mirror of
https://github.com/openssl/openssl.git
synced 2025-01-12 13:36:28 +08:00
04d07ffbed
With egd as the rand source the reseed after fork confuses the egd.
Fixes #19396
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19454)
(cherry picked from commit 0b3fec5022
)
907 lines
27 KiB
C
907 lines
27 KiB
C
/*
|
|
* Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/* We need to use some deprecated APIs */
|
|
#define OPENSSL_SUPPRESS_DEPRECATED
|
|
|
|
#include <string.h>
|
|
#include "internal/nelem.h"
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/obj_mac.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/aes.h>
|
|
#include "../crypto/rand/rand_local.h"
|
|
#include "../include/crypto/rand.h"
|
|
#include "../include/crypto/evp.h"
|
|
#include "../providers/implementations/rands/drbg_local.h"
|
|
#include "../crypto/evp/evp_local.h"
|
|
|
|
#if defined(_WIN32)
|
|
# include <windows.h>
|
|
#endif
|
|
|
|
#if defined(__TANDEM)
|
|
# if defined(OPENSSL_TANDEM_FLOSS)
|
|
# include <floss.h(floss_fork)>
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(OPENSSL_SYS_UNIX)
|
|
# include <sys/types.h>
|
|
# include <sys/wait.h>
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
#include "testutil.h"
|
|
|
|
/*
|
|
* DRBG generate wrappers
|
|
*/
|
|
static int gen_bytes(EVP_RAND_CTX *drbg, unsigned char *buf, int num)
|
|
{
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
const RAND_METHOD *meth = RAND_get_rand_method();
|
|
|
|
if (meth != NULL && meth != RAND_OpenSSL()) {
|
|
if (meth->bytes != NULL)
|
|
return meth->bytes(buf, num);
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
if (drbg != NULL)
|
|
return EVP_RAND_generate(drbg, buf, num, 0, 0, NULL, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int rand_bytes(unsigned char *buf, int num)
|
|
{
|
|
return gen_bytes(RAND_get0_public(NULL), buf, num);
|
|
}
|
|
|
|
static int rand_priv_bytes(unsigned char *buf, int num)
|
|
{
|
|
return gen_bytes(RAND_get0_private(NULL), buf, num);
|
|
}
|
|
|
|
|
|
/* size of random output generated in test_drbg_reseed() */
|
|
#define RANDOM_SIZE 16
|
|
|
|
/*
|
|
* DRBG query functions
|
|
*/
|
|
static int state(EVP_RAND_CTX *drbg)
|
|
{
|
|
return EVP_RAND_get_state(drbg);
|
|
}
|
|
|
|
static unsigned int query_rand_uint(EVP_RAND_CTX *drbg, const char *name)
|
|
{
|
|
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
|
|
unsigned int n;
|
|
|
|
*params = OSSL_PARAM_construct_uint(name, &n);
|
|
if (EVP_RAND_CTX_get_params(drbg, params))
|
|
return n;
|
|
return 0;
|
|
}
|
|
|
|
#define DRBG_UINT(name) \
|
|
static unsigned int name(EVP_RAND_CTX *drbg) \
|
|
{ \
|
|
return query_rand_uint(drbg, #name); \
|
|
}
|
|
DRBG_UINT(reseed_counter)
|
|
|
|
static PROV_DRBG *prov_rand(EVP_RAND_CTX *drbg)
|
|
{
|
|
return (PROV_DRBG *)drbg->algctx;
|
|
}
|
|
|
|
static void set_reseed_counter(EVP_RAND_CTX *drbg, unsigned int n)
|
|
{
|
|
PROV_DRBG *p = prov_rand(drbg);
|
|
|
|
p->reseed_counter = n;
|
|
}
|
|
|
|
static void inc_reseed_counter(EVP_RAND_CTX *drbg)
|
|
{
|
|
set_reseed_counter(drbg, reseed_counter(drbg) + 1);
|
|
}
|
|
|
|
static time_t reseed_time(EVP_RAND_CTX *drbg)
|
|
{
|
|
OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
|
|
time_t t;
|
|
|
|
*params = OSSL_PARAM_construct_time_t(OSSL_DRBG_PARAM_RESEED_TIME, &t);
|
|
if (EVP_RAND_CTX_get_params(drbg, params))
|
|
return t;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When building the FIPS module, it isn't possible to disable the continuous
|
|
* RNG tests. Tests that require this are skipped and this means a detection
|
|
* mechanism for the FIPS provider being in use.
