openssl/ssl/quic/quic_impl.c
Hugo Landau 113be15a5e QUIC APL: Implement optimised FIN API
Reviewed-by: Neil Horman <nhorman@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/23343)
2024-01-23 14:20:06 +00:00

3701 lines
106 KiB
C

/*
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/macros.h>
#include <openssl/objects.h>
#include <openssl/sslerr.h>
#include <crypto/rand.h>
#include "quic_local.h"
#include "internal/quic_tls.h"
#include "internal/quic_rx_depack.h"
#include "internal/quic_error.h"
#include "internal/quic_engine.h"
#include "internal/quic_port.h"
#include "internal/time.h"
typedef struct qctx_st QCTX;
static void aon_write_finish(QUIC_XSO *xso);
static int create_channel(QUIC_CONNECTION *qc);
static QUIC_XSO *create_xso_from_stream(QUIC_CONNECTION *qc, QUIC_STREAM *qs);
static int qc_try_create_default_xso_for_write(QCTX *ctx);
static int qc_wait_for_default_xso_for_read(QCTX *ctx);
static void quic_lock(QUIC_CONNECTION *qc);
static void quic_unlock(QUIC_CONNECTION *qc);
static void quic_lock_for_io(QCTX *ctx);
static int quic_do_handshake(QCTX *ctx);
static void qc_update_reject_policy(QUIC_CONNECTION *qc);
static void qc_touch_default_xso(QUIC_CONNECTION *qc);
static void qc_set_default_xso(QUIC_CONNECTION *qc, QUIC_XSO *xso, int touch);
static void qc_set_default_xso_keep_ref(QUIC_CONNECTION *qc, QUIC_XSO *xso,
int touch, QUIC_XSO **old_xso);
static SSL *quic_conn_stream_new(QCTX *ctx, uint64_t flags, int need_lock);
static int quic_validate_for_write(QUIC_XSO *xso, int *err);
static int quic_mutation_allowed(QUIC_CONNECTION *qc, int req_active);
static int qc_blocking_mode(const QUIC_CONNECTION *qc);
static int xso_blocking_mode(const QUIC_XSO *xso);
/*
* QUIC Front-End I/O API: Common Utilities
* ========================================
*/
/*
* Block until a predicate is met.
*
* Precondition: Must have a channel.
* Precondition: Must hold channel lock (unchecked).
*/
QUIC_NEEDS_LOCK
static int block_until_pred(QUIC_CONNECTION *qc,
int (*pred)(void *arg), void *pred_arg,
uint32_t flags)
{
QUIC_REACTOR *rtor;
assert(qc->ch != NULL);
/*
* Any attempt to block auto-disables tick inhibition as otherwise we will
* hang around forever.
*/
ossl_quic_engine_set_inhibit_tick(qc->engine, 0);
rtor = ossl_quic_channel_get_reactor(qc->ch);
return ossl_quic_reactor_block_until_pred(rtor, pred, pred_arg, flags,
qc->mutex);
}
static OSSL_TIME get_time(QUIC_CONNECTION *qc)
{
if (qc->override_now_cb != NULL)
return qc->override_now_cb(qc->override_now_cb_arg);
else
return ossl_time_now();
}
static OSSL_TIME get_time_cb(void *arg)
{
QUIC_CONNECTION *qc = arg;
return get_time(qc);
}
/*
* QCTX is a utility structure which provides information we commonly wish to
* unwrap upon an API call being dispatched to us, namely:
*
* - a pointer to the QUIC_CONNECTION (regardless of whether a QCSO or QSSO
* was passed);
* - a pointer to any applicable QUIC_XSO (e.g. if a QSSO was passed, or if
* a QCSO with a default stream was passed);
* - whether a QSSO was passed (xso == NULL must not be used to determine this
* because it may be non-NULL when a QCSO is passed if that QCSO has a
* default stream);
* - whether we are in "I/O context", meaning that non-normal errors can
* be reported via SSL_get_error() as well as via ERR. Functions such as
* SSL_read(), SSL_write() and SSL_do_handshake() are "I/O context"
* functions which are allowed to change the value returned by
* SSL_get_error. However, other functions (including functions which call
* SSL_do_handshake() implicitly) are not allowed to change the return value
* of SSL_get_error.
*/
struct qctx_st {
QUIC_CONNECTION *qc;
QUIC_XSO *xso;
int is_stream, in_io;
};
QUIC_NEEDS_LOCK
static void quic_set_last_error(QCTX *ctx, int last_error)
{
if (!ctx->in_io)
return;
if (ctx->is_stream && ctx->xso != NULL)
ctx->xso->last_error = last_error;
else if (!ctx->is_stream && ctx->qc != NULL)
ctx->qc->last_error = last_error;
}
/*
* Raise a 'normal' error, meaning one that can be reported via SSL_get_error()
* rather than via ERR. Note that normal errors must always be raised while
* holding a lock.
*/
QUIC_NEEDS_LOCK
static int quic_raise_normal_error(QCTX *ctx,
int err)
{
assert(ctx->in_io);
quic_set_last_error(ctx, err);
return 0;
}
/*
* Raise a 'non-normal' error, meaning any error that is not reported via
* SSL_get_error() and must be reported via ERR.
*
* qc should be provided if available. In exceptional circumstances when qc is
* not known NULL may be passed. This should generally only happen when an
* expect_...() function defined below fails, which generally indicates a
* dispatch error or caller error.
*
* ctx should be NULL if the connection lock is not held.
*/
static int quic_raise_non_normal_error(QCTX *ctx,
const char *file,
int line,
const char *func,
int reason,
const char *fmt,
...)
{
va_list args;
if (ctx != NULL) {
quic_set_last_error(ctx, SSL_ERROR_SSL);
if (reason == SSL_R_PROTOCOL_IS_SHUTDOWN && ctx->qc != NULL)
ossl_quic_channel_restore_err_state(ctx->qc->ch);
}
ERR_new();
ERR_set_debug(file, line, func);
va_start(args, fmt);
ERR_vset_error(ERR_LIB_SSL, reason, fmt, args);
va_end(args);
return 0;
}
#define QUIC_RAISE_NORMAL_ERROR(ctx, err) \
quic_raise_normal_error((ctx), (err))
#define QUIC_RAISE_NON_NORMAL_ERROR(ctx, reason, msg) \
quic_raise_non_normal_error((ctx), \
OPENSSL_FILE, OPENSSL_LINE, \
OPENSSL_FUNC, \
(reason), \
(msg))
/*
* Given a QCSO or QSSO, initialises a QCTX, determining the contextually
* applicable QUIC_CONNECTION pointer and, if applicable, QUIC_XSO pointer.
*
* After this returns 1, all fields of the passed QCTX are initialised.
* Returns 0 on failure. This function is intended to be used to provide API
* semantics and as such, it invokes QUIC_RAISE_NON_NORMAL_ERROR() on failure.
*/
static int expect_quic(const SSL *s, QCTX *ctx)
{
QUIC_CONNECTION *qc;
QUIC_XSO *xso;
ctx->qc = NULL;
ctx->xso = NULL;
ctx->is_stream = 0;
if (s == NULL)
return QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_PASSED_NULL_PARAMETER, NULL);
switch (s->type) {
case SSL_TYPE_QUIC_CONNECTION:
qc = (QUIC_CONNECTION *)s;
ctx->qc = qc;
ctx->xso = qc->default_xso;
ctx->is_stream = 0;
ctx->in_io = 0;
return 1;
case SSL_TYPE_QUIC_XSO:
xso = (QUIC_XSO *)s;
ctx->qc = xso->conn;
ctx->xso = xso;
ctx->is_stream = 1;
ctx->in_io = 0;
return 1;
default:
return QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL);
}
}
/*
* Like expect_quic(), but requires a QUIC_XSO be contextually available. In
* other words, requires that the passed QSO be a QSSO or a QCSO with a default
* stream.
*
* remote_init determines if we expect the default XSO to be remotely created or
* not. If it is -1, do not instantiate a default XSO if one does not yet exist.
*
* Channel mutex is acquired and retained on success.
*/
QUIC_ACQUIRES_LOCK
static int ossl_unused expect_quic_with_stream_lock(const SSL *s, int remote_init,
int in_io, QCTX *ctx)
{
if (!expect_quic(s, ctx))
return 0;
if (in_io)
quic_lock_for_io(ctx);
else
quic_lock(ctx->qc);
if (ctx->xso == NULL && remote_init >= 0) {
if (!quic_mutation_allowed(ctx->qc, /*req_active=*/0)) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
goto err;
}
/* If we haven't finished the handshake, try to advance it. */
if (quic_do_handshake(ctx) < 1)
/* ossl_quic_do_handshake raised error here */
goto err;
if (remote_init == 0) {
if (!qc_try_create_default_xso_for_write(ctx))
goto err;
} else {
if (!qc_wait_for_default_xso_for_read(ctx))
goto err;
}
ctx->xso = ctx->qc->default_xso;
}
if (ctx->xso == NULL) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_NO_STREAM, NULL);
goto err;
}
return 1; /* coverity[missing_unlock]: lock held */
err:
quic_unlock(ctx->qc);
return 0;
}
/*
* Like expect_quic(), but fails if called on a QUIC_XSO. ctx->xso may still
* be non-NULL if the QCSO has a default stream.
*/
static int ossl_unused expect_quic_conn_only(const SSL *s, QCTX *ctx)
{
if (!expect_quic(s, ctx))
return 0;
if (ctx->is_stream)
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_CONN_USE_ONLY, NULL);
return 1;
}
/*
* Ensures that the channel mutex is held for a method which touches channel
* state.
*
* Precondition: Channel mutex is not held (unchecked)
*/
static void quic_lock(QUIC_CONNECTION *qc)
{
#if defined(OPENSSL_THREADS)
ossl_crypto_mutex_lock(qc->mutex);
#endif
}
static void quic_lock_for_io(QCTX *ctx)
{
quic_lock(ctx->qc);
ctx->in_io = 1;
/*
* We are entering an I/O function so we must update the values returned by
* SSL_get_error and SSL_want. Set no error. This will be overridden later
* if a call to QUIC_RAISE_NORMAL_ERROR or QUIC_RAISE_NON_NORMAL_ERROR
* occurs during the API call.
*/
quic_set_last_error(ctx, SSL_ERROR_NONE);
}
/* Precondition: Channel mutex is held (unchecked) */
QUIC_NEEDS_LOCK
static void quic_unlock(QUIC_CONNECTION *qc)
{
#if defined(OPENSSL_THREADS)
ossl_crypto_mutex_unlock(qc->mutex);
#endif
}
/*
* This predicate is the criterion which should determine API call rejection for
* *most* mutating API calls, particularly stream-related operations for send
* parts.
*
* A call is rejected (this function returns 0) if shutdown is in progress
* (stream flushing), or we are in a TERMINATING or TERMINATED state. If
* req_active=1, the connection must be active (i.e., the IDLE state is also
* rejected).
*/
static int quic_mutation_allowed(QUIC_CONNECTION *qc, int req_active)
{
if (qc->shutting_down || ossl_quic_channel_is_term_any(qc->ch))
return 0;
if (req_active && !ossl_quic_channel_is_active(qc->ch))
return 0;
return 1;
}
/*
* QUIC Front-End I/O API: Initialization
* ======================================
*
* SSL_new => ossl_quic_new
* ossl_quic_init
* SSL_reset => ossl_quic_reset
* SSL_clear => ossl_quic_clear
* ossl_quic_deinit
* SSL_free => ossl_quic_free
*
* SSL_set_options => ossl_quic_set_options
* SSL_get_options => ossl_quic_get_options
* SSL_clear_options => ossl_quic_clear_options
*
*/
/* SSL_new */
SSL *ossl_quic_new(SSL_CTX *ctx)
{
QUIC_CONNECTION *qc = NULL;
SSL *ssl_base = NULL;
SSL_CONNECTION *sc = NULL;
qc = OPENSSL_zalloc(sizeof(*qc));
if (qc == NULL) {
QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_CRYPTO_LIB, NULL);
return NULL;
}
#if defined(OPENSSL_THREADS)
if ((qc->mutex = ossl_crypto_mutex_new()) == NULL) {
QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_CRYPTO_LIB, NULL);
goto err;
}
#endif
/* Initialise the QUIC_CONNECTION's stub header. */
ssl_base = &qc->ssl;
if (!ossl_ssl_init(ssl_base, ctx, ctx->method, SSL_TYPE_QUIC_CONNECTION)) {
ssl_base = NULL;
QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL);
goto err;
}
qc->tls = ossl_ssl_connection_new_int(ctx, TLS_method());
if (qc->tls == NULL || (sc = SSL_CONNECTION_FROM_SSL(qc->tls)) == NULL) {
QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL);
goto err;
}
/* override the user_ssl of the inner connection */
sc->s3.flags |= TLS1_FLAGS_QUIC;
/* Restrict options derived from the SSL_CTX. */
sc->options &= OSSL_QUIC_PERMITTED_OPTIONS_CONN;
sc->pha_enabled = 0;
#if !defined(OPENSSL_NO_QUIC_THREAD_ASSIST)
qc->is_thread_assisted
= (ssl_base->method == OSSL_QUIC_client_thread_method());
#endif
qc->as_server = 0; /* TODO(QUIC SERVER): add server support */
qc->as_server_state = qc->as_server;
qc->default_stream_mode = SSL_DEFAULT_STREAM_MODE_AUTO_BIDI;
qc->default_ssl_mode = qc->ssl.ctx->mode;
qc->default_ssl_options = qc->ssl.ctx->options & OSSL_QUIC_PERMITTED_OPTIONS;
qc->desires_blocking = 1;
qc->blocking = 0;
qc->incoming_stream_policy = SSL_INCOMING_STREAM_POLICY_AUTO;
qc->last_error = SSL_ERROR_NONE;
if (!create_channel(qc))
goto err;
ossl_quic_channel_set_msg_callback(qc->ch, ctx->msg_callback, ssl_base);
ossl_quic_channel_set_msg_callback_arg(qc->ch, ctx->msg_callback_arg);
qc_update_reject_policy(qc);
/*
* We do not create the default XSO yet. The reason for this is that the
* stream ID of the default XSO will depend on whether the stream is client
* or server-initiated, which depends on who transmits first. Since we do
* not know whether the application will be using a client-transmits-first
* or server-transmits-first protocol, we defer default XSO creation until
* the client calls SSL_read() or SSL_write(). If it calls SSL_read() first,
* we take that as a cue that the client is expecting a server-initiated
* stream, and vice versa if SSL_write() is called first.
