mirror of
https://github.com/openssl/openssl.git
synced 2024-12-27 06:21:43 +08:00
3c2bdd7df9
Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/14801)
220 lines
5.9 KiB
C
220 lines
5.9 KiB
C
/*
|
|
* Copyright 2019-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/bn.h>
|
|
#include "crypto/sparse_array.h"
|
|
|
|
/*
|
|
* How many bits are used to index each level in the tree structure?
|
|
* This setting determines the number of pointers stored in each node of the
|
|
* tree used to represent the sparse array. Having more pointers reduces the
|
|
* depth of the tree but potentially wastes more memory. That is, this is a
|
|
* direct space versus time tradeoff.
|
|
*
|
|
* The large memory model uses twelve bits which means that the are 4096
|
|
* pointers in each tree node. This is more than sufficient to hold the
|
|
* largest defined NID (as of Feb 2019). This means that using a NID to
|
|
* index a sparse array becomes a constant time single array look up.
|
|
*
|
|
* The small memory model uses four bits which means the tree nodes contain
|
|
* sixteen pointers. This reduces the amount of unused space significantly
|
|
* at a cost in time.
|
|
*
|
|
* The library builder is also permitted to define other sizes in the closed
|
|
* interval [2, sizeof(ossl_uintmax_t) * 8].
|
|
*/
|
|
#ifndef OPENSSL_SA_BLOCK_BITS
|
|
# ifdef OPENSSL_SMALL_FOOTPRINT
|
|
# define OPENSSL_SA_BLOCK_BITS 4
|
|
# else
|
|
# define OPENSSL_SA_BLOCK_BITS 12
|
|
# endif
|
|
#elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1)
|
|
# error OPENSSL_SA_BLOCK_BITS is out of range
|
|
#endif
|
|
|
|
/*
|
|
* From the number of bits, work out:
|
|
* the number of pointers in a tree node;
|
|
* a bit mask to quickly extract an index and
|
|
* the maximum depth of the tree structure.
|
|
*/
|
|
#define SA_BLOCK_MAX (1 << OPENSSL_SA_BLOCK_BITS)
|
|
#define SA_BLOCK_MASK (SA_BLOCK_MAX - 1)
|
|
#define SA_BLOCK_MAX_LEVELS (((int)sizeof(ossl_uintmax_t) * 8 \
|
|
+ OPENSSL_SA_BLOCK_BITS - 1) \
|
|
/ OPENSSL_SA_BLOCK_BITS)
|
|
|
|
struct sparse_array_st {
|
|
int levels;
|
|
ossl_uintmax_t top;
|
|
size_t nelem;
|
|
void **nodes;
|
|
};
|
|
|
|
OPENSSL_SA *ossl_sa_new(void)
|
|
{
|
|
OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res));
|
|
|
|
return res;
|
|
}
|
|
|
|
static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **),
|
|
void (*leaf)(ossl_uintmax_t, void *, void *), void *arg)
|
|
{
|
|
int i[SA_BLOCK_MAX_LEVELS];
|
|
void *nodes[SA_BLOCK_MAX_LEVELS];
|
|
ossl_uintmax_t idx = 0;
|
|
int l = 0;
|
|
|
|
i[0] = 0;
|
|
nodes[0] = sa->nodes;
|
|
while (l >= 0) {
|
|
const int n = i[l];
|
|
void ** const p = nodes[l];
|
|
|
|
if (n >= SA_BLOCK_MAX) {
|
|
if (p != NULL && node != NULL)
|
|
(*node)(p);
|
|
l--;
|
|
idx >>= OPENSSL_SA_BLOCK_BITS;
|
|
} else {
|
|
i[l] = n + 1;
|
|
if (p != NULL && p[n] != NULL) {
|
|
idx = (idx & ~SA_BLOCK_MASK) | n;
|
|
if (l < sa->levels - 1) {
