mirror of
https://github.com/openssl/openssl.git
synced 2024-11-27 05:21:51 +08:00
c1669e1c20
This facilitates "universal" builds, ones that target multiple architectures, e.g. ARMv5 through ARMv7. See commentary in Configure for details. Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Matt Caswell <matt@openssl.org>
494 lines
13 KiB
Prolog
494 lines
13 KiB
Prolog
#!/usr/bin/env perl
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# April 2010
|
|
#
|
|
# The module implements "4-bit" GCM GHASH function and underlying
|
|
# single multiplication operation in GF(2^128). "4-bit" means that it
|
|
# uses 256 bytes per-key table [+32 bytes shared table]. There is no
|
|
# experimental performance data available yet. The only approximation
|
|
# that can be made at this point is based on code size. Inner loop is
|
|
# 32 instructions long and on single-issue core should execute in <40
|
|
# cycles. Having verified that gcc 3.4 didn't unroll corresponding
|
|
# loop, this assembler loop body was found to be ~3x smaller than
|
|
# compiler-generated one...
|
|
#
|
|
# July 2010
|
|
#
|
|
# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
|
|
# Cortex A8 core and ~25 cycles per processed byte (which was observed
|
|
# to be ~3 times faster than gcc-generated code:-)
|
|
#
|
|
# February 2011
|
|
#
|
|
# Profiler-assisted and platform-specific optimization resulted in 7%
|
|
# improvement on Cortex A8 core and ~23.5 cycles per byte.
|
|
#
|
|
# March 2011
|
|
#
|
|
# Add NEON implementation featuring polynomial multiplication, i.e. no
|
|
# lookup tables involved. On Cortex A8 it was measured to process one
|
|
# byte in 15 cycles or 55% faster than integer-only code.
|
|
#
|
|
# April 2014
|
|
#
|
|
# Switch to multiplication algorithm suggested in paper referred
|
|
# below and combine it with reduction algorithm from x86 module.
|
|
# Performance improvement over previous version varies from 65% on
|
|
# Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8
|
|
# processes one byte in 8.45 cycles, A9 - in 10.2, Snapdragon S4 -
|
|
# in 9.33.
|
|
#
|
|
# Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software
|
|
# Polynomial Multiplication on ARM Processors using the NEON Engine.
|
|
#
|
|
# http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf
|
|
|
|
# ====================================================================
|
|
# Note about "528B" variant. In ARM case it makes lesser sense to
|
|
# implement it for following reasons:
|
|
#
|
|
# - performance improvement won't be anywhere near 50%, because 128-
|
|
# bit shift operation is neatly fused with 128-bit xor here, and
|
|
# "538B" variant would eliminate only 4-5 instructions out of 32
|
|
# in the inner loop (meaning that estimated improvement is ~15%);
|
