mirror of
https://github.com/openssl/openssl.git
synced 2024-12-03 05:41:46 +08:00
349807608f
This was done by the following find . -name '*.[ch]' | /tmp/pl where /tmp/pl is the following three-line script: print unless $. == 1 && m@/\* .*\.[ch] \*/@; close ARGV if eof; # Close file to reset $. And then some hand-editing of other files. Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
566 lines
18 KiB
C
566 lines
18 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include "internal/cryptlib.h"
|
|
#include <openssl/buffer.h>
|
|
#include <openssl/evp.h>
|
|
|
|
static int b64_write(BIO *h, const char *buf, int num);
|
|
static int b64_read(BIO *h, char *buf, int size);
|
|
static int b64_puts(BIO *h, const char *str);
|
|
/*
|
|
* static int b64_gets(BIO *h, char *str, int size);
|
|
*/
|
|
static long b64_ctrl(BIO *h, int cmd, long arg1, void *arg2);
|
|
static int b64_new(BIO *h);
|
|
static int b64_free(BIO *data);
|
|
static long b64_callback_ctrl(BIO *h, int cmd, bio_info_cb *fp);
|
|
#define B64_BLOCK_SIZE 1024
|
|
#define B64_BLOCK_SIZE2 768
|
|
#define B64_NONE 0
|
|
#define B64_ENCODE 1
|
|
#define B64_DECODE 2
|
|
|
|
typedef struct b64_struct {
|
|
/*
|
|
* BIO *bio; moved to the BIO structure
|
|
*/
|
|
int buf_len;
|
|
int buf_off;
|
|
int tmp_len; /* used to find the start when decoding */
|
|
int tmp_nl; /* If true, scan until '\n' */
|
|
int encode;
|
|
int start; /* have we started decoding yet? */
|
|
int cont; /* <= 0 when finished */
|
|
EVP_ENCODE_CTX *base64;
|
|
char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE) + 10];
|
|
char tmp[B64_BLOCK_SIZE];
|
|
} BIO_B64_CTX;
|
|
|
|
static BIO_METHOD methods_b64 = {
|
|
BIO_TYPE_BASE64, "base64 encoding",
|
|
b64_write,
|
|
b64_read,
|
|
b64_puts,
|
|
NULL, /* b64_gets, */
|
|
b64_ctrl,
|
|
b64_new,
|
|
b64_free,
|
|
b64_callback_ctrl,
|
|
};
|
|
|
|
BIO_METHOD *BIO_f_base64(void)
|
|
{
|
|
return (&methods_b64);
|
|
}
|
|
|
|
static int b64_new(BIO *bi)
|
|
{
|
|
BIO_B64_CTX *ctx;
|
|
|
|
ctx = OPENSSL_zalloc(sizeof(*ctx));
|
|
if (ctx == NULL)
|
|
return (0);
|
|
|
|
ctx->cont = 1;
|
|
ctx->start = 1;
|
|
ctx->base64 = EVP_ENCODE_CTX_new();
|
|
bi->init = 1;
|
|
bi->ptr = (char *)ctx;
|
|
bi->flags = 0;
|
|
bi->num = 0;
|
|
return (1);
|
|
}
|
|
|
|
static int b64_free(BIO *a)
|
|
{
|
|
if (a == NULL)
|
|
return (0);
|
|
EVP_ENCODE_CTX_free(((BIO_B64_CTX *)a->ptr)->base64);
|
|
OPENSSL_free(a->ptr);
|
|
a->ptr = NULL;
|
|
a->init = 0;
|
|
a->flags = 0;
|
|
return (1);
|
|
}
|
|
|
|
static int b64_read(BIO *b, char *out, int outl)
|
|
{
|
|
int ret = 0, i, ii, j, k, x, n, num, ret_code = 0;
|
|
BIO_B64_CTX *ctx;
|
|
unsigned char *p, *q;
|
|
|
|
if (out == NULL)
|
|
return (0);
|
|
ctx = (BIO_B64_CTX *)b->ptr;
|
|
|
|
if ((ctx == NULL) || (b->next_bio == NULL))
|
|
return (0);
|
|
|
|
BIO_clear_retry_flags(b);
|
|
|
|
if (ctx->encode != B64_DECODE) {
|
|
ctx->encode = B64_DECODE;
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
ctx->tmp_len = 0;
|
|
EVP_DecodeInit(ctx->base64);
|
|
}
|
|
|
|
/* First check if there are bytes decoded/encoded */
|
|
if (ctx->buf_len > 0) {
|
|
OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
|
|
i = ctx->buf_len - ctx->buf_off;
|
|
if (i > outl)
|
|
i = outl;
|
|
OPENSSL_assert(ctx->buf_off + i < (int)sizeof(ctx->buf));
|
|
memcpy(out, &(ctx->buf[ctx->buf_off]), i);
|
|
ret = i;
|
|
out += i;
|
|
outl -= i;
|
|
ctx->buf_off += i;
|
|
if (ctx->buf_len == ctx->buf_off) {
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point, we have room of outl bytes and an empty buffer, so we
|
|
* should read in some more.
