 in leftmost positions:
* see 10.3.1 stage 7.
*/
__owur static int ctr_BCC_init(PROV_DRBG_CTR *ctr)
{
unsigned char bltmp[48] = {0};
unsigned char num_of_blk;
memset(ctr->KX, 0, 48);
num_of_blk = ctr->keylen == 16 ? 2 : 3;
bltmp[(AES_BLOCK_SIZE * 1) + 3] = 1;
bltmp[(AES_BLOCK_SIZE * 2) + 3] = 2;
return ctr_BCC_block(ctr, ctr->KX, bltmp, num_of_blk * AES_BLOCK_SIZE);
}
/*
* Process several blocks into BCC algorithm, some possibly partial
*/
__owur static int ctr_BCC_update(PROV_DRBG_CTR *ctr,
const unsigned char *in, size_t inlen)
{
if (in == NULL || inlen == 0)
return 1;
/* If we have partial block handle it first */
if (ctr->bltmp_pos) {
size_t left = 16 - ctr->bltmp_pos;
/* If we now have a complete block process it */
if (inlen >= left) {
memcpy(ctr->bltmp + ctr->bltmp_pos, in, left);
if (!ctr_BCC_blocks(ctr, ctr->bltmp))
return 0;
ctr->bltmp_pos = 0;
inlen -= left;
in += left;
}
}
/* Process zero or more complete blocks */
for (; inlen >= 16; in += 16, inlen -= 16) {
if (!ctr_BCC_blocks(ctr, in))
return 0;
}
/* Copy any remaining partial block to the temporary buffer */
if (inlen > 0) {
memcpy(ctr->bltmp + ctr->bltmp_pos, in, inlen);
ctr->bltmp_pos += inlen;
}
return 1;
}
__owur static int ctr_BCC_final(PROV_DRBG_CTR *ctr)
{
if (ctr->bltmp_pos) {
memset(ctr->bltmp + ctr->bltmp_pos, 0, 16 - ctr->bltmp_pos);
if (!ctr_BCC_blocks(ctr, ctr->bltmp))
return 0;
}
return 1;
}
__owur static int ctr_df(PROV_DRBG_CTR *ctr,
const unsigned char *in1, size_t in1len,
const unsigned char *in2, size_t in2len,
const unsigned char *in3, size_t in3len)
{
static unsigned char c80 = 0x80;
size_t inlen;
unsigned char *p = ctr->bltmp;
int outlen = AES_BLOCK_SIZE;
if (!ctr_BCC_init(ctr))
return 0;
if (in1 == NULL)
in1len = 0;
if (in2 == NULL)
in2len = 0;
if (in3 == NULL)
in3len = 0;
inlen = in1len + in2len + in3len;
/* Initialise L||N in temporary block */
*p++ = (inlen >> 24) & 0xff;
*p++ = (inlen >> 16) & 0xff;
*p++ = (inlen >> 8) & 0xff;
*p++ = inlen & 0xff;
/* NB keylen is at most 32 bytes */
*p++ = 0;
*p++ = 0;
*p++ = 0;
*p = (unsigned char)((ctr->keylen + 16) & 0xff);
ctr->bltmp_pos = 8;
if (!ctr_BCC_update(ctr, in1, in1len)
|| !ctr_BCC_update(ctr, in2, in2len)
|| !ctr_BCC_update(ctr, in3, in3len)
|| !ctr_BCC_update(ctr, &c80, 1)
|| !ctr_BCC_final(ctr))
return 0;
/* Set up key K */
if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->KX, NULL, -1))
return 0;
/* X follows key K */
if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX, &outlen, ctr->KX + ctr->keylen,
AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 16, &outlen, ctr->KX,
AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
if (ctr->keylen != 16)
if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 32, &outlen,
ctr->KX + 16, AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
return 1;
}
/*
* NB the no-df Update in SP800-90A specifies a constant input length
* of seedlen, however other uses of this algorithm pad the input with
* zeroes if necessary and have up to two parameters XORed together,
* so we handle both cases in this function instead.
