openssl/engines/e_afalg.c
Alistair Francis 5b5e2985f3 Add support for io_pgetevents_time64 syscall
32-bit architectures that are y2038 safe don't include syscalls that use
32-bit time_t. Instead these architectures have suffixed syscalls that
always use a 64-bit time_t. In the case of the io_getevents syscall the
syscall has been replaced with the io_pgetevents_time64 syscall instead.

This patch changes the io_getevents() function to use the correct
syscall based on the avaliable syscalls and the time_t size. We will
only use the new 64-bit time_t syscall if the architecture is using a
64-bit time_t. This is to avoid having to deal with 32/64-bit
conversions and relying on a 64-bit timespec struct on 32-bit time_t
platforms. As of Linux 5.3 there are no 32-bit time_t architectures
without __NR_io_getevents. In the future if a 32-bit time_t architecture
wants to use the 64-bit syscalls we can handle the conversion.

This fixes build failures on 32-bit RISC-V.

Signed-off-by: Alistair Francis <alistair.francis@wdc.com>

Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9819)
2019-09-18 16:49:39 +10:00

882 lines
25 KiB
C

/*
* Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* Required for vmsplice */
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <openssl/engine.h>
#include <openssl/async.h>
#include <openssl/err.h>
#include "internal/nelem.h"
#include <sys/socket.h>
#include <linux/version.h>
#define K_MAJ 4
#define K_MIN1 1
#define K_MIN2 0
#if LINUX_VERSION_CODE < KERNEL_VERSION(K_MAJ, K_MIN1, K_MIN2) || \
!defined(AF_ALG)
# ifndef PEDANTIC
# warning "AFALG ENGINE requires Kernel Headers >= 4.1.0"
# warning "Skipping Compilation of AFALG engine"
# endif
void engine_load_afalg_int(void);
void engine_load_afalg_int(void)
{
}
#else
# include <linux/if_alg.h>
# include <fcntl.h>
# include <sys/utsname.h>
# include <linux/aio_abi.h>
# include <sys/syscall.h>
# include <errno.h>
# include "e_afalg.h"
# include "e_afalg_err.c"
# ifndef SOL_ALG
# define SOL_ALG 279
# endif
# ifdef ALG_ZERO_COPY
# ifndef SPLICE_F_GIFT
# define SPLICE_F_GIFT (0x08)
# endif
# endif
# define ALG_AES_IV_LEN 16
# define ALG_IV_LEN(len) (sizeof(struct af_alg_iv) + (len))
# define ALG_OP_TYPE unsigned int
# define ALG_OP_LEN (sizeof(ALG_OP_TYPE))
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
void engine_load_afalg_int(void);
# endif
/* Local Linkage Functions */
static int afalg_init_aio(afalg_aio *aio);
static int afalg_fin_cipher_aio(afalg_aio *ptr, int sfd,
unsigned char *buf, size_t len);
static int afalg_create_sk(afalg_ctx *actx, const char *ciphertype,
const char *ciphername);
static int afalg_destroy(ENGINE *e);
static int afalg_init(ENGINE *e);
static int afalg_finish(ENGINE *e);
static const EVP_CIPHER *afalg_aes_cbc(int nid);
static cbc_handles *get_cipher_handle(int nid);
static int afalg_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid);
static int afalg_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
static int afalg_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl);
static int afalg_cipher_cleanup(EVP_CIPHER_CTX *ctx);
static int afalg_chk_platform(void);
/* Engine Id and Name */
static const char *engine_afalg_id = "afalg";
static const char *engine_afalg_name = "AFALG engine support";
static int afalg_cipher_nids[] = {
NID_aes_128_cbc,
NID_aes_192_cbc,
NID_aes_256_cbc,
};
static cbc_handles cbc_handle[] = {{AES_KEY_SIZE_128, NULL},
{AES_KEY_SIZE_192, NULL},
{AES_KEY_SIZE_256, NULL}};
static ossl_inline int io_setup(unsigned n, aio_context_t *ctx)
{
return syscall(__NR_io_setup, n, ctx);
}
static ossl_inline int eventfd(int n)
{
return syscall(__NR_eventfd2, n, 0);
}
static ossl_inline int io_destroy(aio_context_t ctx)
{
return syscall(__NR_io_destroy, ctx);
}
static ossl_inline int io_read(aio_context_t ctx, long n, struct iocb **iocb)
{
return syscall(__NR_io_submit, ctx, n, iocb);
}
static ossl_inline int io_getevents(aio_context_t ctx, long min, long max,
struct io_event *events,
struct timespec *timeout)
{
#if defined(__NR_io_getevents)
return syscall(__NR_io_getevents, ctx, min, max, events, timeout);
#elif defined(__NR_io_pgetevents_time64)
/* Let's only support the 64 suffix syscalls for 64-bit time_t.