|
# - ARM-based systems are often embedded ones and extra memory
|
|
# consumption might be unappreciated (for so little improvement);
|
|
#
|
|
# Byte order [in]dependence. =========================================
|
|
#
|
|
# Caller is expected to maintain specific *dword* order in Htable,
|
|
# namely with *least* significant dword of 128-bit value at *lower*
|
|
# address. This differs completely from C code and has everything to
|
|
# do with ldm instruction and order in which dwords are "consumed" by
|
|
# algorithm. *Byte* order within these dwords in turn is whatever
|
|
# *native* byte order on current platform. See gcm128.c for working
|
|
# example...
|
|
|
|
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
|
|
open STDOUT,">$output";
|
|
|
|
$Xi="r0"; # argument block
|
|
$Htbl="r1";
|
|
$inp="r2";
|
|
$len="r3";
|
|
|
|
$Zll="r4"; # variables
|
|
$Zlh="r5";
|
|
$Zhl="r6";
|
|
$Zhh="r7";
|
|
$Tll="r8";
|
|
$Tlh="r9";
|
|
$Thl="r10";
|
|
$Thh="r11";
|
|
$nlo="r12";
|
|
################# r13 is stack pointer
|
|
$nhi="r14";
|
|
################# r15 is program counter
|
|
|
|
$rem_4bit=$inp; # used in gcm_gmult_4bit
|
|
$cnt=$len;
|
|
|
|
sub Zsmash() {
|
|
my $i=12;
|
|
my @args=@_;
|
|
for ($Zll,$Zlh,$Zhl,$Zhh) {
|
|
$code.=<<___;
|
|
#if __ARM_ARCH__>=7 && defined(__ARMEL__)
|
|
rev $_,$_
|
|
str $_,[$Xi,#$i]
|
|
#elif defined(__ARMEB__)
|
|
str $_,[$Xi,#$i]
|
|
#else
|
|
mov $Tlh,$_,lsr#8
|
|
strb $_,[$Xi,#$i+3]
|
|
mov $Thl,$_,lsr#16
|
|
strb $Tlh,[$Xi,#$i+2]
|
|
mov $Thh,$_,lsr#24
|
|
strb $Thl,[$Xi,#$i+1]
|
|
strb $Thh,[$Xi,#$i]
|
|
#endif
|
|
___
|
|
$code.="\t".shift(@args)."\n";
|
|
$i-=4;
|
|
}
|
|
}
|
|
|
|
$code=<<___;
|
|
#include "arm_arch.h"
|
|
|
|
.text
|
|
.code 32
|
|
|
|
.type rem_4bit,%object
|
|
.align 5
|
|
rem_4bit:
|
|
.short 0x0000,0x1C20,0x3840,0x2460
|
|
.short 0x7080,0x6CA0,0x48C0,0x54E0
|
|
.short 0xE100,0xFD20,0xD940,0xC560
|
|
.short 0x9180,0x8DA0,0xA9C0,0xB5E0
|
|
.size rem_4bit,.-rem_4bit
|
|
|
|
.type rem_4bit_get,%function
|
|
rem_4bit_get:
|
|
sub $rem_4bit,pc,#8
|
|
sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit
|
|
b .Lrem_4bit_got
|
|
nop
|
|
.size rem_4bit_get,.-rem_4bit_get
|
|
|
|
.global gcm_ghash_4bit
|
|
.type gcm_ghash_4bit,%function
|
|
gcm_ghash_4bit:
|
|
sub r12,pc,#8
|
|
add $len,$inp,$len @ $len to point at the end
|
|
stmdb sp!,{r3-r11,lr} @ save $len/end too
|
|
sub r12,r12,#48 @ &rem_4bit
|
|
|
|
ldmia r12,{r4-r11} @ copy rem_4bit ...
|
|
stmdb sp!,{r4-r11} @ ... to stack
|
|
|
|
ldrb $nlo,[$inp,#15]
|
|
ldrb $nhi,[$Xi,#15]
|
|
.Louter:
|
|
eor $nlo,$nlo,$nhi
|
|
and $nhi,$nlo,#0xf0
|
|
and $nlo,$nlo,#0x0f
|
|
mov $cnt,#14
|
|
|
|
add $Zhh,$Htbl,$nlo,lsl#4
|
|
ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
|
|
add $Thh,$Htbl,$nhi
|
|
ldrb $nlo,[$inp,#14]