|
|
*/
|
|
static int using_fips_rng(void)
|
|
{
|
|
EVP_RAND_CTX *primary = RAND_get0_primary(NULL);
|
|
const OSSL_PROVIDER *prov;
|
|
const char *name;
|
|
|
|
if (!TEST_ptr(primary))
|
|
return 0;
|
|
|
|
prov = EVP_RAND_get0_provider(EVP_RAND_CTX_get0_rand(primary));
|
|
if (!TEST_ptr(prov))
|
|
return 0;
|
|
name = OSSL_PROVIDER_get0_name(prov);
|
|
return strcmp(name, "OpenSSL FIPS Provider") == 0;
|
|
}
|
|
|
|
/*
|
|
* Disable CRNG testing if it is enabled.
|
|
* This stub remains to indicate the calling locations where it is necessary.
|
|
* Once the RNG infrastructure is able to disable these tests, it should be
|
|
* reconstituted.
|
|
*/
|
|
static int disable_crngt(EVP_RAND_CTX *drbg)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Generates random output using rand_bytes() and rand_priv_bytes()
|
|
* and checks whether the three shared DRBGs were reseeded as
|
|
* expected.
|
|
*
|
|
* |expect_success|: expected outcome (as reported by RAND_status())
|
|
* |primary|, |public|, |private|: pointers to the three shared DRBGs
|
|
* |public_random|, |private_random|: generated random output
|
|
* |expect_xxx_reseed| =
|
|
* 1: it is expected that the specified DRBG is reseeded
|
|
* 0: it is expected that the specified DRBG is not reseeded
|
|
* -1: don't check whether the specified DRBG was reseeded or not
|
|
* |reseed_when|: if nonzero, used instead of time(NULL) to set the
|
|
* |before_reseed| time.
|
|
*/
|
|
static int test_drbg_reseed(int expect_success,
|
|
EVP_RAND_CTX *primary,
|
|
EVP_RAND_CTX *public,
|
|
EVP_RAND_CTX *private,
|
|
unsigned char *public_random,
|
|
unsigned char *private_random,
|
|
int expect_primary_reseed,
|
|
int expect_public_reseed,
|
|
int expect_private_reseed,
|
|
time_t reseed_when
|
|
)
|
|
{
|
|
time_t before_reseed, after_reseed;
|
|
int expected_state = (expect_success ? DRBG_READY : DRBG_ERROR);
|
|
unsigned int primary_reseed, public_reseed, private_reseed;
|
|
unsigned char dummy[RANDOM_SIZE];
|
|
|
|
if (public_random == NULL)
|
|
public_random = dummy;
|
|
|
|
if (private_random == NULL)
|
|
private_random = dummy;
|
|
|
|
/*
|
|
* step 1: check preconditions
|
|
*/
|
|
|
|
/* Test whether seed propagation is enabled */
|
|
if (!TEST_int_ne(primary_reseed = reseed_counter(primary), 0)
|
|
|| !TEST_int_ne(public_reseed = reseed_counter(public), 0)
|
|
|| !TEST_int_ne(private_reseed = reseed_counter(private), 0))
|
|
return 0;
|
|
|
|
/*
|
|
* step 2: generate random output
|
|
*/
|
|
|
|
if (reseed_when == 0)
|
|
reseed_when = time(NULL);
|
|
|
|
/* Generate random output from the public and private DRBG */
|
|
before_reseed = expect_primary_reseed == 1 ? reseed_when : 0;
|
|
if (!TEST_int_eq(rand_bytes((unsigned char*)public_random,
|
|
RANDOM_SIZE), expect_success)
|
|
|| !TEST_int_eq(rand_priv_bytes((unsigned char*) private_random,
|
|
RANDOM_SIZE), expect_success))
|
|
return 0;
|
|
after_reseed = time(NULL);
|
|
|
|
|
|
/*
|
|
* step 3: check postconditions
|
|
*/
|
|
|
|
/* Test whether reseeding succeeded as expected */
|
|
if (!TEST_int_eq(state(primary), expected_state)
|
|
|| !TEST_int_eq(state(public), expected_state)
|
|
|| !TEST_int_eq(state(private), expected_state))
|
|
return 0;
|
|
|
|
if (expect_primary_reseed >= 0) {
|
|
/* Test whether primary DRBG was reseeded as expected */
|
|
if (!TEST_int_ge(reseed_counter(primary), primary_reseed))
|
|
return 0;
|
|
}
|
|
|
|
if (expect_public_reseed >= 0) {