*/
return ssl_base;
err:
if (ssl_base == NULL) {
#if defined(OPENSSL_THREADS)
ossl_crypto_mutex_free(qc->mutex);
#endif
OPENSSL_free(qc);
} else {
SSL_free(ssl_base);
}
return NULL;
}
/* SSL_free */
QUIC_TAKES_LOCK
void ossl_quic_free(SSL *s)
{
QCTX ctx;
int is_default;
/* We should never be called on anything but a QSO. */
if (!expect_quic(s, &ctx))
return;
quic_lock(ctx.qc);
if (ctx.is_stream) {
/*
* When a QSSO is freed, the XSO is freed immediately, because the XSO
* itself only contains API personality layer data. However the
* underlying QUIC_STREAM is not freed immediately but is instead marked
* as deleted for later collection.
*/
assert(ctx.qc->num_xso > 0);
--ctx.qc->num_xso;
/* If a stream's send part has not been finished, auto-reset it. */
if (( ctx.xso->stream->send_state == QUIC_SSTREAM_STATE_READY
|| ctx.xso->stream->send_state == QUIC_SSTREAM_STATE_SEND)
&& !ossl_quic_sstream_get_final_size(ctx.xso->stream->sstream, NULL))
ossl_quic_stream_map_reset_stream_send_part(ossl_quic_channel_get_qsm(ctx.qc->ch),
ctx.xso->stream, 0);
/* Do STOP_SENDING for the receive part, if applicable. */
if ( ctx.xso->stream->recv_state == QUIC_RSTREAM_STATE_RECV
|| ctx.xso->stream->recv_state == QUIC_RSTREAM_STATE_SIZE_KNOWN)
ossl_quic_stream_map_stop_sending_recv_part(ossl_quic_channel_get_qsm(ctx.qc->ch),
ctx.xso->stream, 0);
/* Update stream state. */
ctx.xso->stream->deleted = 1;
ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(ctx.qc->ch),
ctx.xso->stream);
is_default = (ctx.xso == ctx.qc->default_xso);
quic_unlock(ctx.qc);
/*
* Unref the connection in most cases; the XSO has a ref to the QC and
* not vice versa. But for a default XSO, to avoid circular references,
* the QC refs the XSO but the XSO does not ref the QC. If we are the
* default XSO, we only get here when the QC is being torn down anyway,
* so don't call SSL_free(qc) as we are already in it.
*/
if (!is_default)
SSL_free(&ctx.qc->ssl);
/* Note: SSL_free calls OPENSSL_free(xso) for us */
return;
}
/*
* Free the default XSO, if any. The QUIC_STREAM is not deleted at this
* stage, but is freed during the channel free when the whole QSM is freed.
*/
if (ctx.qc->default_xso != NULL) {
QUIC_XSO *xso = ctx.qc->default_xso;
quic_unlock(ctx.qc);
SSL_free(&xso->ssl);
quic_lock(ctx.qc);
ctx.qc->default_xso = NULL;
}
/* Ensure we have no remaining XSOs. */
assert(ctx.qc->num_xso == 0);
#if !defined(OPENSSL_NO_QUIC_THREAD_ASSIST)
if (ctx.qc->is_thread_assisted && ctx.qc->started) {
ossl_quic_thread_assist_wait_stopped(&ctx.qc->thread_assist);
ossl_quic_thread_assist_cleanup(&ctx.qc->thread_assist);
}
#endif
ossl_quic_channel_free(ctx.qc->ch);
ossl_quic_port_free(ctx.qc->port);
ossl_quic_engine_free(ctx.qc->engine);
BIO_free_all(ctx.qc->net_rbio);
BIO_free_all(ctx.qc->net_wbio);
/* Note: SSL_free calls OPENSSL_free(qc) for us */
SSL_free(ctx.qc->tls);
quic_unlock(ctx.qc); /* tsan doesn't like freeing locked mutexes */
#if defined(OPENSSL_THREADS)
ossl_crypto_mutex_free(&ctx.qc->mutex);
#endif
}
/* SSL method init */
int ossl_quic_init(SSL *s)
{
/* Same op as SSL_clear, forward the call. */
return ossl_quic_clear(s);
}
/* SSL method deinit */
void ossl_quic_deinit(SSL *s)
{
/* No-op. */
}
/* SSL_clear (ssl_reset method) */
int ossl_quic_reset(SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
ERR_raise(ERR_LIB_SSL, ERR_R_UNSUPPORTED);
return 0;
}
/* ssl_clear method (unused) */
int ossl_quic_clear(SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
ERR_raise(ERR_LIB_SSL, ERR_R_UNSUPPORTED);
return 0;
}
int ossl_quic_conn_set_override_now_cb(SSL *s,
OSSL_TIME (*now_cb)(void *arg),
void *now_cb_arg)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
quic_lock(ctx.qc);
ctx.qc->override_now_cb = now_cb;
ctx.qc->override_now_cb_arg = now_cb_arg;
quic_unlock(ctx.qc);
return 1;
}
void ossl_quic_conn_force_assist_thread_wake(SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return;
#if !defined(OPENSSL_NO_QUIC_THREAD_ASSIST)
if (ctx.qc->is_thread_assisted && ctx.qc->started)
ossl_quic_thread_assist_notify_deadline_changed(&ctx.qc->thread_assist);
#endif
}
QUIC_NEEDS_LOCK
static void qc_touch_default_xso(QUIC_CONNECTION *qc)
{
qc->default_xso_created = 1;
qc_update_reject_policy(qc);
}
/*
* Changes default XSO. Allows caller to keep reference to the old default XSO
* (if any). Reference to new XSO is transferred from caller.
*/
QUIC_NEEDS_LOCK
static void qc_set_default_xso_keep_ref(QUIC_CONNECTION *qc, QUIC_XSO *xso,
int touch,
QUIC_XSO **old_xso)
{
int refs;
*old_xso = NULL;
if (qc->default_xso != xso) {
*old_xso = qc->default_xso; /* transfer old XSO ref to caller */
qc->default_xso = xso;
if (xso == NULL) {
/*
* Changing to not having a default XSO. XSO becomes standalone and
* now has a ref to the QC.
*/
if (!ossl_assert(SSL_up_ref(&qc->ssl)))
return;
} else {
/*
* Changing from not having a default XSO to having one. The new XSO
* will have had a reference to the QC we need to drop to avoid a
* circular reference.
*
* Currently we never change directly from one default XSO to
* another, though this function would also still be correct if this
* weren't the case.
*/
assert(*old_xso == NULL);
CRYPTO_DOWN_REF(&qc->ssl.references, &refs);
assert(refs > 0);
}
}
if (touch)
qc_touch_default_xso(qc);
}
/*
* Changes default XSO, releasing the reference to any previous default XSO.
* Reference to new XSO is transferred from caller.
*/
QUIC_NEEDS_LOCK
static void qc_set_default_xso(QUIC_CONNECTION *qc, QUIC_XSO *xso, int touch)
{
QUIC_XSO *old_xso = NULL;
qc_set_default_xso_keep_ref(qc, xso, touch, &old_xso);
if (old_xso != NULL)
SSL_free(&old_xso->ssl);
}
QUIC_NEEDS_LOCK
static void xso_update_options(QUIC_XSO *xso)
{
int cleanse = ((xso->ssl_options & SSL_OP_CLEANSE_PLAINTEXT) != 0);
if (xso->stream->rstream != NULL)
ossl_quic_rstream_set_cleanse(xso->stream->rstream, cleanse);
if (xso->stream->sstream != NULL)
ossl_quic_sstream_set_cleanse(xso->stream->sstream, cleanse);
}
/*
* SSL_set_options
* ---------------
*
* Setting options on a QCSO
* - configures the handshake-layer options;
* - configures the default data-plane options for new streams;
* - configures the data-plane options on the default XSO, if there is one.
*
* Setting options on a QSSO
* - configures data-plane options for that stream only.
*/
QUIC_TAKES_LOCK
static uint64_t quic_mask_or_options(SSL *ssl, uint64_t mask_value, uint64_t or_value)
{
QCTX ctx;
uint64_t hs_mask_value, hs_or_value, ret;
if (!expect_quic(ssl, &ctx))
return 0;
quic_lock(ctx.qc);
if (!ctx.is_stream) {
/*
* If we were called on the connection, we apply any handshake option
* changes.
*/
hs_mask_value = (mask_value & OSSL_QUIC_PERMITTED_OPTIONS_CONN);
hs_or_value = (or_value & OSSL_QUIC_PERMITTED_OPTIONS_CONN);
SSL_clear_options(ctx.qc->tls, hs_mask_value);
SSL_set_options(ctx.qc->tls, hs_or_value);
/* Update defaults for new streams. */
ctx.qc->default_ssl_options
= ((ctx.qc->default_ssl_options & ~mask_value) | or_value)
& OSSL_QUIC_PERMITTED_OPTIONS;
}
if (ctx.xso != NULL) {
ctx.xso->ssl_options
= ((ctx.xso->ssl_options & ~mask_value) | or_value)
& OSSL_QUIC_PERMITTED_OPTIONS_STREAM;
xso_update_options(ctx.xso);
}
ret = ctx.is_stream ? ctx.xso->ssl_options : ctx.qc->default_ssl_options;
quic_unlock(ctx.qc);
return ret;
}
uint64_t ossl_quic_set_options(SSL *ssl, uint64_t options)
{
return quic_mask_or_options(ssl, 0, options);
}
/* SSL_clear_options */
uint64_t ossl_quic_clear_options(SSL *ssl, uint64_t options)
{
return quic_mask_or_options(ssl, options, 0);
}
/* SSL_get_options */
uint64_t ossl_quic_get_options(const SSL *ssl)
{
return quic_mask_or_options((SSL *)ssl, 0, 0);
}
/*
* QUIC Front-End I/O API: Network BIO Configuration
* =================================================
*
* Handling the different BIOs is difficult:
*
* - It is more or less a requirement that we use non-blocking network I/O;
* we need to be able to have timeouts on recv() calls, and make best effort
* (non blocking) send() and recv() calls.
*
* The only sensible way to do this is to configure the socket into
* non-blocking mode. We could try to do select() before calling send() or
* recv() to get a guarantee that the call will not block, but this will
* probably run into issues with buggy OSes which generate spurious socket
* readiness events. In any case, relying on this to work reliably does not
* seem sane.
*
* Timeouts could be handled via setsockopt() socket timeout options, but
* this depends on OS support and adds another syscall to every network I/O
* operation. It also has obvious thread safety concerns if we want to move
* to concurrent use of a single socket at some later date.
*
* Some OSes support a MSG_DONTWAIT flag which allows a single I/O option to
* be made non-blocking. However some OSes (e.g. Windows) do not support
* this, so we cannot rely on this.
*
* As such, we need to configure any FD in non-blocking mode. This may
* confound users who pass a blocking socket to libssl. However, in practice
* it would be extremely strange for a user of QUIC to pass an FD to us,
* then also try and send receive traffic on the same socket(!). Thus the
* impact of this should be limited, and can be documented.
*
* - We support both blocking and non-blocking operation in terms of the API
* presented to the user. One prospect is to set the blocking mode based on
* whether the socket passed to us was already in blocking mode. However,
* Windows has no API for determining if a socket is in blocking mode (!),
* therefore this cannot be done portably. Currently therefore we expose an
* explicit API call to set this, and default to blocking mode.
*
* - We need to determine our initial destination UDP address. The "natural"
* way for a user to do this is to set the peer variable on a BIO_dgram.
* However, this has problems because BIO_dgram's peer variable is used for
* both transmission and reception. This means it can be constantly being
* changed to a malicious value (e.g. if some random unrelated entity on the
* network starts sending traffic to us) on every read call. This is not a
* direct issue because we use the 'stateless' BIO_sendmmsg and BIO_recvmmsg
* calls only, which do not use this variable. However, we do need to let
* the user specify the peer in a 'normal' manner. The compromise here is
* that we grab the current peer value set at the time the write BIO is set
* and do not read the value again.
*
* - We also need to support memory BIOs (e.g. BIO_dgram_pair) or custom BIOs.