|
|
|
|
and $nhi,$Zll,#0xf @ rem
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
add $nhi,$nhi,$nhi
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
ldrb $nhi,[$Xi,#14]
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
eor $nlo,$nlo,$nhi
|
|
and $nhi,$nlo,#0xf0
|
|
and $nlo,$nlo,#0x0f
|
|
eor $Zhh,$Zhh,$Tll,lsl#16
|
|
|
|
.Linner:
|
|
add $Thh,$Htbl,$nlo,lsl#4
|
|
and $nlo,$Zll,#0xf @ rem
|
|
subs $cnt,$cnt,#1
|
|
add $nlo,$nlo,$nlo
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
ldrh $Tll,[sp,$nlo] @ rem_4bit[rem]
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
ldrplb $nlo,[$inp,$cnt]
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
|
|
add $Thh,$Htbl,$nhi
|
|
and $nhi,$Zll,#0xf @ rem
|
|
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
|
add $nhi,$nhi,$nhi
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
ldrplb $Tll,[$Xi,$cnt]
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
ldrh $Tlh,[sp,$nhi]
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eorpl $nlo,$nlo,$Tll
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
andpl $nhi,$nlo,#0xf0
|
|
andpl $nlo,$nlo,#0x0f
|
|
eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem]
|
|
bpl .Linner
|
|
|
|
ldr $len,[sp,#32] @ re-load $len/end
|
|
add $inp,$inp,#16
|
|
mov $nhi,$Zll
|
|
___
|
|
&Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]");
|
|
$code.=<<___;
|
|
bne .Louter
|
|
|
|
add sp,sp,#36
|
|
#if __ARM_ARCH__>=5
|
|
ldmia sp!,{r4-r11,pc}
|
|
#else
|
|
ldmia sp!,{r4-r11,lr}
|
|
tst lr,#1
|
|
moveq pc,lr @ be binary compatible with V4, yet
|
|
bx lr @ interoperable with Thumb ISA:-)
|
|
#endif
|
|
.size gcm_ghash_4bit,.-gcm_ghash_4bit
|
|
|
|
.global gcm_gmult_4bit
|
|
.type gcm_gmult_4bit,%function
|
|
gcm_gmult_4bit:
|
|
stmdb sp!,{r4-r11,lr}
|
|
ldrb $nlo,[$Xi,#15]
|
|
b rem_4bit_get
|
|
.Lrem_4bit_got:
|
|
and $nhi,$nlo,#0xf0
|
|
and $nlo,$nlo,#0x0f
|
|
mov $cnt,#14
|
|
|
|
add $Zhh,$Htbl,$nlo,lsl#4
|
|
ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
|
|
ldrb $nlo,[$Xi,#14]
|
|
|
|
add $Thh,$Htbl,$nhi
|
|
and $nhi,$Zll,#0xf @ rem
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
add $nhi,$nhi,$nhi
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
and $nhi,$nlo,#0xf0
|
|
eor $Zhh,$Zhh,$Tll,lsl#16
|
|
and $nlo,$nlo,#0x0f
|
|
|
|
.Loop:
|
|
add $Thh,$Htbl,$nlo,lsl#4
|
|
and $nlo,$Zll,#0xf @ rem
|
|
subs $cnt,$cnt,#1
|
|
add $nlo,$nlo,$nlo
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem]
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
ldrplb $nlo,[$Xi,$cnt]
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
|
|
add $Thh,$Htbl,$nhi
|
|
and $nhi,$Zll,#0xf @ rem
|
|
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
|
add $nhi,$nhi,$nhi
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