* This simplifies the code for us as we don't need to use a 64-bit
* version of timespec with a 32-bit time_t and handle converting
* between 64-bit and 32-bit times and check for overflows.
*/
if (sizeof(timeout->tv_sec) == 8)
return syscall(__NR_io_pgetevents_time64, ctx, min, max, events, timeout, NULL);
else {
errno = ENOSYS;
return -1;
}
#else
# error "We require either the io_getevents syscall or __NR_io_pgetevents_time64."
#endif
}
static void afalg_waitfd_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
OSSL_ASYNC_FD waitfd, void *custom)
{
close(waitfd);
}
static int afalg_setup_async_event_notification(afalg_aio *aio)
{
ASYNC_JOB *job;
ASYNC_WAIT_CTX *waitctx;
void *custom = NULL;
int ret;
if ((job = ASYNC_get_current_job()) != NULL) {
/* Async mode */
waitctx = ASYNC_get_wait_ctx(job);
if (waitctx == NULL) {
ALG_WARN("%s(%d): ASYNC_get_wait_ctx error", __FILE__, __LINE__);
return 0;
}
/* Get waitfd from ASYNC_WAIT_CTX if it is already set */
ret = ASYNC_WAIT_CTX_get_fd(waitctx, engine_afalg_id,
&aio->efd, &custom);
if (ret == 0) {
/*
* waitfd is not set in ASYNC_WAIT_CTX, create a new one
* and set it. efd will be signaled when AIO operation completes
*/
aio->efd = eventfd(0);
if (aio->efd == -1) {
ALG_PERR("%s(%d): Failed to get eventfd : ", __FILE__,
__LINE__);
AFALGerr(AFALG_F_AFALG_SETUP_ASYNC_EVENT_NOTIFICATION,
AFALG_R_EVENTFD_FAILED);
return 0;
}
ret = ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_afalg_id,
aio->efd, custom,
afalg_waitfd_cleanup);
if (ret == 0) {
ALG_WARN("%s(%d): Failed to set wait fd", __FILE__, __LINE__);
close(aio->efd);
return 0;
}
/* make fd non-blocking in async mode */
if (fcntl(aio->efd, F_SETFL, O_NONBLOCK) != 0) {
ALG_WARN("%s(%d): Failed to set event fd as NONBLOCKING",
__FILE__, __LINE__);
}
}
aio->mode = MODE_ASYNC;
} else {
/* Sync mode */
aio->efd = eventfd(0);
if (aio->efd == -1) {
ALG_PERR("%s(%d): Failed to get eventfd : ", __FILE__, __LINE__);
AFALGerr(AFALG_F_AFALG_SETUP_ASYNC_EVENT_NOTIFICATION,
AFALG_R_EVENTFD_FAILED);
return 0;
}
aio->mode = MODE_SYNC;
}
return 1;
}
static int afalg_init_aio(afalg_aio *aio)
{
int r = -1;
/* Initialise for AIO */
aio->aio_ctx = 0;
r = io_setup(MAX_INFLIGHTS, &aio->aio_ctx);
if (r < 0) {
ALG_PERR("%s(%d): io_setup error : ", __FILE__, __LINE__);