*/
__owur static int ctr_update(PROV_DRBG *drbg,
const unsigned char *in1, size_t in1len,
const unsigned char *in2, size_t in2len,
const unsigned char *nonce, size_t noncelen)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
int outlen = AES_BLOCK_SIZE;
unsigned char V_tmp[48], out[48];
unsigned char len;
/* correct key is already set up. */
memcpy(V_tmp, ctr->V, 16);
inc_128(ctr);
memcpy(V_tmp + 16, ctr->V, 16);
if (ctr->keylen == 16) {
len = 32;
} else {
inc_128(ctr);
memcpy(V_tmp + 32, ctr->V, 16);
len = 48;
}
if (!EVP_CipherUpdate(ctr->ctx_ecb, out, &outlen, V_tmp, len)
|| outlen != len)
return 0;
memcpy(ctr->K, out, ctr->keylen);
memcpy(ctr->V, out + ctr->keylen, 16);
if (ctr->use_df) {
/* If no input reuse existing derived value */
if (in1 != NULL || nonce != NULL || in2 != NULL)
if (!ctr_df(ctr, in1, in1len, nonce, noncelen, in2, in2len))
return 0;
/* If this a reuse input in1len != 0 */
if (in1len)
ctr_XOR(ctr, ctr->KX, drbg->seedlen);
} else {
ctr_XOR(ctr, in1, in1len);
ctr_XOR(ctr, in2, in2len);
}
if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1)
|| !EVP_CipherInit_ex(ctr->ctx_ctr, NULL, NULL, ctr->K, NULL, -1))
return 0;
return 1;
}
static int drbg_ctr_instantiate(PROV_DRBG *drbg,
const unsigned char *entropy, size_t entropylen,
const unsigned char *nonce, size_t noncelen,
const unsigned char *pers, size_t perslen)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
if (entropy == NULL)
return 0;
memset(ctr->K, 0, sizeof(ctr->K));
memset(ctr->V, 0, sizeof(ctr->V));
if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1))
return 0;
inc_128(ctr);
if (!ctr_update(drbg, entropy, entropylen, pers, perslen, nonce, noncelen))
return 0;
return 1;
}
static int drbg_ctr_instantiate_wrapper(void *vdrbg, unsigned int strength,
int prediction_resistance,
const unsigned char *pstr,
size_t pstr_len,
const OSSL_PARAM params[])
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
if (!ossl_prov_is_running() || !drbg_ctr_set_ctx_params(drbg, params))
return 0;
return ossl_prov_drbg_instantiate(drbg, strength, prediction_resistance,
pstr, pstr_len);
}
static int drbg_ctr_reseed(PROV_DRBG *drbg,
const unsigned char *entropy, size_t entropylen,
const unsigned char *adin, size_t adinlen)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
if (entropy == NULL)
return 0;
inc_128(ctr);
if (!ctr_update(drbg, entropy, entropylen, adin, adinlen, NULL, 0))
return 0;
return 1;
}
static int drbg_ctr_reseed_wrapper(void *vdrbg, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *adin, size_t adin_len)
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
return ossl_prov_drbg_reseed(drbg, prediction_resistance, ent, ent_len,
adin, adin_len);
}
static void ctr96_inc(unsigned char *counter)
{
u32 n = 12, c = 1;
do {
--n;
c += counter[n];
counter[n] = (u8)c;
c >>= 8;
} while (n);
}
static int drbg_ctr_generate(PROV_DRBG *drbg,
unsigned char *out, size_t outlen,
const unsigned char *adin, size_t adinlen)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
unsigned int ctr32, blocks;
int outl, buflen;
if (adin != NULL && adinlen != 0) {
inc_128(ctr);
if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
return 0;
/* This means we reuse derived value */
if (ctr->use_df) {
adin = NULL;
adinlen = 1;
}
} else {
adinlen = 0;
}
inc_128(ctr);
if (outlen == 0) {
inc_128(ctr);
if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
return 0;
return 1;
}
memset(out, 0, outlen);
do {
if (!EVP_CipherInit_ex(ctr->ctx_ctr,
NULL, NULL, NULL, ctr->V, -1))
return 0;
/*-
* outlen has type size_t while EVP_CipherUpdate takes an
* int argument and thus cannot be guaranteed to process more
* than 2^31-1 bytes at a time. We process such huge generate
* requests in 2^30 byte chunks, which is the greatest multiple
* of AES block size lower than or equal to 2^31-1.