|
|
i[++l] = 0;
|
|
nodes[l] = p[n];
|
|
idx <<= OPENSSL_SA_BLOCK_BITS;
|
|
} else if (leaf != NULL) {
|
|
(*leaf)(idx, p[n], arg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sa_free_node(void **p)
|
|
{
|
|
OPENSSL_free(p);
|
|
}
|
|
|
|
static void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg)
|
|
{
|
|
OPENSSL_free(p);
|
|
}
|
|
|
|
void ossl_sa_free(OPENSSL_SA *sa)
|
|
{
|
|
sa_doall(sa, &sa_free_node, NULL, NULL);
|
|
OPENSSL_free(sa);
|
|
}
|
|
|
|
void ossl_sa_free_leaves(OPENSSL_SA *sa)
|
|
{
|
|
sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL);
|
|
OPENSSL_free(sa);
|
|
}
|
|
|
|
/* Wrap this in a structure to avoid compiler warnings */
|
|
struct trampoline_st {
|
|
void (*func)(ossl_uintmax_t, void *);
|
|
};
|
|
|
|
static void trampoline(ossl_uintmax_t n, void *l, void *arg)
|
|
{
|
|
((const struct trampoline_st *)arg)->func(n, l);
|
|
}
|
|
|
|
void ossl_sa_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t, void *))
|
|
{
|
|
struct trampoline_st tramp;
|
|
|
|
tramp.func = leaf;
|
|
if (sa != NULL)
|
|
sa_doall(sa, NULL, &trampoline, &tramp);
|
|
}
|
|
|
|
void ossl_sa_doall_arg(const OPENSSL_SA *sa,
|
|
void (*leaf)(ossl_uintmax_t, void *, void *),
|
|
void *arg)
|
|
{
|
|
if (sa != NULL)
|
|
sa_doall(sa, NULL, leaf, arg);
|
|
}
|
|
|
|
size_t ossl_sa_num(const OPENSSL_SA *sa)
|
|
{
|
|
return sa == NULL ? 0 : sa->nelem;
|
|
}
|
|
|
|
void *ossl_sa_get(const OPENSSL_SA *sa, ossl_uintmax_t n)
|
|
{
|
|
int level;
|
|
void **p, *r = NULL;
|
|
|
|
if (sa == NULL || sa->nelem == 0)
|
|
return NULL;
|
|
|
|
if (n <= sa->top) {
|
|
p = sa->nodes;
|
|
for (level = sa->levels - 1; p != NULL && level > 0; level--)
|
|
p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level))
|
|
& SA_BLOCK_MASK];
|
|
r = p == NULL ? NULL : p[n & SA_BLOCK_MASK];
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static ossl_inline void **alloc_node(void)
|
|
{
|
|
return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *));
|
|
}
|
|
|
|
int ossl_sa_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val)
|
|
{
|
|
int i, level = 1;
|
|
ossl_uintmax_t n = posn;
|
|
void **p;
|
|
|
|
if (sa == NULL)
|
|
return 0;
|
|
|
|
for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++)
|
|
if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0)
|
|
break;
|
|
|
|
for (;sa->levels < level; sa->levels++) {
|
|
p = alloc_node();
|
|
if (p == NULL)
|
|
return 0;
|
|
p[0] = sa->nodes;
|
|
sa->nodes = p;
|
|
}
|
|
if (sa->top < posn)
|
|
sa->top = posn;
|
|
|
|
p = sa->nodes;
|
|
for (level = sa->levels - 1; level > 0; level--) {
|
|
i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK;
|
|
if (p[i] == NULL && (p[i] = alloc_node()) == NULL)
|
|
return 0;
|
|
p = p[i];
|
|
}
|
|
p += posn & SA_BLOCK_MASK;
|
|
if (val == NULL && *p != NULL)
|
|
sa->nelem--;
|
|
else if (val != NULL && *p == NULL)
|
|
sa->nelem++;
|
|
*p = val;
|
|
return 1;
|
|
}
|