AFALGerr(AFALG_F_AFALG_INIT_AIO, AFALG_R_IO_SETUP_FAILED);
return 0;
}
memset(aio->cbt, 0, sizeof(aio->cbt));
aio->efd = -1;
aio->mode = MODE_UNINIT;
return 1;
}
static int afalg_fin_cipher_aio(afalg_aio *aio, int sfd, unsigned char *buf,
size_t len)
{
int r;
int retry = 0;
unsigned int done = 0;
struct iocb *cb;
struct timespec timeout;
struct io_event events[MAX_INFLIGHTS];
u_int64_t eval = 0;
timeout.tv_sec = 0;
timeout.tv_nsec = 0;
/* if efd has not been initialised yet do it here */
if (aio->mode == MODE_UNINIT) {
r = afalg_setup_async_event_notification(aio);
if (r == 0)
return 0;
}
cb = &(aio->cbt[0 % MAX_INFLIGHTS]);
memset(cb, '\0', sizeof(*cb));
cb->aio_fildes = sfd;
cb->aio_lio_opcode = IOCB_CMD_PREAD;
/*
* The pointer has to be converted to unsigned value first to avoid
* sign extension on cast to 64 bit value in 32-bit builds
*/
cb->aio_buf = (size_t)buf;
cb->aio_offset = 0;
cb->aio_data = 0;
cb->aio_nbytes = len;
cb->aio_flags = IOCB_FLAG_RESFD;
cb->aio_resfd = aio->efd;
/*
* Perform AIO read on AFALG socket, this in turn performs an async
* crypto operation in kernel space
*/
r = io_read(aio->aio_ctx, 1, &cb);
if (r < 0) {
ALG_PWARN("%s(%d): io_read failed : ", __FILE__, __LINE__);
return 0;
}
do {
/* While AIO read is being performed pause job */
ASYNC_pause_job();
/* Check for completion of AIO read */
r = read(aio->efd, &eval, sizeof(eval));
if (r < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK)
continue;
ALG_PERR("%s(%d): read failed for event fd : ", __FILE__, __LINE__);
return 0;
} else if (r == 0 || eval <= 0) {
ALG_WARN("%s(%d): eventfd read %d bytes, eval = %lu\n", __FILE__,
__LINE__, r, eval);
}
if (eval > 0) {
/* Get results of AIO read */
r = io_getevents(aio->aio_ctx, 1, MAX_INFLIGHTS,
events, &timeout);
if (r > 0) {
/*
* events.res indicates the actual status of the operation.
* Handle the error condition first.
*/
if (events[0].res < 0) {
/*
* Underlying operation cannot be completed at the time
* of previous submission. Resubmit for the operation.
*/
if (events[0].res == -EBUSY && retry++ < 3) {
r = io_read(aio->aio_ctx, 1, &cb);
if (r < 0) {
ALG_PERR("%s(%d): retry %d for io_read failed : ",
__FILE__, __LINE__, retry);
return 0;
}
continue;
} else {
/*
* Retries exceed for -EBUSY or unrecoverable error
* condition for this instance of operation.