* Currently we do this by only supporting non-blocking mode.
*
*/
/*
* Determines what initial destination UDP address we should use, if possible.
* If this fails the client must set the destination address manually, or use a
* BIO which does not need a destination address.
*/
static int csm_analyse_init_peer_addr(BIO *net_wbio, BIO_ADDR *peer)
{
if (BIO_dgram_detect_peer_addr(net_wbio, peer) <= 0)
return 0;
return 1;
}
static int qc_can_support_blocking_cached(QUIC_CONNECTION *qc)
{
QUIC_REACTOR *rtor = ossl_quic_channel_get_reactor(qc->ch);
return ossl_quic_reactor_can_poll_r(rtor)
&& ossl_quic_reactor_can_poll_w(rtor);
}
static void qc_update_can_support_blocking(QUIC_CONNECTION *qc)
{
ossl_quic_port_update_poll_descriptors(qc->port); /* best effort */
}
static void qc_update_blocking_mode(QUIC_CONNECTION *qc)
{
qc->blocking = qc->desires_blocking && qc_can_support_blocking_cached(qc);
}
void ossl_quic_conn_set0_net_rbio(SSL *s, BIO *net_rbio)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return;
if (ctx.qc->net_rbio == net_rbio)
return;
if (!ossl_quic_port_set_net_rbio(ctx.qc->port, net_rbio))
return;
BIO_free_all(ctx.qc->net_rbio);
ctx.qc->net_rbio = net_rbio;
if (net_rbio != NULL)
BIO_set_nbio(net_rbio, 1); /* best effort autoconfig */
/*
* Determine if the current pair of read/write BIOs now set allows blocking
* mode to be supported.
*/
qc_update_can_support_blocking(ctx.qc);
qc_update_blocking_mode(ctx.qc);
}
void ossl_quic_conn_set0_net_wbio(SSL *s, BIO *net_wbio)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return;
if (ctx.qc->net_wbio == net_wbio)
return;
if (!ossl_quic_port_set_net_wbio(ctx.qc->port, net_wbio))
return;
BIO_free_all(ctx.qc->net_wbio);
ctx.qc->net_wbio = net_wbio;
if (net_wbio != NULL)
BIO_set_nbio(net_wbio, 1); /* best effort autoconfig */
/*
* Determine if the current pair of read/write BIOs now set allows blocking
* mode to be supported.
*/
qc_update_can_support_blocking(ctx.qc);
qc_update_blocking_mode(ctx.qc);
}
BIO *ossl_quic_conn_get_net_rbio(const SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return NULL;
return ctx.qc->net_rbio;
}
BIO *ossl_quic_conn_get_net_wbio(const SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return NULL;
return ctx.qc->net_wbio;
}
int ossl_quic_conn_get_blocking_mode(const SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
if (ctx.is_stream)
return xso_blocking_mode(ctx.xso);
return qc_blocking_mode(ctx.qc);
}
QUIC_TAKES_LOCK
int ossl_quic_conn_set_blocking_mode(SSL *s, int blocking)
{
int ret = 0;
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
quic_lock(ctx.qc);
/* Sanity check - can we support the request given the current network BIO? */
if (blocking) {
/*
* If called directly on a QCSO, update our information on network BIO
* capabilities.
*/
if (!ctx.is_stream)
qc_update_can_support_blocking(ctx.qc);
/* Cannot enable blocking mode if we do not have pollable FDs. */
if (!qc_can_support_blocking_cached(ctx.qc)) {
ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_UNSUPPORTED, NULL);
goto out;
}
}
if (!ctx.is_stream)
/*
* If called directly on a QCSO, update default and connection-level
* blocking modes.
*/
ctx.qc->desires_blocking = (blocking != 0);
if (ctx.xso != NULL) {
/*
* If called on a QSSO or a QCSO with a default XSO, update the blocking
* mode.
*/
ctx.xso->desires_blocking = (blocking != 0);
ctx.xso->desires_blocking_set = 1;
}
ret = 1;
out:
qc_update_blocking_mode(ctx.qc);
quic_unlock(ctx.qc);
return ret;
}
int ossl_quic_conn_set_initial_peer_addr(SSL *s,
const BIO_ADDR *peer_addr)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
if (ctx.qc->started)
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED,
NULL);
if (peer_addr == NULL) {
BIO_ADDR_clear(&ctx.qc->init_peer_addr);
return 1;
}
ctx.qc->init_peer_addr = *peer_addr;
return 1;
}
/*
* QUIC Front-End I/O API: Asynchronous I/O Management
* ===================================================
*
* (BIO/)SSL_handle_events => ossl_quic_handle_events
* (BIO/)SSL_get_event_timeout => ossl_quic_get_event_timeout
* (BIO/)SSL_get_poll_fd => ossl_quic_get_poll_fd
*
*/
/* Returns 1 if the connection is being used in blocking mode. */
static int qc_blocking_mode(const QUIC_CONNECTION *qc)
{
return qc->blocking;
}
static int xso_blocking_mode(const QUIC_XSO *xso)
{
if (xso->desires_blocking_set)
return xso->desires_blocking && qc_can_support_blocking_cached(xso->conn);
else
/* Only ever set if we can support blocking. */
return xso->conn->blocking;
}
/* SSL_handle_events; performs QUIC I/O and timeout processing. */
QUIC_TAKES_LOCK
int ossl_quic_handle_events(SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
quic_lock(ctx.qc);
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0);
quic_unlock(ctx.qc);
return 1;
}
/*
* SSL_get_event_timeout. Get the time in milliseconds until the SSL object
* should next have events handled by the application by calling
* SSL_handle_events(). tv is set to 0 if the object should have events handled
* immediately. If no timeout is currently active, *is_infinite is set to 1 and
* the value of *tv is undefined.
*/
QUIC_TAKES_LOCK
int ossl_quic_get_event_timeout(SSL *s, struct timeval *tv, int *is_infinite)
{
QCTX ctx;
OSSL_TIME deadline = ossl_time_infinite();
if (!expect_quic(s, &ctx))
return 0;
quic_lock(ctx.qc);
deadline
= ossl_quic_reactor_get_tick_deadline(ossl_quic_channel_get_reactor(ctx.qc->ch));
if (ossl_time_is_infinite(deadline)) {
*is_infinite = 1;
/*
* Robustness against faulty applications that don't check *is_infinite;
* harmless long timeout.
*/
tv->tv_sec = 1000000;
tv->tv_usec = 0;
quic_unlock(ctx.qc);
return 1;
}
*tv = ossl_time_to_timeval(ossl_time_subtract(deadline, get_time(ctx.qc)));
*is_infinite = 0;
quic_unlock(ctx.qc);
return 1;
}
/* SSL_get_rpoll_descriptor */
int ossl_quic_get_rpoll_descriptor(SSL *s, BIO_POLL_DESCRIPTOR *desc)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
if (desc == NULL || ctx.qc->net_rbio == NULL)
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT,
NULL);
return BIO_get_rpoll_descriptor(ctx.qc->net_rbio, desc);
}
/* SSL_get_wpoll_descriptor */
int ossl_quic_get_wpoll_descriptor(SSL *s, BIO_POLL_DESCRIPTOR *desc)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
if (desc == NULL || ctx.qc->net_wbio == NULL)
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT,
NULL);
return BIO_get_wpoll_descriptor(ctx.qc->net_wbio, desc);
}
/* SSL_net_read_desired */
QUIC_TAKES_LOCK
int ossl_quic_get_net_read_desired(SSL *s)
{
QCTX ctx;
int ret;
if (!expect_quic(s, &ctx))
return 0;
quic_lock(ctx.qc);
ret = ossl_quic_reactor_net_read_desired(ossl_quic_channel_get_reactor(ctx.qc->ch));
quic_unlock(ctx.qc);
return ret;
}
/* SSL_net_write_desired */
QUIC_TAKES_LOCK
int ossl_quic_get_net_write_desired(SSL *s)
{
int ret;
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
quic_lock(ctx.qc);
ret = ossl_quic_reactor_net_write_desired(ossl_quic_channel_get_reactor(ctx.qc->ch));
quic_unlock(ctx.qc);
return ret;
}
/*
* QUIC Front-End I/O API: Connection Lifecycle Operations
* =======================================================
*
* SSL_do_handshake => ossl_quic_do_handshake
* SSL_set_connect_state => ossl_quic_set_connect_state
* SSL_set_accept_state => ossl_quic_set_accept_state
* SSL_shutdown => ossl_quic_shutdown
* SSL_ctrl => ossl_quic_ctrl
* (BIO/)SSL_connect => ossl_quic_connect
* (BIO/)SSL_accept => ossl_quic_accept
*
*/
QUIC_NEEDS_LOCK
static void qc_shutdown_flush_init(QUIC_CONNECTION *qc)
{
QUIC_STREAM_MAP *qsm;
if (qc->shutting_down)
return;
qsm = ossl_quic_channel_get_qsm(qc->ch);
ossl_quic_stream_map_begin_shutdown_flush(qsm);
qc->shutting_down = 1;
}
/* Returns 1 if all shutdown-flush streams have been done with. */
QUIC_NEEDS_LOCK
static int qc_shutdown_flush_finished(QUIC_CONNECTION *qc)
{
QUIC_STREAM_MAP *qsm = ossl_quic_channel_get_qsm(qc->ch);
return qc->shutting_down
&& ossl_quic_stream_map_is_shutdown_flush_finished(qsm);
}
/* SSL_shutdown */
static int quic_shutdown_wait(void *arg)
{
QUIC_CONNECTION *qc = arg;
return ossl_quic_channel_is_terminated(qc->ch);
}
/* Returns 1 if shutdown flush process has finished or is inapplicable. */
static int quic_shutdown_flush_wait(void *arg)
{
QUIC_CONNECTION *qc = arg;
return ossl_quic_channel_is_term_any(qc->ch)
|| qc_shutdown_flush_finished(qc);
}
static int quic_shutdown_peer_wait(void *arg)
{
QUIC_CONNECTION *qc = arg;
return ossl_quic_channel_is_term_any(qc->ch);
}
QUIC_TAKES_LOCK
int ossl_quic_conn_shutdown(SSL *s, uint64_t flags,
const SSL_SHUTDOWN_EX_ARGS *args,
size_t args_len)
{
int ret;
QCTX ctx;
int stream_flush = ((flags & SSL_SHUTDOWN_FLAG_NO_STREAM_FLUSH) == 0);
int no_block = ((flags & SSL_SHUTDOWN_FLAG_NO_BLOCK) != 0);
int wait_peer = ((flags & SSL_SHUTDOWN_FLAG_WAIT_PEER) != 0);
if (!expect_quic(s, &ctx))
return -1;
if (ctx.is_stream) {
QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_CONN_USE_ONLY, NULL);
return -1;
}
quic_lock(ctx.qc);
if (ossl_quic_channel_is_terminated(ctx.qc->ch)) {
quic_unlock(ctx.qc);
return 1;
}
/* Phase 1: Stream Flushing */
if (!wait_peer && stream_flush) {
qc_shutdown_flush_init(ctx.qc);
if (!qc_shutdown_flush_finished(ctx.qc)) {
if (!no_block && qc_blocking_mode(ctx.qc)) {
ret = block_until_pred(ctx.qc, quic_shutdown_flush_wait, ctx.qc, 0);
if (ret < 1) {
ret = 0;
goto err;
}
} else {
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0);
}
}
if (!qc_shutdown_flush_finished(ctx.qc)) {
quic_unlock(ctx.qc);
return 0; /* ongoing */
}
}
/* Phase 2: Connection Closure */
if (wait_peer && !ossl_quic_channel_is_term_any(ctx.qc->ch)) {
if (!no_block && qc_blocking_mode(ctx.qc)) {
ret = block_until_pred(ctx.qc, quic_shutdown_peer_wait, ctx.qc, 0);
if (ret < 1) {
ret = 0;
goto err;
}
} else {
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0);
}
if (!ossl_quic_channel_is_term_any(ctx.qc->ch)) {
ret = 0; /* peer hasn't closed yet - still not done */
goto err;
}
/*
* We are at least terminating - go through the normal process of
* waiting until we are in the TERMINATED state.
*/
}
/* Block mutation ops regardless of if we did stream flush. */
ctx.qc->shutting_down = 1;
/*
* This call is a no-op if we are already terminating, so it doesn't
* affect the wait_peer case.
*/
ossl_quic_channel_local_close(ctx.qc->ch,
args != NULL ? args->quic_error_code : 0,
args != NULL ? args->quic_reason : NULL);
SSL_set_shutdown(ctx.qc->tls, SSL_SENT_SHUTDOWN);
if (ossl_quic_channel_is_terminated(ctx.qc->ch)) {
quic_unlock(ctx.qc);
return 1;
}
/* Phase 3: Terminating Wait Time */
if (!no_block && qc_blocking_mode(ctx.qc)
&& (flags & SSL_SHUTDOWN_FLAG_RAPID) == 0) {
ret = block_until_pred(ctx.qc, quic_shutdown_wait, ctx.qc, 0);
if (ret < 1) {
ret = 0;
goto err;
}
} else {
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0);
}
ret = ossl_quic_channel_is_terminated(ctx.qc->ch);
err:
quic_unlock(ctx.qc);
return ret;
}
/* SSL_ctrl */
long ossl_quic_ctrl(SSL *s, int cmd, long larg, void *parg)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
switch (cmd) {
case SSL_CTRL_MODE:
/* If called on a QCSO, update the default mode. */
if (!ctx.is_stream)
ctx.qc->default_ssl_mode |= (uint32_t)larg;
/*
* If we were called on a QSSO or have a default stream, we also update
* that.