|
|
/* Test whether public DRBG was reseeded as expected */
|
|
if (!TEST_int_ge(reseed_counter(public), public_reseed)
|
|
|| !TEST_uint_ge(reseed_counter(public),
|
|
reseed_counter(primary)))
|
|
return 0;
|
|
}
|
|
|
|
if (expect_private_reseed >= 0) {
|
|
/* Test whether public DRBG was reseeded as expected */
|
|
if (!TEST_int_ge(reseed_counter(private), private_reseed)
|
|
|| !TEST_uint_ge(reseed_counter(private),
|
|
reseed_counter(primary)))
|
|
return 0;
|
|
}
|
|
|
|
if (expect_success == 1) {
|
|
/* Test whether reseed time of primary DRBG is set correctly */
|
|
if (!TEST_time_t_le(before_reseed, reseed_time(primary))
|
|
|| !TEST_time_t_le(reseed_time(primary), after_reseed))
|
|
return 0;
|
|
|
|
/* Test whether reseed times of child DRBGs are synchronized with primary */
|
|
if (!TEST_time_t_ge(reseed_time(public), reseed_time(primary))
|
|
|| !TEST_time_t_ge(reseed_time(private), reseed_time(primary)))
|
|
return 0;
|
|
} else {
|
|
ERR_clear_error();
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
#if defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_RAND_SEED_EGD)
|
|
/* number of children to fork */
|
|
#define DRBG_FORK_COUNT 9
|
|
/* two results per child, two for the parent */
|
|
#define DRBG_FORK_RESULT_COUNT (2 * (DRBG_FORK_COUNT + 1))
|
|
|
|
typedef struct drbg_fork_result_st {
|
|
|
|
unsigned char random[RANDOM_SIZE]; /* random output */
|
|
|
|
int pindex; /* process index (0: parent, 1,2,3...: children)*/
|
|
pid_t pid; /* process id */
|
|
int private; /* true if the private drbg was used */
|
|
char name[10]; /* 'parent' resp. 'child 1', 'child 2', ... */
|
|
} drbg_fork_result;
|
|
|
|
/*
|
|
* Sort the drbg_fork_result entries in lexicographical order
|
|
*
|
|
* This simplifies finding duplicate random output and makes
|
|
* the printout in case of an error more readable.
|
|
*/
|
|
static int compare_drbg_fork_result(const void * left, const void * right)
|
|
{
|
|
int result;
|
|
const drbg_fork_result *l = left;
|
|
const drbg_fork_result *r = right;
|
|
|
|
/* separate public and private results */
|
|
result = l->private - r->private;
|
|
|
|
if (result == 0)
|
|
result = memcmp(l->random, r->random, RANDOM_SIZE);
|
|
|
|
if (result == 0)
|
|
result = l->pindex - r->pindex;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Sort two-byte chunks of random data
|
|
*
|
|
* Used for finding collisions in two-byte chunks
|
|
*/
|
|
static int compare_rand_chunk(const void * left, const void * right)
|
|
{
|
|
return memcmp(left, right, 2);
|
|
}
|
|
|
|
/*
|
|
* Test whether primary, public and private DRBG are reseeded
|
|
* in the child after forking the process. Collect the random
|
|
* output of the public and private DRBG and send it back to
|
|
* the parent process.
|
|
*/
|
|
static int test_drbg_reseed_in_child(EVP_RAND_CTX *primary,
|
|
EVP_RAND_CTX *public,
|
|
EVP_RAND_CTX *private,
|
|
drbg_fork_result result[2])
|
|
{
|
|
int rv = 0, status;
|
|
int fd[2];
|
|
pid_t pid;
|
|
unsigned char random[2 * RANDOM_SIZE];
|
|
|
|
if (!TEST_int_ge(pipe(fd), 0))
|
|
return 0;
|
|
|
|
if (!TEST_int_ge(pid = fork(), 0)) {
|
|
close(fd[0]);
|
|
close(fd[1]);
|
|
return 0;
|
|
} else if (pid > 0) {
|
|
|
|
/* I'm the parent; close the write end */
|
|
close(fd[1]);
|
|
|
|
/* wait for children to terminate and collect their random output */
|
|
if (TEST_int_eq(waitpid(pid, &status, 0), pid)
|
|