*/
ALG_WARN
("%s(%d): Crypto Operation failed with code %lld\n",
__FILE__, __LINE__, events[0].res);
return 0;
}
}
/* Operation successful. */
done = 1;
} else if (r < 0) {
ALG_PERR("%s(%d): io_getevents failed : ", __FILE__, __LINE__);
return 0;
} else {
ALG_WARN("%s(%d): io_geteventd read 0 bytes\n", __FILE__,
__LINE__);
}
}
} while (!done);
return 1;
}
static ossl_inline void afalg_set_op_sk(struct cmsghdr *cmsg,
const ALG_OP_TYPE op)
{
cmsg->cmsg_level = SOL_ALG;
cmsg->cmsg_type = ALG_SET_OP;
cmsg->cmsg_len = CMSG_LEN(ALG_OP_LEN);
memcpy(CMSG_DATA(cmsg), &op, ALG_OP_LEN);
}
static void afalg_set_iv_sk(struct cmsghdr *cmsg, const unsigned char *iv,
const unsigned int len)
{
struct af_alg_iv *aiv;
cmsg->cmsg_level = SOL_ALG;
cmsg->cmsg_type = ALG_SET_IV;
cmsg->cmsg_len = CMSG_LEN(ALG_IV_LEN(len));
aiv = (struct af_alg_iv *)CMSG_DATA(cmsg);
aiv->ivlen = len;
memcpy(aiv->iv, iv, len);
}
static ossl_inline int afalg_set_key(afalg_ctx *actx, const unsigned char *key,
const int klen)
{
int ret;
ret = setsockopt(actx->bfd, SOL_ALG, ALG_SET_KEY, key, klen);
if (ret < 0) {
ALG_PERR("%s(%d): Failed to set socket option : ", __FILE__, __LINE__);
AFALGerr(AFALG_F_AFALG_SET_KEY, AFALG_R_SOCKET_SET_KEY_FAILED);
return 0;
}
return 1;
}
static int afalg_create_sk(afalg_ctx *actx, const char *ciphertype,
const char *ciphername)
{
struct sockaddr_alg sa;
int r = -1;
actx->bfd = actx->sfd = -1;
memset(&sa, 0, sizeof(sa));
sa.salg_family = AF_ALG;
OPENSSL_strlcpy((char *) sa.salg_type, ciphertype, sizeof(sa.salg_type));
OPENSSL_strlcpy((char *) sa.salg_name, ciphername, sizeof(sa.salg_name));
actx->bfd = socket(AF_ALG, SOCK_SEQPACKET, 0);
if (actx->bfd == -1) {
ALG_PERR("%s(%d): Failed to open socket : ", __FILE__, __LINE__);
AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_CREATE_FAILED);
goto err;
}
r = bind(actx->bfd, (struct sockaddr *)&sa, sizeof(sa));
if (r < 0) {
ALG_PERR("%s(%d): Failed to bind socket : ", __FILE__, __LINE__);
AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_BIND_FAILED);
goto err;
}
actx->sfd = accept(actx->bfd, NULL, 0);
if (actx->sfd < 0) {
ALG_PERR("%s(%d): Socket Accept Failed : ", __FILE__, __LINE__);
AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_ACCEPT_FAILED);
goto err;
}
return 1;
err:
if (actx->bfd >= 0)
close(actx->bfd);
if (actx->sfd >= 0)
close(actx->sfd);
actx->bfd = actx->sfd = -1;
return 0;
}
static int afalg_start_cipher_sk(afalg_ctx *actx, const unsigned char *in,
size_t inl, const unsigned char *iv,
unsigned int enc)
{
struct msghdr msg;
struct cmsghdr *cmsg;
struct iovec iov;
ssize_t sbytes;
# ifdef ALG_ZERO_COPY
int ret;
# endif
char cbuf[CMSG_SPACE(ALG_IV_LEN(ALG_AES_IV_LEN)) + CMSG_SPACE(ALG_OP_LEN)];
memset(&msg, 0, sizeof(msg));
memset(cbuf, 0, sizeof(cbuf));
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);
/*
* cipher direction (i.e. encrypt or decrypt) and iv are sent to the
* kernel as part of sendmsg()'s ancillary data
*/
cmsg = CMSG_FIRSTHDR(&msg);
afalg_set_op_sk(cmsg, enc);
cmsg = CMSG_NXTHDR(&msg, cmsg);
afalg_set_iv_sk(cmsg, iv, ALG_AES_IV_LEN);
/* iov that describes input data */
iov.iov_base = (unsigned char *)in;
iov.iov_len = inl;
msg.msg_flags = MSG_MORE;
# ifdef ALG_ZERO_COPY
/*
* ZERO_COPY mode