*/
if (ctx.xso != NULL) {
/* Cannot enable EPW while AON write in progress. */
if (ctx.xso->aon_write_in_progress)
larg &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
ctx.xso->ssl_mode |= (uint32_t)larg;
return ctx.xso->ssl_mode;
}
return ctx.qc->default_ssl_mode;
case SSL_CTRL_CLEAR_MODE:
if (!ctx.is_stream)
ctx.qc->default_ssl_mode &= ~(uint32_t)larg;
if (ctx.xso != NULL) {
ctx.xso->ssl_mode &= ~(uint32_t)larg;
return ctx.xso->ssl_mode;
}
return ctx.qc->default_ssl_mode;
case SSL_CTRL_SET_MSG_CALLBACK_ARG:
ossl_quic_channel_set_msg_callback_arg(ctx.qc->ch, parg);
/* This ctrl also needs to be passed to the internal SSL object */
return SSL_ctrl(ctx.qc->tls, cmd, larg, parg);
case DTLS_CTRL_GET_TIMEOUT: /* DTLSv1_get_timeout */
{
int is_infinite;
if (!ossl_quic_get_event_timeout(s, parg, &is_infinite))
return 0;
return !is_infinite;
}
case DTLS_CTRL_HANDLE_TIMEOUT: /* DTLSv1_handle_timeout */
/* For legacy compatibility with DTLS calls. */
return ossl_quic_handle_events(s) == 1 ? 1 : -1;
/* Mask ctrls we shouldn't support for QUIC. */
case SSL_CTRL_GET_READ_AHEAD:
case SSL_CTRL_SET_READ_AHEAD:
case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
case SSL_CTRL_SET_MAX_PIPELINES:
return 0;
default:
/*
* Probably a TLS related ctrl. Send back to the frontend SSL_ctrl
* implementation. Either SSL_ctrl will handle it itself by direct
* access into handshake layer state, or failing that, it will be passed
* to the handshake layer via the SSL_METHOD vtable. If the ctrl is not
* supported by anything, the handshake layer's ctrl method will finally
* return 0.
*/
return ossl_ctrl_internal(&ctx.qc->ssl, cmd, larg, parg, /*no_quic=*/1);
}
}
/* SSL_set_connect_state */
void ossl_quic_set_connect_state(SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return;
/* Cannot be changed after handshake started */
if (ctx.qc->started || ctx.is_stream)
return;
ctx.qc->as_server_state = 0;
}
/* SSL_set_accept_state */
void ossl_quic_set_accept_state(SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return;
/* Cannot be changed after handshake started */
if (ctx.qc->started || ctx.is_stream)
return;
ctx.qc->as_server_state = 1;
}
/* SSL_do_handshake */
struct quic_handshake_wait_args {
QUIC_CONNECTION *qc;
};
static int tls_wants_non_io_retry(QUIC_CONNECTION *qc)
{
int want = SSL_want(qc->tls);
if (want == SSL_X509_LOOKUP
|| want == SSL_CLIENT_HELLO_CB
|| want == SSL_RETRY_VERIFY)
return 1;
return 0;
}
static int quic_handshake_wait(void *arg)
{
struct quic_handshake_wait_args *args = arg;
if (!quic_mutation_allowed(args->qc, /*req_active=*/1))
return -1;
if (ossl_quic_channel_is_handshake_complete(args->qc->ch))
return 1;
if (tls_wants_non_io_retry(args->qc))
return 1;
return 0;
}
static int configure_channel(QUIC_CONNECTION *qc)
{
assert(qc->ch != NULL);
if (!ossl_quic_port_set_net_rbio(qc->port, qc->net_rbio)
|| !ossl_quic_port_set_net_wbio(qc->port, qc->net_wbio)
|| !ossl_quic_channel_set_peer_addr(qc->ch, &qc->init_peer_addr))
return 0;
return 1;
}
QUIC_NEEDS_LOCK
static int create_channel(QUIC_CONNECTION *qc)
{
QUIC_ENGINE_ARGS engine_args = {0};
QUIC_PORT_ARGS port_args = {0};
engine_args.libctx = qc->ssl.ctx->libctx;
engine_args.propq = qc->ssl.ctx->propq;
engine_args.mutex = qc->mutex;
engine_args.now_cb = get_time_cb;
engine_args.now_cb_arg = qc;
qc->engine = ossl_quic_engine_new(&engine_args);
if (qc->engine == NULL) {
QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL);
return 0;
}
port_args.channel_ctx = qc->ssl.ctx;
qc->port = ossl_quic_engine_create_port(qc->engine, &port_args);
if (qc->port == NULL) {
QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL);
ossl_quic_engine_free(qc->engine);
return 0;
}
qc->ch = ossl_quic_port_create_outgoing(qc->port, qc->tls);
if (qc->ch == NULL) {
QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL);
ossl_quic_port_free(qc->port);
ossl_quic_engine_free(qc->engine);
return 0;
}
return 1;
}
/*
* Configures a channel with the information we have accumulated via calls made
* to us from the application prior to starting a handshake attempt.
*/
QUIC_NEEDS_LOCK
static int ensure_channel_started(QCTX *ctx)
{
QUIC_CONNECTION *qc = ctx->qc;
if (!qc->started) {
if (!configure_channel(qc)) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR,
"failed to configure channel");
return 0;
}
if (!ossl_quic_channel_start(qc->ch)) {
ossl_quic_channel_restore_err_state(qc->ch);
QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR,
"failed to start channel");
return 0;
}
#if !defined(OPENSSL_NO_QUIC_THREAD_ASSIST)
if (qc->is_thread_assisted)
if (!ossl_quic_thread_assist_init_start(&qc->thread_assist, qc->ch,
qc->override_now_cb,
qc->override_now_cb_arg)) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR,
"failed to start assist thread");
return 0;
}
#endif
}
qc->started = 1;
return 1;
}
QUIC_NEEDS_LOCK
static int quic_do_handshake(QCTX *ctx)
{
int ret;
QUIC_CONNECTION *qc = ctx->qc;
if (ossl_quic_channel_is_handshake_complete(qc->ch))
/* Handshake already completed. */
return 1;
if (!quic_mutation_allowed(qc, /*req_active=*/0))
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
if (qc->as_server != qc->as_server_state) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_PASSED_INVALID_ARGUMENT, NULL);
return -1; /* Non-protocol error */
}
if (qc->net_rbio == NULL || qc->net_wbio == NULL) {
/* Need read and write BIOs. */
QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_BIO_NOT_SET, NULL);
return -1; /* Non-protocol error */
}
/*
* We need to determine our addressing mode. There are basically two
* ways we can use L4 addresses:
*
* - Addressed mode, in which our BIO_sendmmsg calls have destination
* addresses attached to them which we expect the underlying network BIO
* to handle;
*
* - Unaddressed mode, in which the BIO provided to us on the
* network side neither provides us with L4 addresses nor is capable of
* honouring ones we provide. We don't know where the QUIC traffic we
* send ends up exactly and trust the application to know what it is
* doing.
*
* Addressed mode is preferred because it enables support for connection
* migration, multipath, etc. in the future. Addressed mode is automatically
* enabled if we are using e.g. BIO_s_datagram, with or without
* BIO_s_connect.
*
* If we are passed a BIO_s_dgram_pair (or some custom BIO) we may have to
* use unaddressed mode unless that BIO supports capability flags indicating
* it can provide and honour L4 addresses.
*
* Our strategy for determining address mode is simple: we probe the
* underlying network BIOs for their capabilities. If the network BIOs
* support what we need, we use addressed mode. Otherwise, we use
* unaddressed mode.
*
* If addressed mode is chosen, we require an initial peer address to be
* set. If this is not set, we fail. If unaddressed mode is used, we do not
* require this, as such an address is superfluous, though it can be set if
* desired.
*/
if (!qc->started && !qc->addressing_probe_done) {
long rcaps = BIO_dgram_get_effective_caps(qc->net_rbio);
long wcaps = BIO_dgram_get_effective_caps(qc->net_wbio);
qc->addressed_mode_r = ((rcaps & BIO_DGRAM_CAP_PROVIDES_SRC_ADDR) != 0);
qc->addressed_mode_w = ((wcaps & BIO_DGRAM_CAP_HANDLES_DST_ADDR) != 0);
qc->addressing_probe_done = 1;
}
if (!qc->started && qc->addressed_mode_w
&& BIO_ADDR_family(&qc->init_peer_addr) == AF_UNSPEC) {
/*
* We are trying to connect and are using addressed mode, which means we
* need an initial peer address; if we do not have a peer address yet,
* we should try to autodetect one.
*
* We do this as late as possible because some BIOs (e.g. BIO_s_connect)
* may not be able to provide us with a peer address until they have
* finished their own processing. They may not be able to perform this
* processing until an application has finished configuring that BIO
* (e.g. with setter calls), which might happen after SSL_set_bio is
* called.
*/
if (!csm_analyse_init_peer_addr(qc->net_wbio, &qc->init_peer_addr))
/* best effort */
BIO_ADDR_clear(&qc->init_peer_addr);
else
ossl_quic_channel_set_peer_addr(qc->ch, &qc->init_peer_addr);
}
if (!qc->started
&& qc->addressed_mode_w
&& BIO_ADDR_family(&qc->init_peer_addr) == AF_UNSPEC) {
/*
* If we still don't have a peer address in addressed mode, we can't do
* anything.
*/
QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_REMOTE_PEER_ADDRESS_NOT_SET, NULL);
return -1; /* Non-protocol error */
}
/*
* Start connection process. Note we may come here multiple times in
* non-blocking mode, which is fine.
*/
if (!ensure_channel_started(ctx)) /* raises on failure */
return -1; /* Non-protocol error */
if (ossl_quic_channel_is_handshake_complete(qc->ch))
/* The handshake is now done. */
return 1;
if (!qc_blocking_mode(qc)) {
/* Try to advance the reactor. */
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(qc->ch), 0);
if (ossl_quic_channel_is_handshake_complete(qc->ch))
/* The handshake is now done. */
return 1;
if (ossl_quic_channel_is_term_any(qc->ch)) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
return 0;
} else if (qc->desires_blocking) {
/*
* As a special case when doing a handshake when blocking mode is
* desired yet not available, see if the network BIOs have become
* poll descriptor-enabled. This supports BIOs such as BIO_s_connect
* which do late creation of socket FDs and therefore cannot expose
* a poll descriptor until after a network BIO is set on the QCSO.
*/
assert(!qc->blocking);
qc_update_can_support_blocking(qc);
qc_update_blocking_mode(qc);
}
}
/*
* We are either in blocking mode or just entered it due to the code above.
*/
if (qc_blocking_mode(qc)) {
/* In blocking mode, wait for the handshake to complete. */
struct quic_handshake_wait_args args;
args.qc = qc;
ret = block_until_pred(qc, quic_handshake_wait, &args, 0);
if (!quic_mutation_allowed(qc, /*req_active=*/1)) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
return 0; /* Shutdown before completion */
} else if (ret <= 0) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
return -1; /* Non-protocol error */
}
if (tls_wants_non_io_retry(qc)) {
QUIC_RAISE_NORMAL_ERROR(ctx, SSL_get_error(qc->tls, 0));
return -1;
}
assert(ossl_quic_channel_is_handshake_complete(qc->ch));
return 1;
}
if (tls_wants_non_io_retry(qc)) {
QUIC_RAISE_NORMAL_ERROR(ctx, SSL_get_error(qc->tls, 0));
return -1;
}
/*
* Otherwise, indicate that the handshake isn't done yet.
* We can only get here in non-blocking mode.
*/
QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_WANT_READ);
return -1; /* Non-protocol error */
}
QUIC_TAKES_LOCK
int ossl_quic_do_handshake(SSL *s)
{
int ret;
QCTX ctx;
if (!expect_quic(s, &ctx))
return 0;
quic_lock_for_io(&ctx);
ret = quic_do_handshake(&ctx);
quic_unlock(ctx.qc);
return ret;
}
/* SSL_connect */
int ossl_quic_connect(SSL *s)
{
/* Ensure we are in connect state (no-op if non-idle). */
ossl_quic_set_connect_state(s);
/* Begin or continue the handshake */
return ossl_quic_do_handshake(s);
}
/* SSL_accept */
int ossl_quic_accept(SSL *s)
{
/* Ensure we are in accept state (no-op if non-idle). */
ossl_quic_set_accept_state(s);
/* Begin or continue the handshake */
return ossl_quic_do_handshake(s);
}
/*
* QUIC Front-End I/O API: Stream Lifecycle Operations
* ===================================================
*
* SSL_stream_new => ossl_quic_conn_stream_new
*
*/
/*
* Try to create the default XSO if it doesn't already exist. Returns 1 if the
* default XSO was created. Returns 0 if it was not (e.g. because it already
* exists). Note that this is NOT an error condition.
*/
QUIC_NEEDS_LOCK
static int qc_try_create_default_xso_for_write(QCTX *ctx)
{
uint64_t flags = 0;
QUIC_CONNECTION *qc = ctx->qc;
if (qc->default_xso_created
|| qc->default_stream_mode == SSL_DEFAULT_STREAM_MODE_NONE)
/*
* We only do this once. If the user detaches a previously created
* default XSO we don't auto-create another one.