|
|
*/
|
|
|
|
ret_code = 0;
|
|
while (outl > 0) {
|
|
if (ctx->cont <= 0)
|
|
break;
|
|
|
|
i = BIO_read(b->next_bio, &(ctx->tmp[ctx->tmp_len]),
|
|
B64_BLOCK_SIZE - ctx->tmp_len);
|
|
|
|
if (i <= 0) {
|
|
ret_code = i;
|
|
|
|
/* Should we continue next time we are called? */
|
|
if (!BIO_should_retry(b->next_bio)) {
|
|
ctx->cont = i;
|
|
/* If buffer empty break */
|
|
if (ctx->tmp_len == 0)
|
|
break;
|
|
/* Fall through and process what we have */
|
|
else
|
|
i = 0;
|
|
}
|
|
/* else we retry and add more data to buffer */
|
|
else
|
|
break;
|
|
}
|
|
i += ctx->tmp_len;
|
|
ctx->tmp_len = i;
|
|
|
|
/*
|
|
* We need to scan, a line at a time until we have a valid line if we
|
|
* are starting.
|
|
*/
|
|
if (ctx->start && (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL)) {
|
|
/* ctx->start=1; */
|
|
ctx->tmp_len = 0;
|
|
} else if (ctx->start) {
|
|
q = p = (unsigned char *)ctx->tmp;
|
|
num = 0;
|
|
for (j = 0; j < i; j++) {
|
|
if (*(q++) != '\n')
|
|
continue;
|
|
|
|
/*
|
|
* due to a previous very long line, we need to keep on
|
|
* scanning for a '\n' before we even start looking for
|
|
* base64 encoded stuff.
|
|
*/
|
|
if (ctx->tmp_nl) {
|
|
p = q;
|
|
ctx->tmp_nl = 0;
|
|
continue;
|
|
}
|
|
|
|
k = EVP_DecodeUpdate(ctx->base64,
|
|
(unsigned char *)ctx->buf,
|
|
&num, p, q - p);
|
|
if ((k <= 0) && (num == 0) && (ctx->start))
|
|
EVP_DecodeInit(ctx->base64);
|
|
else {
|
|
if (p != (unsigned char *)
|
|
&(ctx->tmp[0])) {
|
|
i -= (p - (unsigned char *)
|
|
&(ctx->tmp[0]));
|
|
for (x = 0; x < i; x++)
|
|
ctx->tmp[x] = p[x];
|
|
}
|
|
EVP_DecodeInit(ctx->base64);
|
|
ctx->start = 0;
|
|
break;
|
|
}
|
|
p = q;
|
|
}
|
|
|
|
/* we fell off the end without starting */
|
|
if ((j == i) && (num == 0)) {
|
|
/*
|
|
* Is this is one long chunk?, if so, keep on reading until a
|
|
* new line.