* Works best when buffer is 4k aligned
* OPENS: out of place processing (i.e. out != in)
*/
/* Input data is not sent as part of call to sendmsg() */
msg.msg_iovlen = 0;
msg.msg_iov = NULL;
/* Sendmsg() sends iv and cipher direction to the kernel */
sbytes = sendmsg(actx->sfd, &msg, 0);
if (sbytes < 0) {
ALG_PERR("%s(%d): sendmsg failed for zero copy cipher operation : ",
__FILE__, __LINE__);
return 0;
}
/*
* vmsplice and splice are used to pin the user space input buffer for
* kernel space processing avoiding copys from user to kernel space
*/
ret = vmsplice(actx->zc_pipe[1], &iov, 1, SPLICE_F_GIFT);
if (ret < 0) {
ALG_PERR("%s(%d): vmsplice failed : ", __FILE__, __LINE__);
return 0;
}
ret = splice(actx->zc_pipe[0], NULL, actx->sfd, NULL, inl, 0);
if (ret < 0) {
ALG_PERR("%s(%d): splice failed : ", __FILE__, __LINE__);
return 0;
}
# else
msg.msg_iovlen = 1;
msg.msg_iov = &iov;
/* Sendmsg() sends iv, cipher direction and input data to the kernel */
sbytes = sendmsg(actx->sfd, &msg, 0);
if (sbytes < 0) {
ALG_PERR("%s(%d): sendmsg failed for cipher operation : ", __FILE__,
__LINE__);
return 0;
}
if (sbytes != (ssize_t) inl) {
ALG_WARN("Cipher operation send bytes %zd != inlen %zd\n", sbytes,
inl);
return 0;
}
# endif
return 1;
}
static int afalg_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
int ciphertype;
int ret;
afalg_ctx *actx;
const char *ciphername;
if (ctx == NULL || key == NULL) {
ALG_WARN("%s(%d): Null Parameter\n", __FILE__, __LINE__);
return 0;
}
if (EVP_CIPHER_CTX_cipher(ctx) == NULL) {
ALG_WARN("%s(%d): Cipher object NULL\n", __FILE__, __LINE__);
return 0;
}
actx = EVP_CIPHER_CTX_get_cipher_data(ctx);
if (actx == NULL) {
ALG_WARN("%s(%d): Cipher data NULL\n", __FILE__, __LINE__);
return 0;
}
ciphertype = EVP_CIPHER_CTX_nid(ctx);
switch (ciphertype) {
case NID_aes_128_cbc:
case NID_aes_192_cbc:
case NID_aes_256_cbc:
ciphername = "cbc(aes)";
break;
default:
ALG_WARN("%s(%d): Unsupported Cipher type %d\n", __FILE__, __LINE__,
ciphertype);
return 0;
}
if (ALG_AES_IV_LEN != EVP_CIPHER_CTX_iv_length(ctx)) {
ALG_WARN("%s(%d): Unsupported IV length :%d\n", __FILE__, __LINE__,
EVP_CIPHER_CTX_iv_length(ctx));
return 0;
}
/* Setup AFALG socket for crypto processing */
ret = afalg_create_sk(actx, "skcipher", ciphername);
if (ret < 1)
return 0;
ret = afalg_set_key(actx, key, EVP_CIPHER_CTX_key_length(ctx));
if (ret < 1)
goto err;
/* Setup AIO ctx to allow async AFALG crypto processing */
if (afalg_init_aio(&actx->aio) == 0)
goto err;
# ifdef ALG_ZERO_COPY
pipe(actx->zc_pipe);
# endif
actx->init_done = MAGIC_INIT_NUM;
return 1;
err:
close(actx->sfd);
close(actx->bfd);
return 0;
}
static int afalg_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
afalg_ctx *actx;
int ret;
char nxtiv[ALG_AES_IV_LEN] = { 0 };
if (ctx == NULL || out == NULL || in == NULL) {
ALG_WARN("NULL parameter passed to function %s(%d)\n", __FILE__,
__LINE__);
return 0;
}
actx = (afalg_ctx *) EVP_CIPHER_CTX_get_cipher_data(ctx);
if (actx == NULL || actx->init_done != MAGIC_INIT_NUM) {
ALG_WARN("%s afalg ctx passed\n",
ctx == NULL ? "NULL" : "Uninitialised");
return 0;
}
/*
* set iv now for decrypt operation as the input buffer can be
* overwritten for inplace operation where in = out.