*/
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_NO_STREAM, NULL);
/* Create a locally-initiated stream. */
if (qc->default_stream_mode == SSL_DEFAULT_STREAM_MODE_AUTO_UNI)
flags |= SSL_STREAM_FLAG_UNI;
qc_set_default_xso(qc, (QUIC_XSO *)quic_conn_stream_new(ctx, flags,
/*needs_lock=*/0),
/*touch=*/0);
if (qc->default_xso == NULL)
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
qc_touch_default_xso(qc);
return 1;
}
struct quic_wait_for_stream_args {
QUIC_CONNECTION *qc;
QUIC_STREAM *qs;
QCTX *ctx;
uint64_t expect_id;
};
QUIC_NEEDS_LOCK
static int quic_wait_for_stream(void *arg)
{
struct quic_wait_for_stream_args *args = arg;
if (!quic_mutation_allowed(args->qc, /*req_active=*/1)) {
/* If connection is torn down due to an error while blocking, stop. */
QUIC_RAISE_NON_NORMAL_ERROR(args->ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
return -1;
}
args->qs = ossl_quic_stream_map_get_by_id(ossl_quic_channel_get_qsm(args->qc->ch),
args->expect_id | QUIC_STREAM_DIR_BIDI);
if (args->qs == NULL)
args->qs = ossl_quic_stream_map_get_by_id(ossl_quic_channel_get_qsm(args->qc->ch),
args->expect_id | QUIC_STREAM_DIR_UNI);
if (args->qs != NULL)
return 1; /* stream now exists */
return 0; /* did not get a stream, keep trying */
}
QUIC_NEEDS_LOCK
static int qc_wait_for_default_xso_for_read(QCTX *ctx)
{
/* Called on a QCSO and we don't currently have a default stream. */
uint64_t expect_id;
QUIC_CONNECTION *qc = ctx->qc;
QUIC_STREAM *qs;
int res;
struct quic_wait_for_stream_args wargs;
OSSL_RTT_INFO rtt_info;
/*
* If default stream functionality is disabled or we already detached
* one, don't make another default stream and just fail.
*/
if (qc->default_xso_created
|| qc->default_stream_mode == SSL_DEFAULT_STREAM_MODE_NONE)
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_NO_STREAM, NULL);
/*
* The peer may have opened a stream since we last ticked. So tick and
* see if the stream with ordinal 0 (remote, bidi/uni based on stream
* mode) exists yet. QUIC stream IDs must be allocated in order, so the
* first stream created by a peer must have an ordinal of 0.
*/
expect_id = qc->as_server
? QUIC_STREAM_INITIATOR_CLIENT
: QUIC_STREAM_INITIATOR_SERVER;
qs = ossl_quic_stream_map_get_by_id(ossl_quic_channel_get_qsm(qc->ch),
expect_id | QUIC_STREAM_DIR_BIDI);
if (qs == NULL)
qs = ossl_quic_stream_map_get_by_id(ossl_quic_channel_get_qsm(qc->ch),
expect_id | QUIC_STREAM_DIR_UNI);
if (qs == NULL) {
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(qc->ch), 0);
qs = ossl_quic_stream_map_get_by_id(ossl_quic_channel_get_qsm(qc->ch),
expect_id);
}
if (qs == NULL) {
if (!qc_blocking_mode(qc))
/* Non-blocking mode, so just bail immediately. */
return QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_WANT_READ);
/* Block until we have a stream. */
wargs.qc = qc;
wargs.qs = NULL;
wargs.ctx = ctx;
wargs.expect_id = expect_id;
res = block_until_pred(qc, quic_wait_for_stream, &wargs, 0);
if (res == 0)
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
else if (res < 0 || wargs.qs == NULL)
/* quic_wait_for_stream raised error here */
return 0;
qs = wargs.qs;
}
/*
* We now have qs != NULL. Remove it from the incoming stream queue so that
* it isn't also returned by any future SSL_accept_stream calls.
*/
ossl_statm_get_rtt_info(ossl_quic_channel_get_statm(qc->ch), &rtt_info);
ossl_quic_stream_map_remove_from_accept_queue(ossl_quic_channel_get_qsm(qc->ch),
qs, rtt_info.smoothed_rtt);
/*
* Now make qs the default stream, creating the necessary XSO.
*/
qc_set_default_xso(qc, create_xso_from_stream(qc, qs), /*touch=*/0);
if (qc->default_xso == NULL)
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
qc_touch_default_xso(qc); /* inhibits default XSO */
return 1;
}
QUIC_NEEDS_LOCK
static QUIC_XSO *create_xso_from_stream(QUIC_CONNECTION *qc, QUIC_STREAM *qs)
{
QUIC_XSO *xso = NULL;
if ((xso = OPENSSL_zalloc(sizeof(*xso))) == NULL) {
QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_CRYPTO_LIB, NULL);
goto err;
}
if (!ossl_ssl_init(&xso->ssl, qc->ssl.ctx, qc->ssl.method, SSL_TYPE_QUIC_XSO)) {
QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL);
goto err;
}
/* XSO refs QC */
if (!SSL_up_ref(&qc->ssl)) {
QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_SSL_LIB, NULL);
goto err;
}
xso->conn = qc;
xso->ssl_mode = qc->default_ssl_mode;
xso->ssl_options
= qc->default_ssl_options & OSSL_QUIC_PERMITTED_OPTIONS_STREAM;
xso->last_error = SSL_ERROR_NONE;
xso->stream = qs;
++qc->num_xso;
xso_update_options(xso);
return xso;
err:
OPENSSL_free(xso);
return NULL;
}
struct quic_new_stream_wait_args {
QUIC_CONNECTION *qc;
int is_uni;
};
static int quic_new_stream_wait(void *arg)
{
struct quic_new_stream_wait_args *args = arg;
QUIC_CONNECTION *qc = args->qc;
if (!quic_mutation_allowed(qc, /*req_active=*/1))
return -1;
if (ossl_quic_channel_is_new_local_stream_admissible(qc->ch, args->is_uni))
return 1;
return 0;
}
/* locking depends on need_lock */
static SSL *quic_conn_stream_new(QCTX *ctx, uint64_t flags, int need_lock)
{
int ret;
QUIC_CONNECTION *qc = ctx->qc;
QUIC_XSO *xso = NULL;
QUIC_STREAM *qs = NULL;
int is_uni = ((flags & SSL_STREAM_FLAG_UNI) != 0);
int no_blocking = ((flags & SSL_STREAM_FLAG_NO_BLOCK) != 0);
int advance = ((flags & SSL_STREAM_FLAG_ADVANCE) != 0);
if (need_lock)
quic_lock(qc);
if (!quic_mutation_allowed(qc, /*req_active=*/0)) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
goto err;
}
if (!advance
&& !ossl_quic_channel_is_new_local_stream_admissible(qc->ch, is_uni)) {
struct quic_new_stream_wait_args args;
/*
* Stream count flow control currently doesn't permit this stream to be
* opened.
*/
if (no_blocking || !qc_blocking_mode(qc)) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_STREAM_COUNT_LIMITED, NULL);
goto err;
}
args.qc = qc;
args.is_uni = is_uni;
/* Blocking mode - wait until we can get a stream. */
ret = block_until_pred(ctx->qc, quic_new_stream_wait, &args, 0);
if (!quic_mutation_allowed(qc, /*req_active=*/1)) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
goto err; /* Shutdown before completion */
} else if (ret <= 0) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
goto err; /* Non-protocol error */
}
}
qs = ossl_quic_channel_new_stream_local(qc->ch, is_uni);
if (qs == NULL) {
QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
goto err;
}
xso = create_xso_from_stream(qc, qs);
if (xso == NULL)
goto err;
qc_touch_default_xso(qc); /* inhibits default XSO */
if (need_lock)
quic_unlock(qc);
return &xso->ssl;
err:
OPENSSL_free(xso);
ossl_quic_stream_map_release(ossl_quic_channel_get_qsm(qc->ch), qs);
if (need_lock)
quic_unlock(qc);
return NULL;
}
QUIC_TAKES_LOCK
SSL *ossl_quic_conn_stream_new(SSL *s, uint64_t flags)
{
QCTX ctx;
if (!expect_quic_conn_only(s, &ctx))
return NULL;
return quic_conn_stream_new(&ctx, flags, /*need_lock=*/1);
}
/*
* QUIC Front-End I/O API: Steady-State Operations
* ===============================================
*
* Here we dispatch calls to the steady-state front-end I/O API functions; that
* is, the functions used during the established phase of a QUIC connection
* (e.g. SSL_read, SSL_write).
*
* Each function must handle both blocking and non-blocking modes. As discussed
* above, all QUIC I/O is implemented using non-blocking mode internally.
*
* SSL_get_error => partially implemented by ossl_quic_get_error
* SSL_want => ossl_quic_want
* (BIO/)SSL_read => ossl_quic_read
* (BIO/)SSL_write => ossl_quic_write
* SSL_pending => ossl_quic_pending
* SSL_stream_conclude => ossl_quic_conn_stream_conclude
* SSL_key_update => ossl_quic_key_update
*/
/* SSL_get_error */
int ossl_quic_get_error(const SSL *s, int i)
{
QCTX ctx;
int net_error, last_error;
if (!expect_quic(s, &ctx))
return 0;
quic_lock(ctx.qc);
net_error = ossl_quic_channel_net_error(ctx.qc->ch);
last_error = ctx.is_stream ? ctx.xso->last_error : ctx.qc->last_error;
quic_unlock(ctx.qc);
if (net_error)
return SSL_ERROR_SYSCALL;
return last_error;
}
/* Converts a code returned by SSL_get_error to a code returned by SSL_want. */
static int error_to_want(int error)
{
switch (error) {
case SSL_ERROR_WANT_CONNECT: /* never used - UDP is connectionless */
case SSL_ERROR_WANT_ACCEPT: /* never used - UDP is connectionless */
case SSL_ERROR_ZERO_RETURN:
default:
return SSL_NOTHING;
case SSL_ERROR_WANT_READ:
return SSL_READING;
case SSL_ERROR_WANT_WRITE:
return SSL_WRITING;
case SSL_ERROR_WANT_RETRY_VERIFY:
return SSL_RETRY_VERIFY;
case SSL_ERROR_WANT_CLIENT_HELLO_CB:
return SSL_CLIENT_HELLO_CB;
case SSL_ERROR_WANT_X509_LOOKUP:
return SSL_X509_LOOKUP;
}
}
/* SSL_want */
int ossl_quic_want(const SSL *s)
{
QCTX ctx;
int w;
if (!expect_quic(s, &ctx))
return SSL_NOTHING;
quic_lock(ctx.qc);
w = error_to_want(ctx.is_stream ? ctx.xso->last_error : ctx.qc->last_error);
quic_unlock(ctx.qc);
return w;
}
/*
* SSL_write
* ---------
*
* The set of functions below provide the implementation of the public SSL_write
* function. We must handle:
*
* - both blocking and non-blocking operation at the application level,
* depending on how we are configured;
*
* - SSL_MODE_ENABLE_PARTIAL_WRITE being on or off;
*
* - SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER.
*
*/
QUIC_NEEDS_LOCK
static void quic_post_write(QUIC_XSO *xso, int did_append,
int did_append_all, uint64_t flags,
int do_tick)
{
/*
* We have appended at least one byte to the stream.
* Potentially mark stream as active, depending on FC.
*/
if (did_append)
ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(xso->conn->ch),
xso->stream);
if (did_append_all && (flags & SSL_WRITE_FLAG_CONCLUDE) != 0)
ossl_quic_sstream_fin(xso->stream->sstream);
/*
* Try and send.
*
* TODO(QUIC FUTURE): It is probably inefficient to try and do this
* immediately, plus we should eventually consider Nagle's algorithm.
*/
if (do_tick)
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(xso->conn->ch), 0);
}
struct quic_write_again_args {
QUIC_XSO *xso;
const unsigned char *buf;
size_t len;
size_t total_written;
int err;
uint64_t flags;
};
/*
* Absolute maximum write buffer size, enforced to prevent a rogue peer from
* deliberately inducing DoS. This has been chosen based on the optimal buffer
* size for an RTT of 500ms and a bandwidth of 100 Mb/s.
*/
#define MAX_WRITE_BUF_SIZE (6 * 1024 * 1024)
/*
* Ensure spare buffer space available (up until a limit, at least).
*/
QUIC_NEEDS_LOCK
static int sstream_ensure_spare(QUIC_SSTREAM *sstream, uint64_t spare)
{
size_t cur_sz = ossl_quic_sstream_get_buffer_size(sstream);
size_t avail = ossl_quic_sstream_get_buffer_avail(sstream);
size_t spare_ = (spare > SIZE_MAX) ? SIZE_MAX : (size_t)spare;
size_t new_sz, growth;
if (spare_ <= avail || cur_sz == MAX_WRITE_BUF_SIZE)
return 1;
growth = spare_ - avail;
if (cur_sz + growth > MAX_WRITE_BUF_SIZE)
new_sz = MAX_WRITE_BUF_SIZE;
else
new_sz = cur_sz + growth;
return ossl_quic_sstream_set_buffer_size(sstream, new_sz);
}
/*
* Append to a QUIC_STREAM's QUIC_SSTREAM, ensuring buffer space is expanded
* as needed according to flow control.