*/
buflen = outlen > (1U << 30) ? (1U << 30) : outlen;
blocks = (buflen + 15) / 16;
ctr32 = GETU32(ctr->V + 12) + blocks;
if (ctr32 < blocks) {
/* 32-bit counter overflow into V. */
if (ctr32 != 0) {
blocks -= ctr32;
buflen = blocks * 16;
ctr32 = 0;
}
ctr96_inc(ctr->V);
}
PUTU32(ctr->V + 12, ctr32);
if (!EVP_CipherUpdate(ctr->ctx_ctr, out, &outl, out, buflen)
|| outl != buflen)
return 0;
out += buflen;
outlen -= buflen;
} while (outlen);
if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
return 0;
return 1;
}
static int drbg_ctr_generate_wrapper
(void *vdrbg, unsigned char *out, size_t outlen,
unsigned int strength, int prediction_resistance,
const unsigned char *adin, size_t adin_len)
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
return ossl_prov_drbg_generate(drbg, out, outlen, strength,
prediction_resistance, adin, adin_len);
}
static int drbg_ctr_uninstantiate(PROV_DRBG *drbg)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
OPENSSL_cleanse(ctr->K, sizeof(ctr->K));
OPENSSL_cleanse(ctr->V, sizeof(ctr->V));
OPENSSL_cleanse(ctr->bltmp, sizeof(ctr->bltmp));
OPENSSL_cleanse(ctr->KX, sizeof(ctr->KX));
ctr->bltmp_pos = 0;
return ossl_prov_drbg_uninstantiate(drbg);
}
static int drbg_ctr_uninstantiate_wrapper(void *vdrbg)
{
return drbg_ctr_uninstantiate((PROV_DRBG *)vdrbg);
}
static int drbg_ctr_verify_zeroization(void *vdrbg)
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
PROV_DRBG_VERYIFY_ZEROIZATION(ctr->K);
PROV_DRBG_VERYIFY_ZEROIZATION(ctr->V);
PROV_DRBG_VERYIFY_ZEROIZATION(ctr->bltmp);
PROV_DRBG_VERYIFY_ZEROIZATION(ctr->KX);
if (ctr->bltmp_pos != 0)
return 0;
return 1;
}
static int drbg_ctr_init_lengths(PROV_DRBG *drbg)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
int res = 1;
/* Maximum number of bits per request = 2^19 = 2^16 bytes */
drbg->max_request = 1 << 16;
if (ctr->use_df) {
drbg->min_entropylen = 0;
drbg->max_entropylen = DRBG_MAX_LENGTH;
drbg->min_noncelen = 0;
drbg->max_noncelen = DRBG_MAX_LENGTH;
drbg->max_perslen = DRBG_MAX_LENGTH;
drbg->max_adinlen = DRBG_MAX_LENGTH;
if (ctr->keylen > 0) {
drbg->min_entropylen = ctr->keylen;
drbg->min_noncelen = drbg->min_entropylen / 2;
}
} else {
const size_t len = ctr->keylen > 0 ? drbg->seedlen : DRBG_MAX_LENGTH;
drbg->min_entropylen = len;
drbg->max_entropylen = len;
/* Nonce not used */
drbg->min_noncelen = 0;
drbg->max_noncelen = 0;
drbg->max_perslen = len;
drbg->max_adinlen = len;
}
return res;
}
static int drbg_ctr_init(PROV_DRBG *drbg)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
size_t keylen;
if (ctr->cipher_ctr == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CIPHER);
return 0;
}
ctr->keylen = keylen = EVP_CIPHER_get_key_length(ctr->cipher_ctr);
if (ctr->ctx_ecb == NULL)
ctr->ctx_ecb = EVP_CIPHER_CTX_new();
if (ctr->ctx_ctr == NULL)
ctr->ctx_ctr = EVP_CIPHER_CTX_new();
if (ctr->ctx_ecb == NULL || ctr->ctx_ctr == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EVP_CipherInit_ex(ctr->ctx_ecb,
ctr->cipher_ecb, NULL, NULL, NULL, 1)