*/
if (EVP_CIPHER_CTX_encrypting(ctx) == 0) {
memcpy(nxtiv, in + (inl - ALG_AES_IV_LEN), ALG_AES_IV_LEN);
}
/* Send input data to kernel space */
ret = afalg_start_cipher_sk(actx, (unsigned char *)in, inl,
EVP_CIPHER_CTX_iv(ctx),
EVP_CIPHER_CTX_encrypting(ctx));
if (ret < 1) {
return 0;
}
/* Perform async crypto operation in kernel space */
ret = afalg_fin_cipher_aio(&actx->aio, actx->sfd, out, inl);
if (ret < 1)
return 0;
if (EVP_CIPHER_CTX_encrypting(ctx)) {
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), out + (inl - ALG_AES_IV_LEN),
ALG_AES_IV_LEN);
} else {
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), nxtiv, ALG_AES_IV_LEN);
}
return 1;
}
static int afalg_cipher_cleanup(EVP_CIPHER_CTX *ctx)
{
afalg_ctx *actx;
if (ctx == NULL) {
ALG_WARN("NULL parameter passed to function %s(%d)\n", __FILE__,
__LINE__);
return 0;
}
actx = (afalg_ctx *) EVP_CIPHER_CTX_get_cipher_data(ctx);
if (actx == NULL || actx->init_done != MAGIC_INIT_NUM) {
ALG_WARN("%s afalg ctx passed\n",
ctx == NULL ? "NULL" : "Uninitialised");
return 0;
}
close(actx->sfd);
close(actx->bfd);
# ifdef ALG_ZERO_COPY
close(actx->zc_pipe[0]);
close(actx->zc_pipe[1]);
# endif
/* close efd in sync mode, async mode is closed in afalg_waitfd_cleanup() */
if (actx->aio.mode == MODE_SYNC)
close(actx->aio.efd);
io_destroy(actx->aio.aio_ctx);
return 1;
}
static cbc_handles *get_cipher_handle(int nid)
{
switch (nid) {
case NID_aes_128_cbc:
return &cbc_handle[AES_CBC_128];
case NID_aes_192_cbc:
return &cbc_handle[AES_CBC_192];
case NID_aes_256_cbc:
return &cbc_handle[AES_CBC_256];
default:
return NULL;
}
}
static const EVP_CIPHER *afalg_aes_cbc(int nid)
{
cbc_handles *cipher_handle = get_cipher_handle(nid);
if (cipher_handle->_hidden == NULL
&& ((cipher_handle->_hidden =
EVP_CIPHER_meth_new(nid,
AES_BLOCK_SIZE,
cipher_handle->key_size)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher_handle->_hidden,
AES_IV_LEN)
|| !EVP_CIPHER_meth_set_flags(cipher_handle->_hidden,
EVP_CIPH_CBC_MODE |
EVP_CIPH_FLAG_DEFAULT_ASN1)
|| !EVP_CIPHER_meth_set_init(cipher_handle->_hidden,
afalg_cipher_init)
|| !EVP_CIPHER_meth_set_do_cipher(cipher_handle->_hidden,
afalg_do_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher_handle->_hidden,
afalg_cipher_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher_handle->_hidden,
sizeof(afalg_ctx)))) {
EVP_CIPHER_meth_free(cipher_handle->_hidden);
cipher_handle->_hidden= NULL;
}
return cipher_handle->_hidden;
}
static int afalg_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid)
{
int r = 1;
if (cipher == NULL) {
*nids = afalg_cipher_nids;
return (sizeof(afalg_cipher_nids) / sizeof(afalg_cipher_nids[0]));
}
switch (nid) {
case NID_aes_128_cbc:
case NID_aes_192_cbc:
case NID_aes_256_cbc:
*cipher = afalg_aes_cbc(nid);
break;
default:
*cipher = NULL;
r = 0;
}
return r;
}
static int bind_afalg(ENGINE *e)
{
/* Ensure the afalg error handling is set up */
unsigned short i;
ERR_load_AFALG_strings();
if (!ENGINE_set_id(e, engine_afalg_id)
|| !ENGINE_set_name(e, engine_afalg_name)
|| !ENGINE_set_destroy_function(e, afalg_destroy)
|| !ENGINE_set_init_function(e, afalg_init)
|| !ENGINE_set_finish_function(e, afalg_finish)) {
AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
return 0;
}
/*
* Create _hidden_aes_xxx_cbc by calling afalg_aes_xxx_cbc
* now, as bind_aflag can only be called by one thread at a
* time.