*/
QUIC_NEEDS_LOCK
static int xso_sstream_append(QUIC_XSO *xso, const unsigned char *buf,
size_t len, size_t *actual_written)
{
QUIC_SSTREAM *sstream = xso->stream->sstream;
uint64_t cur = ossl_quic_sstream_get_cur_size(sstream);
uint64_t cwm = ossl_quic_txfc_get_cwm(&xso->stream->txfc);
uint64_t permitted = (cwm >= cur ? cwm - cur : 0);
if (len > permitted)
len = (size_t)permitted;
if (!sstream_ensure_spare(sstream, len))
return 0;
return ossl_quic_sstream_append(sstream, buf, len, actual_written);
}
QUIC_NEEDS_LOCK
static int quic_write_again(void *arg)
{
struct quic_write_again_args *args = arg;
size_t actual_written = 0;
if (!quic_mutation_allowed(args->xso->conn, /*req_active=*/1))
/* If connection is torn down due to an error while blocking, stop. */
return -2;
if (!quic_validate_for_write(args->xso, &args->err))
/*
* Stream may have become invalid for write due to connection events
* while we blocked.
*/
return -2;
args->err = ERR_R_INTERNAL_ERROR;
if (!xso_sstream_append(args->xso, args->buf, args->len, &actual_written))
return -2;
quic_post_write(args->xso, actual_written > 0,
args->len == actual_written, args->flags, 0);
args->buf += actual_written;
args->len -= actual_written;
args->total_written += actual_written;
if (args->len == 0)
/* Written everything, done. */
return 1;
/* Not written everything yet, keep trying. */
return 0;
}
QUIC_NEEDS_LOCK
static int quic_write_blocking(QCTX *ctx, const void *buf, size_t len,
uint64_t flags, size_t *written)
{
int res;
QUIC_XSO *xso = ctx->xso;
struct quic_write_again_args args;
size_t actual_written = 0;
/* First make a best effort to append as much of the data as possible. */
if (!xso_sstream_append(xso, buf, len, &actual_written)) {
/* Stream already finished or allocation error. */
*written = 0;
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
}
quic_post_write(xso, actual_written > 0, actual_written == len, flags, 1);
if (actual_written == len) {
/* Managed to append everything on the first try. */
*written = actual_written;
return 1;
}
/*
* We did not manage to append all of the data immediately, so the stream
* buffer has probably filled up. This means we need to block until some of
* it is freed up.
*/
args.xso = xso;
args.buf = (const unsigned char *)buf + actual_written;
args.len = len - actual_written;
args.total_written = 0;
args.err = ERR_R_INTERNAL_ERROR;
args.flags = flags;
res = block_until_pred(xso->conn, quic_write_again, &args, 0);
if (res <= 0) {
if (!quic_mutation_allowed(xso->conn, /*req_active=*/1))
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
else
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, args.err, NULL);
}
*written = args.total_written;
return 1;
}
/*
* Functions to manage All-or-Nothing (AON) (that is, non-ENABLE_PARTIAL_WRITE)
* write semantics.
*/
static void aon_write_begin(QUIC_XSO *xso, const unsigned char *buf,
size_t buf_len, size_t already_sent)
{
assert(!xso->aon_write_in_progress);
xso->aon_write_in_progress = 1;
xso->aon_buf_base = buf;
xso->aon_buf_pos = already_sent;
xso->aon_buf_len = buf_len;
}
static void aon_write_finish(QUIC_XSO *xso)
{
xso->aon_write_in_progress = 0;
xso->aon_buf_base = NULL;
xso->aon_buf_pos = 0;
xso->aon_buf_len = 0;
}
QUIC_NEEDS_LOCK
static int quic_write_nonblocking_aon(QCTX *ctx, const void *buf,
size_t len, uint64_t flags,
size_t *written)
{
QUIC_XSO *xso = ctx->xso;
const void *actual_buf;
size_t actual_len, actual_written = 0;
int accept_moving_buffer
= ((xso->ssl_mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER) != 0);
if (xso->aon_write_in_progress) {
/*
* We are in the middle of an AON write (i.e., a previous write did not
* manage to append all data to the SSTREAM and we have Enable Partial
* Write (EPW) mode disabled.)
*/
if ((!accept_moving_buffer && xso->aon_buf_base != buf)
|| len != xso->aon_buf_len)
/*
* Pointer must not have changed if we are not in accept moving
* buffer mode. Length must never change.
*/
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_BAD_WRITE_RETRY, NULL);
actual_buf = (unsigned char *)buf + xso->aon_buf_pos;
actual_len = len - xso->aon_buf_pos;
assert(actual_len > 0);
} else {
actual_buf = buf;
actual_len = len;
}
/* First make a best effort to append as much of the data as possible. */
if (!xso_sstream_append(xso, actual_buf, actual_len, &actual_written)) {
/* Stream already finished or allocation error. */
*written = 0;
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
}
quic_post_write(xso, actual_written > 0, actual_written == actual_len,
flags, 1);
if (actual_written == actual_len) {
/* We have sent everything. */
if (xso->aon_write_in_progress) {
/*
* We have sent everything, and we were in the middle of an AON
* write. The output write length is the total length of the AON
* buffer, not however many bytes we managed to write to the stream
* in this call.
*/
*written = xso->aon_buf_len;
aon_write_finish(xso);
} else {
*written = actual_written;
}
return 1;
}
if (xso->aon_write_in_progress) {
/*
* AON write is in progress but we have not written everything yet. We
* may have managed to send zero bytes, or some number of bytes less
* than the total remaining which need to be appended during this
* AON operation.
*/
xso->aon_buf_pos += actual_written;
assert(xso->aon_buf_pos < xso->aon_buf_len);
return QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_WANT_WRITE);
}
/*
* Not in an existing AON operation but partial write is not enabled, so we
* need to begin a new AON operation. However we needn't bother if we didn't
* actually append anything.
*/
if (actual_written > 0)
aon_write_begin(xso, buf, len, actual_written);
/*
* AON - We do not publicly admit to having appended anything until AON
* completes.
*/
*written = 0;
return QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_WANT_WRITE);
}
QUIC_NEEDS_LOCK
static int quic_write_nonblocking_epw(QCTX *ctx, const void *buf, size_t len,
uint64_t flags, size_t *written)
{
QUIC_XSO *xso = ctx->xso;
/* Simple best effort operation. */
if (!xso_sstream_append(xso, buf, len, written)) {
/* Stream already finished or allocation error. */
*written = 0;
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
}
quic_post_write(xso, *written > 0, *written == len, flags, 1);
return 1;
}
QUIC_NEEDS_LOCK
static int quic_validate_for_write(QUIC_XSO *xso, int *err)
{
QUIC_STREAM_MAP *qsm;
if (xso == NULL || xso->stream == NULL) {
*err = ERR_R_INTERNAL_ERROR;
return 0;
}
switch (xso->stream->send_state) {
default:
case QUIC_SSTREAM_STATE_NONE:
*err = SSL_R_STREAM_RECV_ONLY;
return 0;
case QUIC_SSTREAM_STATE_READY:
qsm = ossl_quic_channel_get_qsm(xso->conn->ch);
if (!ossl_quic_stream_map_ensure_send_part_id(qsm, xso->stream)) {
*err = ERR_R_INTERNAL_ERROR;
return 0;
}
/* FALLTHROUGH */
case QUIC_SSTREAM_STATE_SEND:
case QUIC_SSTREAM_STATE_DATA_SENT:
case QUIC_SSTREAM_STATE_DATA_RECVD:
if (ossl_quic_sstream_get_final_size(xso->stream->sstream, NULL)) {
*err = SSL_R_STREAM_FINISHED;
return 0;
}
return 1;
case QUIC_SSTREAM_STATE_RESET_SENT:
case QUIC_SSTREAM_STATE_RESET_RECVD:
*err = SSL_R_STREAM_RESET;
return 0;
}
}
QUIC_TAKES_LOCK
int ossl_quic_write_flags(SSL *s, const void *buf, size_t len,
uint64_t flags, size_t *written)
{
int ret;
QCTX ctx;
int partial_write, err;
*written = 0;
if (!expect_quic_with_stream_lock(s, /*remote_init=*/0, /*io=*/1, &ctx))
return 0;
partial_write = ((ctx.xso->ssl_mode & SSL_MODE_ENABLE_PARTIAL_WRITE) != 0);
if ((flags & ~SSL_WRITE_FLAG_CONCLUDE) != 0) {
ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_UNSUPPORTED_WRITE_FLAG, NULL);
goto out;
}
if (!quic_mutation_allowed(ctx.qc, /*req_active=*/0)) {
ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
goto out;
}
/*
* If we haven't finished the handshake, try to advance it.
* We don't accept writes until the handshake is completed.
*/
if (quic_do_handshake(&ctx) < 1) {
ret = 0;
goto out;
}
/* Ensure correct stream state, stream send part not concluded, etc. */
if (!quic_validate_for_write(ctx.xso, &err)) {
ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, err, NULL);
goto out;
}
if (len == 0) {
if ((flags & SSL_WRITE_FLAG_CONCLUDE) != 0)
quic_post_write(ctx.xso, 0, 1, flags, 1);
ret = 1;
goto out;
}
if (xso_blocking_mode(ctx.xso))
ret = quic_write_blocking(&ctx, buf, len, flags, written);
else if (partial_write)
ret = quic_write_nonblocking_epw(&ctx, buf, len, flags, written);
else
ret = quic_write_nonblocking_aon(&ctx, buf, len, flags, written);
out:
quic_unlock(ctx.qc);
return ret;
}
QUIC_TAKES_LOCK
int ossl_quic_write(SSL *s, const void *buf, size_t len, size_t *written)
{
return ossl_quic_write_flags(s, buf, len, 0, written);
}
/*
* SSL_read
* --------
*/
struct quic_read_again_args {
QCTX *ctx;
QUIC_STREAM *stream;
void *buf;
size_t len;
size_t *bytes_read;
int peek;
};
QUIC_NEEDS_LOCK
static int quic_validate_for_read(QUIC_XSO *xso, int *err, int *eos)
{
QUIC_STREAM_MAP *qsm;
*eos = 0;
if (xso == NULL || xso->stream == NULL) {
*err = ERR_R_INTERNAL_ERROR;
return 0;
}
switch (xso->stream->recv_state) {
default:
case QUIC_RSTREAM_STATE_NONE:
*err = SSL_R_STREAM_SEND_ONLY;
return 0;
case QUIC_RSTREAM_STATE_RECV:
case QUIC_RSTREAM_STATE_SIZE_KNOWN:
case QUIC_RSTREAM_STATE_DATA_RECVD:
return 1;
case QUIC_RSTREAM_STATE_DATA_READ:
*eos = 1;
return 0;
case QUIC_RSTREAM_STATE_RESET_RECVD:
qsm = ossl_quic_channel_get_qsm(xso->conn->ch);
ossl_quic_stream_map_notify_app_read_reset_recv_part(qsm, xso->stream);
/* FALLTHROUGH */
case QUIC_RSTREAM_STATE_RESET_READ:
*err = SSL_R_STREAM_RESET;
return 0;
}
}
QUIC_NEEDS_LOCK
static int quic_read_actual(QCTX *ctx,
QUIC_STREAM *stream,
void *buf, size_t buf_len,
size_t *bytes_read,
int peek)
{
int is_fin = 0, err, eos;
QUIC_CONNECTION *qc = ctx->qc;
if (!quic_validate_for_read(ctx->xso, &err, &eos)) {
if (eos)
return QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_ZERO_RETURN);
else
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, err, NULL);
}
if (peek) {
if (!ossl_quic_rstream_peek(stream->rstream, buf, buf_len,
bytes_read, &is_fin))
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
} else {
if (!ossl_quic_rstream_read(stream->rstream, buf, buf_len,
bytes_read, &is_fin))
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
}
if (!peek) {
if (*bytes_read > 0) {
/*
* We have read at least one byte from the stream. Inform stream-level
* RXFC of the retirement of controlled bytes. Update the active stream
* status (the RXFC may now want to emit a frame granting more credit to
* the peer).
*/
OSSL_RTT_INFO rtt_info;
ossl_statm_get_rtt_info(ossl_quic_channel_get_statm(qc->ch), &rtt_info);
if (!ossl_quic_rxfc_on_retire(&stream->rxfc, *bytes_read,
rtt_info.smoothed_rtt))
return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL);
}
if (is_fin && !peek) {
QUIC_STREAM_MAP *qsm = ossl_quic_channel_get_qsm(ctx->qc->ch);
ossl_quic_stream_map_notify_totally_read(qsm, ctx->xso->stream);
}
if (*bytes_read > 0)
ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(qc->ch),
stream);
}
if (*bytes_read == 0 && is_fin)
return QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_ZERO_RETURN);
return 1;
}
QUIC_NEEDS_LOCK
static int quic_read_again(void *arg)
{
struct quic_read_again_args *args = arg;
if (!quic_mutation_allowed(args->ctx->qc, /*req_active=*/1)) {
/* If connection is torn down due to an error while blocking, stop. */
QUIC_RAISE_NON_NORMAL_ERROR(args->ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
return -1;
}
if (!quic_read_actual(args->ctx, args->stream,
args->buf, args->len, args->bytes_read,
args->peek))
return -1;
if (*args->bytes_read > 0)
/* got at least one byte, the SSL_read op can finish now */
return 1;
return 0; /* did not read anything, keep trying */
}
QUIC_TAKES_LOCK
static int quic_read(SSL *s, void *buf, size_t len, size_t *bytes_read, int peek)
{
int ret, res;
QCTX ctx;
struct quic_read_again_args args;
*bytes_read = 0;
if (!expect_quic(s, &ctx))
return 0;
quic_lock_for_io(&ctx);
if (!quic_mutation_allowed(ctx.qc, /*req_active=*/0)) {
ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
goto out;
}
/* If we haven't finished the handshake, try to advance it. */
if (quic_do_handshake(&ctx) < 1) {
ret = 0; /* ossl_quic_do_handshake raised error here */
goto out;
}
if (ctx.xso == NULL) {
/*
* Called on a QCSO and we don't currently have a default stream.