&& TEST_int_eq(status, 0)
|
|
&& TEST_true(read(fd[0], &random[0], sizeof(random))
|
|
== sizeof(random))) {
|
|
|
|
/* random output of public drbg */
|
|
result[0].pid = pid;
|
|
result[0].private = 0;
|
|
memcpy(result[0].random, &random[0], RANDOM_SIZE);
|
|
|
|
/* random output of private drbg */
|
|
result[1].pid = pid;
|
|
result[1].private = 1;
|
|
memcpy(result[1].random, &random[RANDOM_SIZE], RANDOM_SIZE);
|
|
|
|
rv = 1;
|
|
}
|
|
|
|
/* close the read end */
|
|
close(fd[0]);
|
|
|
|
return rv;
|
|
|
|
} else {
|
|
|
|
/* I'm the child; close the read end */
|
|
close(fd[0]);
|
|
|
|
/* check whether all three DRBGs reseed and send output to parent */
|
|
if (TEST_true(test_drbg_reseed(1, primary, public, private,
|
|
&random[0], &random[RANDOM_SIZE],
|
|
1, 1, 1, 0))
|
|
&& TEST_true(write(fd[1], random, sizeof(random))
|
|
== sizeof(random))) {
|
|
|
|
rv = 1;
|
|
}
|
|
|
|
/* close the write end */
|
|
close(fd[1]);
|
|
|
|
/* convert boolean to exit code */
|
|
exit(rv == 0);
|
|
}
|
|
}
|
|
|
|
static int test_rand_reseed_on_fork(EVP_RAND_CTX *primary,
|
|
EVP_RAND_CTX *public,
|
|
EVP_RAND_CTX *private)
|
|
{
|
|
unsigned int i;
|
|
pid_t pid = getpid();
|
|
int verbose = (getenv("V") != NULL);
|
|
int success = 1;
|
|
int duplicate[2] = {0, 0};
|
|
unsigned char random[2 * RANDOM_SIZE];
|
|
unsigned char sample[DRBG_FORK_RESULT_COUNT * RANDOM_SIZE];
|
|
unsigned char *psample = &sample[0];
|
|
drbg_fork_result result[DRBG_FORK_RESULT_COUNT];
|
|
drbg_fork_result *presult = &result[2];
|
|
|
|
memset(&result, 0, sizeof(result));
|
|
|
|
for (i = 1 ; i <= DRBG_FORK_COUNT ; ++i) {
|
|
|
|
presult[0].pindex = presult[1].pindex = i;
|
|
|
|
sprintf(presult[0].name, "child %d", i);
|
|
strcpy(presult[1].name, presult[0].name);
|
|
|
|
/* collect the random output of the children */
|
|
if (!TEST_true(test_drbg_reseed_in_child(primary,
|
|
public,
|
|
private,
|
|
presult)))
|
|
return 0;
|
|
|
|
presult += 2;
|
|
}
|
|
|
|
/* collect the random output of the parent */
|
|
if (!TEST_true(test_drbg_reseed(1,
|
|
primary, public, private,
|
|
&random[0], &random[RANDOM_SIZE],
|
|
0, 0, 0, 0)))
|
|
return 0;
|
|
|
|
strcpy(result[0].name, "parent");
|
|
strcpy(result[1].name, "parent");
|
|
|
|
/* output of public drbg */
|
|
result[0].pid = pid;
|
|
result[0].private = 0;
|
|
memcpy(result[0].random, &random[0], RANDOM_SIZE);
|
|
|
|
/* output of private drbg */
|
|
result[1].pid = pid;
|
|
result[1].private = 1;
|
|
memcpy(result[1].random, &random[RANDOM_SIZE], RANDOM_SIZE);
|
|
|
|
/* collect all sampled random data in a single buffer */
|
|
for (i = 0 ; i < DRBG_FORK_RESULT_COUNT ; ++i) {
|
|
memcpy(psample, &result[i].random[0], RANDOM_SIZE);
|
|
psample += RANDOM_SIZE;
|
|
}
|
|
|
|
/* sort the results... */
|
|
qsort(result, DRBG_FORK_RESULT_COUNT, sizeof(drbg_fork_result),
|
|
compare_drbg_fork_result);
|
|
|
|
/* ...and count duplicate prefixes by looking at the first byte only */
|
|
for (i = 1 ; i < DRBG_FORK_RESULT_COUNT ; ++i) {
|
|
if (result[i].random[0] == result[i-1].random[0]) {
|
|
/* count public and private duplicates separately */
|
|
++duplicate[result[i].private];
|
|
}
|
|
}
|
|
|
|
if (duplicate[0] >= DRBG_FORK_COUNT - 1) {
|
|
/* just too many duplicates to be a coincidence */
|
|
TEST_note("ERROR: %d duplicate prefixes in public random output", duplicate[0]);
|
|
success = 0;
|
|
}
|
|
|
|
if (duplicate[1] >= DRBG_FORK_COUNT - 1) {
|