*/
for(i = 0; i < OSSL_NELEM(afalg_cipher_nids); i++) {
if (afalg_aes_cbc(afalg_cipher_nids[i]) == NULL) {
AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
return 0;
}
}
if (!ENGINE_set_ciphers(e, afalg_ciphers)) {
AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
return 0;
}
return 1;
}
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
static int bind_helper(ENGINE *e, const char *id)
{
if (id && (strcmp(id, engine_afalg_id) != 0))
return 0;
if (!afalg_chk_platform())
return 0;
if (!bind_afalg(e))
return 0;
return 1;
}
IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
# endif
static int afalg_chk_platform(void)
{
int ret;
int i;
int kver[3] = { -1, -1, -1 };
int sock;
char *str;
struct utsname ut;
ret = uname(&ut);
if (ret != 0) {
AFALGerr(AFALG_F_AFALG_CHK_PLATFORM,
AFALG_R_FAILED_TO_GET_PLATFORM_INFO);
return 0;
}
str = strtok(ut.release, ".");
for (i = 0; i < 3 && str != NULL; i++) {
kver[i] = atoi(str);
str = strtok(NULL, ".");
}
if (KERNEL_VERSION(kver[0], kver[1], kver[2])
< KERNEL_VERSION(K_MAJ, K_MIN1, K_MIN2)) {
ALG_ERR("ASYNC AFALG not supported this kernel(%d.%d.%d)\n",
kver[0], kver[1], kver[2]);
ALG_ERR("ASYNC AFALG requires kernel version %d.%d.%d or later\n",
K_MAJ, K_MIN1, K_MIN2);
AFALGerr(AFALG_F_AFALG_CHK_PLATFORM,
AFALG_R_KERNEL_DOES_NOT_SUPPORT_ASYNC_AFALG);
return 0;
}
/* Test if we can actually create an AF_ALG socket */
sock = socket(AF_ALG, SOCK_SEQPACKET, 0);
if (sock == -1) {
AFALGerr(AFALG_F_AFALG_CHK_PLATFORM, AFALG_R_SOCKET_CREATE_FAILED);
return 0;
}
close(sock);
return 1;
}
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
static ENGINE *engine_afalg(void)
{
ENGINE *ret = ENGINE_new();
if (ret == NULL)
return NULL;
if (!bind_afalg(ret)) {
ENGINE_free(ret);
return NULL;
}
return ret;
}
void engine_load_afalg_int(void)
{
ENGINE *toadd;
if (!afalg_chk_platform())
return;
toadd = engine_afalg();
if (toadd == NULL)
return;
ENGINE_add(toadd);
ENGINE_free(toadd);
ERR_clear_error();
}
# endif
static int afalg_init(ENGINE *e)
{
return 1;
}
static int afalg_finish(ENGINE *e)
{
return 1;
}
static int free_cbc(void)
{
short unsigned int i;
for(i = 0; i < OSSL_NELEM(afalg_cipher_nids); i++) {
EVP_CIPHER_meth_free(cbc_handle[i]._hidden);
cbc_handle[i]._hidden = NULL;
}
return 1;
}
static int afalg_destroy(ENGINE *e)
{
ERR_unload_AFALG_strings();
free_cbc();
return 1;
}
#endif /* KERNEL VERSION */