|| !EVP_CipherInit_ex(ctr->ctx_ctr,
ctr->cipher_ctr, NULL, NULL, NULL, 1)) {
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_INITIALISE_CIPHERS);
goto err;
}
drbg->strength = keylen * 8;
drbg->seedlen = keylen + 16;
if (ctr->use_df) {
/* df initialisation */
static const unsigned char df_key[32] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
};
if (ctr->ctx_df == NULL)
ctr->ctx_df = EVP_CIPHER_CTX_new();
if (ctr->ctx_df == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Set key schedule for df_key */
if (!EVP_CipherInit_ex(ctr->ctx_df,
ctr->cipher_ecb, NULL, df_key, NULL, 1)) {
ERR_raise(ERR_LIB_PROV, PROV_R_DERIVATION_FUNCTION_INIT_FAILED);
goto err;
}
}
return drbg_ctr_init_lengths(drbg);
err:
EVP_CIPHER_CTX_free(ctr->ctx_ecb);
EVP_CIPHER_CTX_free(ctr->ctx_ctr);
ctr->ctx_ecb = ctr->ctx_ctr = NULL;
return 0;
}
static int drbg_ctr_new(PROV_DRBG *drbg)
{
PROV_DRBG_CTR *ctr;
ctr = OPENSSL_secure_zalloc(sizeof(*ctr));
if (ctr == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
ctr->use_df = 1;
drbg->data = ctr;
return drbg_ctr_init_lengths(drbg);
}
static void *drbg_ctr_new_wrapper(void *provctx, void *parent,
const OSSL_DISPATCH *parent_dispatch)
{
return ossl_rand_drbg_new(provctx, parent, parent_dispatch, &drbg_ctr_new,
&drbg_ctr_instantiate, &drbg_ctr_uninstantiate,
&drbg_ctr_reseed, &drbg_ctr_generate);
}
static void drbg_ctr_free(void *vdrbg)
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
PROV_DRBG_CTR *ctr;
if (drbg != NULL && (ctr = (PROV_DRBG_CTR *)drbg->data) != NULL) {
EVP_CIPHER_CTX_free(ctr->ctx_ecb);
EVP_CIPHER_CTX_free(ctr->ctx_ctr);
EVP_CIPHER_CTX_free(ctr->ctx_df);
EVP_CIPHER_free(ctr->cipher_ecb);
EVP_CIPHER_free(ctr->cipher_ctr);
OPENSSL_secure_clear_free(ctr, sizeof(*ctr));
}
ossl_rand_drbg_free(drbg);
}
static int drbg_ctr_get_ctx_params(void *vdrbg, OSSL_PARAM params[])
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_USE_DF);
if (p != NULL && !OSSL_PARAM_set_int(p, ctr->use_df))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_CIPHER);
if (p != NULL) {
if (ctr->cipher_ctr == NULL
|| !OSSL_PARAM_set_utf8_string(p,
EVP_CIPHER_get0_name(ctr->cipher_ctr)))
return 0;
}
return ossl_drbg_get_ctx_params(drbg, params);
}
static const OSSL_PARAM *drbg_ctr_gettable_ctx_params(ossl_unused void *vctx,
ossl_unused void *provctx)
{
static const OSSL_PARAM known_gettable_ctx_params[] = {
OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_CIPHER, NULL, 0),
OSSL_PARAM_int(OSSL_DRBG_PARAM_USE_DF, NULL),
OSSL_PARAM_DRBG_GETTABLE_CTX_COMMON,
OSSL_PARAM_END
};
return known_gettable_ctx_params;
}
static int drbg_ctr_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
PROV_DRBG *ctx = (PROV_DRBG *)vctx;
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)ctx->data;
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
const OSSL_PARAM *p;
char *ecb;
const char *propquery = NULL;
int i, cipher_init = 0;
if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_USE_DF)) != NULL
&& OSSL_PARAM_get_int(p, &i)) {