*
* Wait until we get a stream initiated by the peer (blocking mode) or
* fail if we don't have one yet (non-blocking mode).
*/
if (!qc_wait_for_default_xso_for_read(&ctx)) {
ret = 0; /* error already raised here */
goto out;
}
ctx.xso = ctx.qc->default_xso;
}
if (!quic_read_actual(&ctx, ctx.xso->stream, buf, len, bytes_read, peek)) {
ret = 0; /* quic_read_actual raised error here */
goto out;
}
if (*bytes_read > 0) {
/*
* Even though we succeeded, tick the reactor here to ensure we are
* handling other aspects of the QUIC connection.
*/
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0);
ret = 1;
} else if (xso_blocking_mode(ctx.xso)) {
/*
* We were not able to read anything immediately, so our stream
* buffer is empty. This means we need to block until we get
* at least one byte.
*/
args.ctx = &ctx;
args.stream = ctx.xso->stream;
args.buf = buf;
args.len = len;
args.bytes_read = bytes_read;
args.peek = peek;
res = block_until_pred(ctx.qc, quic_read_again, &args, 0);
if (res == 0) {
ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_INTERNAL_ERROR, NULL);
goto out;
} else if (res < 0) {
ret = 0; /* quic_read_again raised error here */
goto out;
}
ret = 1;
} else {
/*
* We did not get any bytes and are not in blocking mode.
* Tick to see if this delivers any more.
*/
ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0);
/* Try the read again. */
if (!quic_read_actual(&ctx, ctx.xso->stream, buf, len, bytes_read, peek)) {
ret = 0; /* quic_read_actual raised error here */
goto out;
}
if (*bytes_read > 0)
ret = 1; /* Succeeded this time. */
else
ret = QUIC_RAISE_NORMAL_ERROR(&ctx, SSL_ERROR_WANT_READ);
}
out:
quic_unlock(ctx.qc);
return ret;
}
int ossl_quic_read(SSL *s, void *buf, size_t len, size_t *bytes_read)
{
return quic_read(s, buf, len, bytes_read, 0);
}
int ossl_quic_peek(SSL *s, void *buf, size_t len, size_t *bytes_read)
{
return quic_read(s, buf, len, bytes_read, 1);
}
/*
* SSL_pending
* -----------
*/
QUIC_TAKES_LOCK
static size_t ossl_quic_pending_int(const SSL *s, int check_channel)
{
QCTX ctx;
size_t avail = 0;
int fin = 0;
if (!expect_quic(s, &ctx))
return 0;
quic_lock(ctx.qc);
if (ctx.xso == NULL) {
QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_NO_STREAM, NULL);
goto out;
}
if (ctx.xso->stream == NULL
|| !ossl_quic_stream_has_recv_buffer(ctx.xso->stream)) {
QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_INTERNAL_ERROR, NULL);
goto out;
}
if (!ossl_quic_rstream_available(ctx.xso->stream->rstream, &avail, &fin))
avail = 0;
if (avail == 0 && check_channel && ossl_quic_channel_has_pending(ctx.qc->ch))
avail = 1;
out:
quic_unlock(ctx.qc);
return avail;
}
size_t ossl_quic_pending(const SSL *s)
{
return ossl_quic_pending_int(s, /*check_channel=*/0);
}
int ossl_quic_has_pending(const SSL *s)
{
/* Do we have app-side pending data or pending URXEs or RXEs? */
return ossl_quic_pending_int(s, /*check_channel=*/1) > 0;
}
/*
* SSL_stream_conclude
* -------------------
*/
QUIC_TAKES_LOCK
int ossl_quic_conn_stream_conclude(SSL *s)
{
QCTX ctx;
QUIC_STREAM *qs;
int err;
if (!expect_quic_with_stream_lock(s, /*remote_init=*/0, /*io=*/0, &ctx))
return 0;
qs = ctx.xso->stream;
if (!quic_mutation_allowed(ctx.qc, /*req_active=*/1)) {
quic_unlock(ctx.qc);
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
}
if (!quic_validate_for_write(ctx.xso, &err)) {
quic_unlock(ctx.qc);
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, err, NULL);
}
if (ossl_quic_sstream_get_final_size(qs->sstream, NULL)) {
quic_unlock(ctx.qc);
return 1;
}
ossl_quic_sstream_fin(qs->sstream);
quic_post_write(ctx.xso, 1, 0, 0, 1);
quic_unlock(ctx.qc);
return 1;
}
/*
* SSL_inject_net_dgram
* --------------------
*/
QUIC_TAKES_LOCK
int SSL_inject_net_dgram(SSL *s, const unsigned char *buf,
size_t buf_len,
const BIO_ADDR *peer,
const BIO_ADDR *local)
{
int ret;
QCTX ctx;
QUIC_DEMUX *demux;
if (!expect_quic(s, &ctx))
return 0;
quic_lock(ctx.qc);
demux = ossl_quic_channel_get0_demux(ctx.qc->ch);
ret = ossl_quic_demux_inject(demux, buf, buf_len, peer, local);
quic_unlock(ctx.qc);
return ret;
}
/*
* SSL_get0_connection
* -------------------
*/
SSL *ossl_quic_get0_connection(SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return NULL;
return &ctx.qc->ssl;
}
/*
* SSL_get_stream_type
* -------------------
*/
int ossl_quic_get_stream_type(SSL *s)
{
QCTX ctx;
if (!expect_quic(s, &ctx))
return SSL_STREAM_TYPE_BIDI;
if (ctx.xso == NULL) {
/*
* If deferred XSO creation has yet to occur, proceed according to the
* default stream mode. If AUTO_BIDI or AUTO_UNI is set, we cannot know
* what kind of stream will be created yet, so return BIDI on the basis
* that at this time, the client still has the option of calling
* SSL_read() or SSL_write() first.
*/
if (ctx.qc->default_xso_created
|| ctx.qc->default_stream_mode == SSL_DEFAULT_STREAM_MODE_NONE)
return SSL_STREAM_TYPE_NONE;
else
return SSL_STREAM_TYPE_BIDI;
}
if (ossl_quic_stream_is_bidi(ctx.xso->stream))
return SSL_STREAM_TYPE_BIDI;
if (ossl_quic_stream_is_server_init(ctx.xso->stream) != ctx.qc->as_server)
return SSL_STREAM_TYPE_READ;
else
return SSL_STREAM_TYPE_WRITE;
}
/*
* SSL_get_stream_id
* -----------------
*/
QUIC_TAKES_LOCK
uint64_t ossl_quic_get_stream_id(SSL *s)
{
QCTX ctx;
uint64_t id;
if (!expect_quic_with_stream_lock(s, /*remote_init=*/-1, /*io=*/0, &ctx))
return UINT64_MAX;
id = ctx.xso->stream->id;
quic_unlock(ctx.qc);
return id;
}
/*
* SSL_is_stream_local
* -------------------
*/
QUIC_TAKES_LOCK
int ossl_quic_is_stream_local(SSL *s)
{
QCTX ctx;
int is_local;
if (!expect_quic_with_stream_lock(s, /*remote_init=*/-1, /*io=*/0, &ctx))
return -1;
is_local = ossl_quic_stream_is_local_init(ctx.xso->stream);
quic_unlock(ctx.qc);
return is_local;
}
/*
* SSL_set_default_stream_mode
* ---------------------------
*/
QUIC_TAKES_LOCK
int ossl_quic_set_default_stream_mode(SSL *s, uint32_t mode)
{
QCTX ctx;
if (!expect_quic_conn_only(s, &ctx))
return 0;
quic_lock(ctx.qc);
if (ctx.qc->default_xso_created) {
quic_unlock(ctx.qc);
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED,
"too late to change default stream mode");
}
switch (mode) {
case SSL_DEFAULT_STREAM_MODE_NONE:
case SSL_DEFAULT_STREAM_MODE_AUTO_BIDI:
case SSL_DEFAULT_STREAM_MODE_AUTO_UNI:
ctx.qc->default_stream_mode = mode;
break;
default:
quic_unlock(ctx.qc);
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT,
"bad default stream type");
}
quic_unlock(ctx.qc);
return 1;
}
/*
* SSL_detach_stream
* -----------------
*/
QUIC_TAKES_LOCK
SSL *ossl_quic_detach_stream(SSL *s)
{
QCTX ctx;
QUIC_XSO *xso = NULL;
if (!expect_quic_conn_only(s, &ctx))
return NULL;
quic_lock(ctx.qc);
/* Calling this function inhibits default XSO autocreation. */
/* QC ref to any default XSO is transferred to us and to caller. */
qc_set_default_xso_keep_ref(ctx.qc, NULL, /*touch=*/1, &xso);
quic_unlock(ctx.qc);
return xso != NULL ? &xso->ssl : NULL;
}
/*
* SSL_attach_stream
* -----------------
*/
QUIC_TAKES_LOCK
int ossl_quic_attach_stream(SSL *conn, SSL *stream)
{
QCTX ctx;
QUIC_XSO *xso;
int nref;
if (!expect_quic_conn_only(conn, &ctx))
return 0;
if (stream == NULL || stream->type != SSL_TYPE_QUIC_XSO)
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_NULL_PARAMETER,
"stream to attach must be a valid QUIC stream");
xso = (QUIC_XSO *)stream;
quic_lock(ctx.qc);
if (ctx.qc->default_xso != NULL) {
quic_unlock(ctx.qc);
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED,
"connection already has a default stream");
}
/*
* It is a caller error for the XSO being attached as a default XSO to have
* more than one ref.