andpl $nhi,$nlo,#0xf0
|
|
andpl $nlo,$nlo,#0x0f
|
|
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
|
bpl .Loop
|
|
___
|
|
&Zsmash();
|
|
$code.=<<___;
|
|
#if __ARM_ARCH__>=5
|
|
ldmia sp!,{r4-r11,pc}
|
|
#else
|
|
ldmia sp!,{r4-r11,lr}
|
|
tst lr,#1
|
|
moveq pc,lr @ be binary compatible with V4, yet
|
|
bx lr @ interoperable with Thumb ISA:-)
|
|
#endif
|
|
.size gcm_gmult_4bit,.-gcm_gmult_4bit
|
|
___
|
|
{
|
|
my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
|
|
my ($t0,$t1,$t2,$t3)=map("q$_",(8..12));
|
|
my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31));
|
|
|
|
sub clmul64x64 {
|
|
my ($r,$a,$b)=@_;
|
|
$code.=<<___;
|
|
vext.8 $t0#lo, $a, $a, #1 @ A1
|
|
vmull.p8 $t0, $t0#lo, $b @ F = A1*B
|
|
vext.8 $r#lo, $b, $b, #1 @ B1
|
|
vmull.p8 $r, $a, $r#lo @ E = A*B1
|
|
vext.8 $t1#lo, $a, $a, #2 @ A2
|
|
vmull.p8 $t1, $t1#lo, $b @ H = A2*B
|
|
vext.8 $t3#lo, $b, $b, #2 @ B2
|
|
vmull.p8 $t3, $a, $t3#lo @ G = A*B2
|
|
vext.8 $t2#lo, $a, $a, #3 @ A3
|
|
veor $t0, $t0, $r @ L = E + F
|
|
vmull.p8 $t2, $t2#lo, $b @ J = A3*B
|
|
vext.8 $r#lo, $b, $b, #3 @ B3
|
|
veor $t1, $t1, $t3 @ M = G + H
|
|
vmull.p8 $r, $a, $r#lo @ I = A*B3
|
|
veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8
|
|
vand $t0#hi, $t0#hi, $k48
|
|
vext.8 $t3#lo, $b, $b, #4 @ B4
|
|
veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16
|
|
vand $t1#hi, $t1#hi, $k32
|
|
vmull.p8 $t3, $a, $t3#lo @ K = A*B4
|
|
veor $t2, $t2, $r @ N = I + J
|
|
veor $t0#lo, $t0#lo, $t0#hi
|
|
veor $t1#lo, $t1#lo, $t1#hi
|
|
veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24
|
|
vand $t2#hi, $t2#hi, $k16
|
|
vext.8 $t0, $t0, $t0, #15
|
|
veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32
|
|
vmov.i64 $t3#hi, #0
|
|
vext.8 $t1, $t1, $t1, #14
|
|
veor $t2#lo, $t2#lo, $t2#hi
|
|
vmull.p8 $r, $a, $b @ D = A*B
|
|
vext.8 $t3, $t3, $t3, #12
|
|
vext.8 $t2, $t2, $t2, #13
|
|
veor $t0, $t0, $t1
|
|
veor $t2, $t2, $t3
|
|
veor $r, $r, $t0
|
|
veor $r, $r, $t2
|
|
___
|
|
}
|
|
|
|
$code.=<<___;
|
|
#if __ARM_MAX_ARCH__>=7
|
|
.arch armv7-a
|
|
.fpu neon
|
|
|
|
.global gcm_init_neon
|
|
.type gcm_init_neon,%function
|
|
.align 4
|
|
gcm_init_neon:
|
|
vld1.64 $IN#hi,[r1,:64]! @ load H
|
|
vmov.i8 $t0,#0xe1
|
|
vld1.64 $IN#lo,[r1,:64]
|
|
vshl.i64 $t0#hi,#57
|
|
vshr.u64 $t0#lo,#63 @ t0=0xc2....01
|
|
vdup.8 $t1,$IN#hi[7]
|
|
vshr.u64 $Hlo,$IN#lo,#63
|
|
vshr.s8 $t1,#7 @ broadcast carry bit
|
|
vshl.i64 $IN,$IN,#1
|
|
vand $t0,$t0,$t1
|
|
vorr $IN#hi,$Hlo @ H<<<=1
|
|
veor $IN,$IN,$t0 @ twisted H
|
|
vstmia r0,{$IN}
|
|
|
|
ret @ bx lr
|
|
.size gcm_init_neon,.-gcm_init_neon
|
|
|
|
.global gcm_gmult_neon
|
|
.type gcm_gmult_neon,%function
|
|
.align 4
|
|
gcm_gmult_neon:
|
|
vld1.64 $IN#hi,[$Xi,:64]! @ load Xi
|
|
vld1.64 $IN#lo,[$Xi,:64]!