/* FIPS errors out in the drbg_ctr_init() call later */
ctr->use_df = i != 0;
cipher_init = 1;
}
if ((p = OSSL_PARAM_locate_const(params,
OSSL_DRBG_PARAM_PROPERTIES)) != NULL) {
if (p->data_type != OSSL_PARAM_UTF8_STRING)
return 0;
propquery = (const char *)p->data;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_CIPHER)) != NULL) {
const char *base = (const char *)p->data;
size_t ctr_str_len = sizeof("CTR") - 1;
size_t ecb_str_len = sizeof("ECB") - 1;
if (p->data_type != OSSL_PARAM_UTF8_STRING
|| p->data_size < ctr_str_len)
return 0;
if (strcasecmp("CTR", base + p->data_size - ctr_str_len) != 0) {
ERR_raise(ERR_LIB_PROV, PROV_R_REQUIRE_CTR_MODE_CIPHER);
return 0;
}
if ((ecb = OPENSSL_strndup(base, p->data_size)) == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
strcpy(ecb + p->data_size - ecb_str_len, "ECB");
EVP_CIPHER_free(ctr->cipher_ecb);
EVP_CIPHER_free(ctr->cipher_ctr);
ctr->cipher_ctr = EVP_CIPHER_fetch(libctx, base, propquery);
ctr->cipher_ecb = EVP_CIPHER_fetch(libctx, ecb, propquery);
OPENSSL_free(ecb);
if (ctr->cipher_ctr == NULL || ctr->cipher_ecb == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_FIND_CIPHERS);
return 0;
}
cipher_init = 1;
}
if (cipher_init && !drbg_ctr_init(ctx))
return 0;
return ossl_drbg_set_ctx_params(ctx, params);
}
static const OSSL_PARAM *drbg_ctr_settable_ctx_params(ossl_unused void *vctx,
ossl_unused void *provctx)
{
static const OSSL_PARAM known_settable_ctx_params[] = {
OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_PROPERTIES, NULL, 0),
OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_CIPHER, NULL, 0),
OSSL_PARAM_int(OSSL_DRBG_PARAM_USE_DF, NULL),
OSSL_PARAM_DRBG_SETTABLE_CTX_COMMON,
OSSL_PARAM_END
};
return known_settable_ctx_params;
}
const OSSL_DISPATCH ossl_drbg_ctr_functions[] = {
{ OSSL_FUNC_RAND_NEWCTX, (void(*)(void))drbg_ctr_new_wrapper },
{ OSSL_FUNC_RAND_FREECTX, (void(*)(void))drbg_ctr_free },
{ OSSL_FUNC_RAND_INSTANTIATE,
(void(*)(void))drbg_ctr_instantiate_wrapper },
{ OSSL_FUNC_RAND_UNINSTANTIATE,
(void(*)(void))drbg_ctr_uninstantiate_wrapper },
{ OSSL_FUNC_RAND_GENERATE, (void(*)(void))drbg_ctr_generate_wrapper },
{ OSSL_FUNC_RAND_RESEED, (void(*)(void))drbg_ctr_reseed_wrapper },
{ OSSL_FUNC_RAND_ENABLE_LOCKING, (void(*)(void))ossl_drbg_enable_locking },
{ OSSL_FUNC_RAND_LOCK, (void(*)(void))ossl_drbg_lock },
{ OSSL_FUNC_RAND_UNLOCK, (void(*)(void))ossl_drbg_unlock },
{ OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS,
(void(*)(void))drbg_ctr_settable_ctx_params },
{ OSSL_FUNC_RAND_SET_CTX_PARAMS, (void(*)(void))drbg_ctr_set_ctx_params },
{ OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS,
(void(*)(void))drbg_ctr_gettable_ctx_params },
{ OSSL_FUNC_RAND_GET_CTX_PARAMS, (void(*)(void))drbg_ctr_get_ctx_params },
{ OSSL_FUNC_RAND_VERIFY_ZEROIZATION,
(void(*)(void))drbg_ctr_verify_zeroization },
{ OSSL_FUNC_RAND_GET_SEED, (void(*)(void))ossl_drbg_get_seed },
{ OSSL_FUNC_RAND_CLEAR_SEED, (void(*)(void))ossl_drbg_clear_seed },
{ 0, NULL }
};