|
|
*/
|
|
if (p == (unsigned char *)&(ctx->tmp[0])) {
|
|
/* Check buffer full */
|
|
if (i == B64_BLOCK_SIZE) {
|
|
ctx->tmp_nl = 1;
|
|
ctx->tmp_len = 0;
|
|
}
|
|
} else if (p != q) { /* finished on a '\n' */
|
|
n = q - p;
|
|
for (ii = 0; ii < n; ii++)
|
|
ctx->tmp[ii] = p[ii];
|
|
ctx->tmp_len = n;
|
|
}
|
|
/* else finished on a '\n' */
|
|
continue;
|
|
} else {
|
|
ctx->tmp_len = 0;
|
|
}
|
|
} else if ((i < B64_BLOCK_SIZE) && (ctx->cont > 0)) {
|
|
/*
|
|
* If buffer isn't full and we can retry then restart to read in
|
|
* more data.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) {
|
|
int z, jj;
|
|
|
|
jj = i & ~3; /* process per 4 */
|
|
z = EVP_DecodeBlock((unsigned char *)ctx->buf,
|
|
(unsigned char *)ctx->tmp, jj);
|
|
if (jj > 2) {
|
|
if (ctx->tmp[jj - 1] == '=') {
|
|
z--;
|
|
if (ctx->tmp[jj - 2] == '=')
|
|
z--;
|
|
}
|
|
}
|
|
/*
|
|
* z is now number of output bytes and jj is the number consumed
|
|
*/
|
|
if (jj != i) {
|
|
memmove(ctx->tmp, &ctx->tmp[jj], i - jj);
|
|
ctx->tmp_len = i - jj;
|
|
}
|
|
ctx->buf_len = 0;
|
|
if (z > 0) {
|
|
ctx->buf_len = z;
|
|
}
|
|
i = z;
|
|
} else {
|
|
i = EVP_DecodeUpdate(ctx->base64,
|
|
(unsigned char *)ctx->buf, &ctx->buf_len,
|
|
(unsigned char *)ctx->tmp, i);
|
|
ctx->tmp_len = 0;
|
|
}
|
|
ctx->buf_off = 0;
|
|
if (i < 0) {
|
|
ret_code = 0;
|
|
ctx->buf_len = 0;
|
|
break;
|
|
}
|
|
|
|
if (ctx->buf_len <= outl)
|
|
i = ctx->buf_len;
|
|
else
|
|
i = outl;
|
|
|
|
memcpy(out, ctx->buf, i);
|
|
ret += i;
|
|
ctx->buf_off = i;
|
|
if (ctx->buf_off == ctx->buf_len) {
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
}
|
|
outl -= i;
|
|
out += i;
|
|
}
|
|
/* BIO_clear_retry_flags(b); */
|
|
BIO_copy_next_retry(b);
|
|
return ((ret == 0) ? ret_code : ret);
|
|
}
|
|
|
|
static int b64_write(BIO *b, const char *in, int inl)
|
|
{
|
|
int ret = 0;
|
|
int n;
|
|
int i;
|
|
BIO_B64_CTX *ctx;
|
|
|
|
ctx = (BIO_B64_CTX *)b->ptr;
|
|
BIO_clear_retry_flags(b);
|
|
|
|
if (ctx->encode != B64_ENCODE) {
|
|
ctx->encode = B64_ENCODE;
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
ctx->tmp_len = 0;
|
|
EVP_EncodeInit(ctx->base64);
|
|
}
|
|
|
|
OPENSSL_assert(ctx->buf_off < (int)sizeof(ctx->buf));
|
|
OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
|
|
n = ctx->buf_len - ctx->buf_off;
|
|
while (n > 0) {
|
|
i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n);
|
|
if (i <= 0) {
|
|
BIO_copy_next_retry(b);
|
|
return (i);
|
|
}
|
|
OPENSSL_assert(i <= n);
|
|
ctx->buf_off += i;
|
|
OPENSSL_assert(ctx->buf_off <= (int)sizeof(ctx->buf));
|
|
OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
|
|
n -= i;
|
|
}
|
|
/* at this point all pending data has been written */
|
|
ctx->buf_off = 0;
|
|
ctx->buf_len = 0;
|
|
|
|
if ((in == NULL) || (inl <= 0))
|
|
return (0);
|
|
|
|
while (inl > 0) {
|
|
n = (inl > B64_BLOCK_SIZE) ? B64_BLOCK_SIZE : inl;
|
|
|
|
if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) {
|
|
if (ctx->tmp_len > 0) {
|
|
OPENSSL_assert(ctx->tmp_len <= 3);
|
|
n = 3 - ctx->tmp_len;
|
|
/*
|
|
* There's a theoretical possibility for this
|
|
*/
|
|
if (n > inl)
|
|
n = inl;
|
|
memcpy(&(ctx->tmp[ctx->tmp_len]), in, n);
|
|
ctx->tmp_len += n;
|
|
ret += n;
|
|
if (ctx->tmp_len < 3)
|
|
break;
|
|
ctx->buf_len =
|
|
EVP_EncodeBlock((unsigned char *)ctx->buf,
|
|
(unsigned char *)ctx->tmp, ctx->tmp_len);
|
|
OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
|
|
/*
|
|
* Since we're now done using the temporary buffer, the
|
|
* length should be 0'd
|
|
*/