*/
if (!CRYPTO_GET_REF(&xso->ssl.references, &nref)) {
quic_unlock(ctx.qc);
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_INTERNAL_ERROR,
"ref");
}
if (nref != 1) {
quic_unlock(ctx.qc);
return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT,
"stream being attached must have "
"only 1 reference");
}
/* Caller's reference to the XSO is transferred to us. */
/* Calling this function inhibits default XSO autocreation. */
qc_set_default_xso(ctx.qc, xso, /*touch=*/1);
quic_unlock(ctx.qc);
return 1;
}
/*
* SSL_set_incoming_stream_policy
* ------------------------------
*/
QUIC_NEEDS_LOCK
static int qc_get_effective_incoming_stream_policy(QUIC_CONNECTION *qc)
{
switch (qc->incoming_stream_policy) {
case SSL_INCOMING_STREAM_POLICY_AUTO:
if ((qc->default_xso == NULL && !qc->default_xso_created)
|| qc->default_stream_mode == SSL_DEFAULT_STREAM_MODE_NONE)
return SSL_INCOMING_STREAM_POLICY_ACCEPT;
else
return SSL_INCOMING_STREAM_POLICY_REJECT;
default:
return qc->incoming_stream_policy;
}
}
QUIC_NEEDS_LOCK
static void qc_update_reject_policy(QUIC_CONNECTION *qc)
{
int policy = qc_get_effective_incoming_stream_policy(qc);
int enable_reject = (policy == SSL_INCOMING_STREAM_POLICY_REJECT);
ossl_quic_channel_set_incoming_stream_auto_reject(qc->ch,
enable_reject,
qc->incoming_stream_aec);
}
QUIC_TAKES_LOCK
int ossl_quic_set_incoming_stream_policy(SSL *s, int policy,
uint64_t aec)
{
int ret = 1;
QCTX ctx;
if (!expect_quic_conn_only(s, &ctx))
return 0;
quic_lock(ctx.qc);
switch (policy) {
case SSL_INCOMING_STREAM_POLICY_AUTO:
case SSL_INCOMING_STREAM_POLICY_ACCEPT:
case SSL_INCOMING_STREAM_POLICY_REJECT:
ctx.qc->incoming_stream_policy = policy;
ctx.qc->incoming_stream_aec = aec;
break;
default:
QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT, NULL);
ret = 0;
break;
}
qc_update_reject_policy(ctx.qc);
quic_unlock(ctx.qc);
return ret;
}
/*
* SSL_accept_stream
* -----------------
*/
struct wait_for_incoming_stream_args {
QCTX *ctx;
QUIC_STREAM *qs;
};
QUIC_NEEDS_LOCK
static int wait_for_incoming_stream(void *arg)
{
struct wait_for_incoming_stream_args *args = arg;
QUIC_CONNECTION *qc = args->ctx->qc;
QUIC_STREAM_MAP *qsm = ossl_quic_channel_get_qsm(qc->ch);
if (!quic_mutation_allowed(qc, /*req_active=*/1)) {
/* If connection is torn down due to an error while blocking, stop. */
QUIC_RAISE_NON_NORMAL_ERROR(args->ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL);
return -1;
}
args->qs = ossl_quic_stream_map_peek_accept_queue(qsm);
if (args->qs != NULL)
return 1; /* got a stream */
return 0; /* did not get a stream, keep trying */
}
QUIC_TAKES_LOCK
SSL *ossl_quic_accept_stream(SSL *s, uint64_t flags)
{
QCTX ctx;
int ret;
SSL *new_s = NULL;
QUIC_STREAM_MAP *qsm;
QUIC_STREAM *qs;
QUIC_XSO *xso;
OSSL_RTT_INFO rtt_info;
if (!expect_quic_conn_only(s, &ctx))
return NULL;
quic_lock(ctx.qc);
if (qc_get_effective_incoming_stream_policy(ctx.qc)
== SSL_INCOMING_STREAM_POLICY_REJECT) {
QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, NULL);
goto out;
}
qsm = ossl_quic_channel_get_qsm(ctx.qc->ch);
qs = ossl_quic_stream_map_peek_accept_queue(qsm);
if (qs == NULL) {
if (qc_blocking_mode(ctx.qc)
&& (flags & SSL_ACCEPT_STREAM_NO_BLOCK) == 0) {
struct wait_for_incoming_stream_args args;
args.ctx = &ctx;
args.qs = NULL;
ret = block_until_pred(ctx.qc, wait_for_incoming_stream, &args, 0);
if (ret == 0) {
QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_INTERNAL_ERROR, NULL);
goto out;
} else if (ret < 0 || args.qs == NULL) {
goto out;
}
qs = args.qs;
} else {
goto out;
}
}
xso = create_xso_from_stream(ctx.qc, qs);
if (xso == NULL)
goto out;
ossl_statm_get_rtt_info(ossl_quic_channel_get_statm(ctx.qc->ch), &rtt_info);
ossl_quic_stream_map_remove_from_accept_queue(qsm, qs,
rtt_info.smoothed_rtt);
new_s = &xso->ssl;
/* Calling this function inhibits default XSO autocreation. */
qc_touch_default_xso(ctx.qc); /* inhibits default XSO */
out:
quic_unlock(ctx.qc);
return new_s;
}
/*
* SSL_get_accept_stream_queue_len
* -------------------------------
*/
QUIC_TAKES_LOCK
size_t ossl_quic_get_accept_stream_queue_len(SSL *s)
{
QCTX ctx;
size_t v;
if (!expect_quic_conn_only(s, &ctx))
return 0;
quic_lock(ctx.qc);
v = ossl_quic_stream_map_get_accept_queue_len(ossl_quic_channel_get_qsm(ctx.qc->ch));
quic_unlock(ctx.qc);
return v;
}
/*
* SSL_stream_reset
* ----------------
*/
int ossl_quic_stream_reset(SSL *ssl,
const SSL_STREAM_RESET_ARGS *args,
size_t args_len)
{
QCTX ctx;
QUIC_STREAM_MAP *qsm;
QUIC_STREAM *qs;
uint64_t error_code;
int ok, err;
if (!expect_quic_with_stream_lock(ssl, /*remote_init=*/0, /*io=*/0, &ctx))
return 0;
qsm = ossl_quic_channel_get_qsm(ctx.qc->ch);
qs = ctx.xso->stream;
error_code = (args != NULL ? args->quic_error_code : 0);
if (!quic_validate_for_write(ctx.xso, &err)) {
ok = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, err, NULL);
goto err;
}
ok = ossl_quic_stream_map_reset_stream_send_part(qsm, qs, error_code);
err:
quic_unlock(ctx.qc);
return ok;
}
/*
* SSL_get_stream_read_state
* -------------------------
*/
static void quic_classify_stream(QUIC_CONNECTION *qc,
QUIC_STREAM *qs,
int is_write,
int *state,
uint64_t *app_error_code)
{
int local_init;
uint64_t final_size;
local_init = (ossl_quic_stream_is_server_init(qs) == qc->as_server);
if (app_error_code != NULL)
*app_error_code = UINT64_MAX;
else
app_error_code = &final_size; /* throw away value */
if (!ossl_quic_stream_is_bidi(qs) && local_init != is_write) {
/*
* Unidirectional stream and this direction of transmission doesn't
* exist.
*/
*state = SSL_STREAM_STATE_WRONG_DIR;
} else if (ossl_quic_channel_is_term_any(qc->ch)) {
/* Connection already closed. */
*state = SSL_STREAM_STATE_CONN_CLOSED;
} else if (!is_write && qs->recv_state == QUIC_RSTREAM_STATE_DATA_READ) {
/* Application has read a FIN. */
*state = SSL_STREAM_STATE_FINISHED;
} else if ((!is_write && qs->stop_sending)
|| (is_write && ossl_quic_stream_send_is_reset(qs))) {
/*
* Stream has been reset locally. FIN takes precedence over this for the
* read case as the application need not care if the stream is reset
* after a FIN has been successfully processed.
*/
*state = SSL_STREAM_STATE_RESET_LOCAL;
*app_error_code = !is_write
? qs->stop_sending_aec
: qs->reset_stream_aec;
} else if ((!is_write && ossl_quic_stream_recv_is_reset(qs))
|| (is_write && qs->peer_stop_sending)) {
/*
* Stream has been reset remotely. */
*state = SSL_STREAM_STATE_RESET_REMOTE;
*app_error_code = !is_write
? qs->peer_reset_stream_aec
: qs->peer_stop_sending_aec;
} else if (is_write && ossl_quic_sstream_get_final_size(qs->sstream,
&final_size)) {
/*
* Stream has been finished. Stream reset takes precedence over this for
* the write case as peer may not have received all data.
*/
*state = SSL_STREAM_STATE_FINISHED;
} else {
/* Stream still healthy. */
*state = SSL_STREAM_STATE_OK;
}
}
static int quic_get_stream_state(SSL *ssl, int is_write)
{
QCTX ctx;
int state;
if (!expect_quic_with_stream_lock(ssl, /*remote_init=*/-1, /*io=*/0, &ctx))
return SSL_STREAM_STATE_NONE;
quic_classify_stream(ctx.qc, ctx.xso->stream, is_write, &state, NULL);
quic_unlock(ctx.qc);
return state;
}
int ossl_quic_get_stream_read_state(SSL *ssl)
{
return quic_get_stream_state(ssl, /*is_write=*/0);
}
/*
* SSL_get_stream_write_state
* --------------------------
*/
int ossl_quic_get_stream_write_state(SSL *ssl)
{
return quic_get_stream_state(ssl, /*is_write=*/1);
}
/*
* SSL_get_stream_read_error_code
* ------------------------------
*/
static int quic_get_stream_error_code(SSL *ssl, int is_write,
uint64_t *app_error_code)
{
QCTX ctx;
int state;
if (!expect_quic_with_stream_lock(ssl, /*remote_init=*/-1, /*io=*/0, &ctx))
return -1;
quic_classify_stream(ctx.qc, ctx.xso->stream, /*is_write=*/0,
&state, app_error_code);
quic_unlock(ctx.qc);
switch (state) {
case SSL_STREAM_STATE_FINISHED:
return 0;
case SSL_STREAM_STATE_RESET_LOCAL:
case SSL_STREAM_STATE_RESET_REMOTE:
return 1;
default:
return -1;
}
}
int ossl_quic_get_stream_read_error_code(SSL *ssl, uint64_t *app_error_code)
{
return quic_get_stream_error_code(ssl, /*is_write=*/0, app_error_code);
}
/*
* SSL_get_stream_write_error_code
* -------------------------------
*/
int ossl_quic_get_stream_write_error_code(SSL *ssl, uint64_t *app_error_code)
{
return quic_get_stream_error_code(ssl, /*is_write=*/1, app_error_code);
}
/*
* Write buffer size mutation
* --------------------------
*/
int ossl_quic_set_write_buffer_size(SSL *ssl, size_t size)
{
int ret = 0;
QCTX ctx;
if (!expect_quic_with_stream_lock(ssl, /*remote_init=*/-1, /*io=*/0, &ctx))
return 0;
if (!ossl_quic_stream_has_send(ctx.xso->stream)) {
/* Called on a unidirectional receive-only stream - error. */
QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, NULL);
goto out;
}
if (!ossl_quic_stream_has_send_buffer(ctx.xso->stream)) {
/*
* If the stream has a send part but we have disposed of it because we
* no longer need it, this is a no-op.
*/
ret = 1;
goto out;
}
if (!ossl_quic_sstream_set_buffer_size(ctx.xso->stream->sstream, size)) {
QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_INTERNAL_ERROR, NULL);
goto out;
}
ret = 1;
out:
quic_unlock(ctx.qc);
return ret;
}
/*
* SSL_get_conn_close_info
* -----------------------
*/
int ossl_quic_get_conn_close_info(SSL *ssl,
SSL_CONN_CLOSE_INFO *info,
size_t info_len)
{
QCTX ctx;
const QUIC_TERMINATE_CAUSE *tc;
if (!expect_quic_conn_only(ssl, &ctx))
return -1;
tc = ossl_quic_channel_get_terminate_cause(ctx.qc->ch);
if (tc == NULL)
return 0;
info->error_code = tc->error_code;
info->frame_type = tc->frame_type;
info->reason = tc->reason;
info->reason_len = tc->reason_len;
info->flags = 0;
if (!tc->remote)
info->flags |= SSL_CONN_CLOSE_FLAG_LOCAL;
if (!tc->app)
info->flags |= SSL_CONN_CLOSE_FLAG_TRANSPORT;
return 1;
}
/*
* SSL_key_update
* --------------
*/
int ossl_quic_key_update(SSL *ssl, int update_type)
{
QCTX ctx;
if (!expect_quic_conn_only(ssl, &ctx))
return 0;
switch (update_type) {
case SSL_KEY_UPDATE_NOT_REQUESTED:
/*
* QUIC signals peer key update implicily by triggering a local
* spontaneous TXKU. Silently upgrade this to SSL_KEY_UPDATE_REQUESTED.
*/
case SSL_KEY_UPDATE_REQUESTED:
break;
default:
QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT, NULL);
return 0;
}
quic_lock(ctx.qc);
/* Attempt to perform a TXKU. */
if (!ossl_quic_channel_trigger_txku(ctx.qc->ch)) {
QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_TOO_MANY_KEY_UPDATES, NULL);
quic_unlock(ctx.qc);
return 0;
}
quic_unlock(ctx.qc);
return 1;
}
/*
* SSL_get_key_update_type
* -----------------------
*/
int ossl_quic_get_key_update_type(const SSL *s)
{
/*
* We always handle key updates immediately so a key update is never
* pending.
*/
return SSL_KEY_UPDATE_NONE;
}
/*
* QUIC Front-End I/O API: SSL_CTX Management
* ==========================================
*/
long ossl_quic_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
{
switch (cmd) {
default:
return ssl3_ctx_ctrl(ctx, cmd, larg, parg);
}
}
long ossl_quic_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
{
QCTX ctx;
if (!expect_quic_conn_only(s, &ctx))
return 0;
switch (cmd) {
case SSL_CTRL_SET_MSG_CALLBACK:
ossl_quic_channel_set_msg_callback(ctx.qc->ch, (ossl_msg_cb)fp,
&ctx.qc->ssl);
/* This callback also needs to be set on the internal SSL object */
return ssl3_callback_ctrl(ctx.qc->tls, cmd, fp);;
default:
/* Probably a TLS related ctrl. Defer to our internal SSL object */
return ssl3_callback_ctrl(ctx.qc->tls, cmd, fp);
}
}
long ossl_quic_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
{
return ssl3_ctx_callback_ctrl(ctx, cmd, fp);
}
int ossl_quic_renegotiate_check(SSL *ssl, int initok)
{
/* We never do renegotiation. */
return 0;
}
const SSL_CIPHER *ossl_quic_get_cipher_by_char(const unsigned char *p)
{
const SSL_CIPHER *ciph = ssl3_get_cipher_by_char(p);
if ((ciph->algorithm2 & SSL_QUIC) == 0)
return NULL;
return ciph;
}
/*
* These functions define the TLSv1.2 (and below) ciphers that are supported by
* the SSL_METHOD. Since QUIC only supports TLSv1.3 we don't support any.
*/
int ossl_quic_num_ciphers(void)
{
return 0;
}
const SSL_CIPHER *ossl_quic_get_cipher(unsigned int u)
{
return NULL;
}
/*
* SSL_get_shutdown()
* ------------------
*/
int ossl_quic_get_shutdown(const SSL *s)
{
QCTX ctx;
int shut = 0;
if (!expect_quic_conn_only(s, &ctx))
return 0;
if (ossl_quic_channel_is_term_any(ctx.qc->ch)) {
shut |= SSL_SENT_SHUTDOWN;
if (!ossl_quic_channel_is_closing(ctx.qc->ch))
shut |= SSL_RECEIVED_SHUTDOWN;
}
return shut;
}
/*
* Internal Testing APIs
* =====================
*/
QUIC_CHANNEL *ossl_quic_conn_get_channel(SSL *s)
{
QCTX ctx;
if (!expect_quic_conn_only(s, &ctx))
return NULL;
return ctx.qc->ch;
}