|
|
vmov.i64 $k48,#0x0000ffffffffffff
|
|
vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H
|
|
vmov.i64 $k32,#0x00000000ffffffff
|
|
#ifdef __ARMEL__
|
|
vrev64.8 $IN,$IN
|
|
#endif
|
|
vmov.i64 $k16,#0x000000000000ffff
|
|
veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing
|
|
mov $len,#16
|
|
b .Lgmult_neon
|
|
.size gcm_gmult_neon,.-gcm_gmult_neon
|
|
|
|
.global gcm_ghash_neon
|
|
.type gcm_ghash_neon,%function
|
|
.align 4
|
|
gcm_ghash_neon:
|
|
vld1.64 $Xl#hi,[$Xi,:64]! @ load Xi
|
|
vld1.64 $Xl#lo,[$Xi,:64]!
|
|
vmov.i64 $k48,#0x0000ffffffffffff
|
|
vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H
|
|
vmov.i64 $k32,#0x00000000ffffffff
|
|
#ifdef __ARMEL__
|
|
vrev64.8 $Xl,$Xl
|
|
#endif
|
|
vmov.i64 $k16,#0x000000000000ffff
|
|
veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing
|
|
|
|
.Loop_neon:
|
|
vld1.64 $IN#hi,[$inp]! @ load inp
|
|
vld1.64 $IN#lo,[$inp]!
|
|
#ifdef __ARMEL__
|
|
vrev64.8 $IN,$IN
|
|
#endif
|
|
veor $IN,$Xl @ inp^=Xi
|
|
.Lgmult_neon:
|
|
___
|
|
&clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.lo·Xi.lo
|
|
$code.=<<___;
|
|
veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing
|
|
___
|
|
&clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)·(Xi.lo+Xi.hi)
|
|
&clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hi·Xi.hi
|
|
$code.=<<___;
|
|
veor $Xm,$Xm,$Xl @ Karatsuba post-processing
|
|
veor $Xm,$Xm,$Xh
|
|
veor $Xl#hi,$Xl#hi,$Xm#lo
|
|
veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result
|
|
|
|
@ equivalent of reduction_avx from ghash-x86_64.pl
|
|
vshl.i64 $t1,$Xl,#57 @ 1st phase
|
|
vshl.i64 $t2,$Xl,#62
|
|
veor $t2,$t2,$t1 @
|
|
vshl.i64 $t1,$Xl,#63
|
|
veor $t2, $t2, $t1 @
|
|
veor $Xl#hi,$Xl#hi,$t2#lo @
|
|
veor $Xh#lo,$Xh#lo,$t2#hi
|
|
|
|
vshr.u64 $t2,$Xl,#1 @ 2nd phase
|
|
veor $Xh,$Xh,$Xl
|
|
veor $Xl,$Xl,$t2 @
|
|
vshr.u64 $t2,$t2,#6
|
|
vshr.u64 $Xl,$Xl,#1 @
|
|
veor $Xl,$Xl,$Xh @
|
|
veor $Xl,$Xl,$t2 @
|
|
|
|
subs $len,#16
|
|
bne .Loop_neon
|
|
|
|
#ifdef __ARMEL__
|
|
vrev64.8 $Xl,$Xl
|
|
#endif
|
|
sub $Xi,#16
|
|
vst1.64 $Xl#hi,[$Xi,:64]! @ write out Xi
|
|
vst1.64 $Xl#lo,[$Xi,:64]
|
|
|
|
ret @ bx lr
|
|
.size gcm_ghash_neon,.-gcm_ghash_neon
|
|
#endif
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
.asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
|
|
.align 2
|
|
___
|
|
|
|
foreach (split("\n",$code)) {
|
|
s/\`([^\`]*)\`/eval $1/geo;
|
|
|
|
s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or
|
|
s/\bret\b/bx lr/go or
|
|
s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4
|
|
|
|
print $_,"\n";
|
|
}
|
|
close STDOUT; # enforce flush
|