|
|
ctx->tmp_len = 0;
|
|
} else {
|
|
if (n < 3) {
|
|
memcpy(ctx->tmp, in, n);
|
|
ctx->tmp_len = n;
|
|
ret += n;
|
|
break;
|
|
}
|
|
n -= n % 3;
|
|
ctx->buf_len =
|
|
EVP_EncodeBlock((unsigned char *)ctx->buf,
|
|
(const unsigned char *)in, n);
|
|
OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
|
|
ret += n;
|
|
}
|
|
} else {
|
|
EVP_EncodeUpdate(ctx->base64,
|
|
(unsigned char *)ctx->buf, &ctx->buf_len,
|
|
(unsigned char *)in, n);
|
|
OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
|
|
ret += n;
|
|
}
|
|
inl -= n;
|
|
in += n;
|
|
|
|
ctx->buf_off = 0;
|
|
n = ctx->buf_len;
|
|
while (n > 0) {
|
|
i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n);
|
|
if (i <= 0) {
|
|
BIO_copy_next_retry(b);
|
|
return ((ret == 0) ? i : ret);
|
|
}
|
|
OPENSSL_assert(i <= n);
|
|
n -= i;
|
|
ctx->buf_off += i;
|
|
OPENSSL_assert(ctx->buf_off <= (int)sizeof(ctx->buf));
|
|
OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
|
|
}
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static long b64_ctrl(BIO *b, int cmd, long num, void *ptr)
|
|
{
|
|
BIO_B64_CTX *ctx;
|
|
long ret = 1;
|
|
int i;
|
|
|
|
ctx = (BIO_B64_CTX *)b->ptr;
|
|
|
|
switch (cmd) {
|
|
case BIO_CTRL_RESET:
|
|
ctx->cont = 1;
|
|
ctx->start = 1;
|
|
ctx->encode = B64_NONE;
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
case BIO_CTRL_EOF: /* More to read */
|
|
if (ctx->cont <= 0)
|
|
ret = 1;
|
|
else
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
case BIO_CTRL_WPENDING: /* More to write in buffer */
|
|
OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
|
|
ret = ctx->buf_len - ctx->buf_off;
|
|
if ((ret == 0) && (ctx->encode != B64_NONE)
|
|
&& (EVP_ENCODE_CTX_num(ctx->base64) != 0))
|
|
ret = 1;
|
|
else if (ret <= 0)
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
case BIO_CTRL_PENDING: /* More to read in buffer */
|
|
OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
|
|
ret = ctx->buf_len - ctx->buf_off;
|
|
if (ret <= 0)
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
case BIO_CTRL_FLUSH:
|
|
/* do a final write */
|
|
again:
|
|
while (ctx->buf_len != ctx->buf_off) {
|
|
i = b64_write(b, NULL, 0);
|
|
if (i < 0)
|
|
return i;
|
|
}
|
|
if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) {
|
|
if (ctx->tmp_len != 0) {
|
|
ctx->buf_len = EVP_EncodeBlock((unsigned char *)ctx->buf,
|
|
(unsigned char *)ctx->tmp,
|
|
ctx->tmp_len);
|
|
ctx->buf_off = 0;
|
|
ctx->tmp_len = 0;
|
|
goto again;
|
|
}
|
|
} else if (ctx->encode != B64_NONE
|
|
&& EVP_ENCODE_CTX_num(ctx->base64) != 0) {
|
|
ctx->buf_off = 0;
|
|
EVP_EncodeFinal(ctx->base64,
|
|
(unsigned char *)ctx->buf, &(ctx->buf_len));
|
|
/* push out the bytes */
|
|
goto again;
|
|
}
|
|
/* Finally flush the underlying BIO */
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
|
|
case BIO_C_DO_STATE_MACHINE:
|
|
BIO_clear_retry_flags(b);
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
BIO_copy_next_retry(b);
|
|
break;
|
|
|
|
case BIO_CTRL_DUP:
|
|
break;
|
|
case BIO_CTRL_INFO:
|
|
case BIO_CTRL_GET:
|
|
case BIO_CTRL_SET:
|
|
default:
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static long b64_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
|
|
{
|
|
long ret = 1;
|
|
|
|
if (b->next_bio == NULL)
|
|
return (0);
|
|
switch (cmd) {
|
|
default:
|
|
ret = BIO_callback_ctrl(b->next_bio, cmd, fp);
|
|
break;
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static int b64_puts(BIO *b, const char *str)
|
|
{
|
|
return b64_write(b, str, strlen(str));
|
|
}
|