|
/* just too many duplicates to be a coincidence */
|
|
TEST_note("ERROR: %d duplicate prefixes in private random output", duplicate[1]);
|
|
success = 0;
|
|
}
|
|
|
|
duplicate[0] = 0;
|
|
|
|
/* sort the two-byte chunks... */
|
|
qsort(sample, sizeof(sample)/2, 2, compare_rand_chunk);
|
|
|
|
/* ...and count duplicate chunks */
|
|
for (i = 2, psample = sample + 2 ; i < sizeof(sample) ; i += 2, psample += 2) {
|
|
if (compare_rand_chunk(psample - 2, psample) == 0)
|
|
++duplicate[0];
|
|
}
|
|
|
|
if (duplicate[0] >= DRBG_FORK_COUNT - 1) {
|
|
/* just too many duplicates to be a coincidence */
|
|
TEST_note("ERROR: %d duplicate chunks in random output", duplicate[0]);
|
|
success = 0;
|
|
}
|
|
|
|
if (verbose || !success) {
|
|
|
|
for (i = 0 ; i < DRBG_FORK_RESULT_COUNT ; ++i) {
|
|
char *rand_hex = OPENSSL_buf2hexstr(result[i].random, RANDOM_SIZE);
|
|
|
|
TEST_note(" random: %s, pid: %d (%s, %s)",
|
|
rand_hex,
|
|
result[i].pid,
|
|
result[i].name,
|
|
result[i].private ? "private" : "public"
|
|
);
|
|
|
|
OPENSSL_free(rand_hex);
|
|
}
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
static int test_rand_fork_safety(int i)
|
|
{
|
|
int success = 1;
|
|
unsigned char random[1];
|
|
EVP_RAND_CTX *primary, *public, *private;
|
|
|
|
/* All three DRBGs should be non-null */
|
|
if (!TEST_ptr(primary = RAND_get0_primary(NULL))
|
|
|| !TEST_ptr(public = RAND_get0_public(NULL))
|
|
|| !TEST_ptr(private = RAND_get0_private(NULL)))
|
|
return 0;
|
|
|
|
/* run the actual test */
|
|
if (!TEST_true(test_rand_reseed_on_fork(primary, public, private)))
|
|
success = 0;
|
|
|
|
/* request a single byte from each of the DRBGs before the next run */
|
|
if (!TEST_int_gt(RAND_bytes(random, 1), 0) || !TEST_int_gt(RAND_priv_bytes(random, 1), 0))
|
|
success = 0;
|
|
|
|
return success;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Test whether the default rand_method (RAND_OpenSSL()) is
|
|
* setup correctly, in particular whether reseeding works
|
|
* as designed.
|
|
*/
|
|
static int test_rand_reseed(void)
|
|
{
|
|
EVP_RAND_CTX *primary, *public, *private;
|
|
unsigned char rand_add_buf[256];
|
|
int rv = 0;
|
|
time_t before_reseed;
|
|
|
|
if (using_fips_rng())
|
|
return TEST_skip("CRNGT cannot be disabled");
|
|
|
|
#ifndef OPENSSL_NO_DEPRECATED_3_0
|
|
/* Check whether RAND_OpenSSL() is the default method */
|
|
if (!TEST_ptr_eq(RAND_get_rand_method(), RAND_OpenSSL()))
|
|
return 0;
|
|
#endif
|
|
|
|
/* All three DRBGs should be non-null */
|
|
if (!TEST_ptr(primary = RAND_get0_primary(NULL))
|
|
|| !TEST_ptr(public = RAND_get0_public(NULL))
|
|
|| !TEST_ptr(private = RAND_get0_private(NULL)))
|
|
return 0;
|
|
|
|
/* There should be three distinct DRBGs, two of them chained to primary */
|
|
if (!TEST_ptr_ne(public, private)
|
|
|| !TEST_ptr_ne(public, primary)
|
|
|| !TEST_ptr_ne(private, primary)
|
|
|| !TEST_ptr_eq(prov_rand(public)->parent, prov_rand(primary))
|
|
|| !TEST_ptr_eq(prov_rand(private)->parent, prov_rand(primary)))
|
|
return 0;
|
|
|
|
/* Disable CRNG testing for the primary DRBG */
|
|
if (!TEST_true(disable_crngt(primary)))
|
|
return 0;
|
|
|
|
/* uninstantiate the three global DRBGs */
|
|
EVP_RAND_uninstantiate(primary);
|
|
EVP_RAND_uninstantiate(private);
|
|
EVP_RAND_uninstantiate(public);
|
|
|
|
/*
|
|
* Test initial seeding of shared DRBGs
|
|
*/
|
|
if (!TEST_true(test_drbg_reseed(1,
|
|
primary, public, private,
|
|
NULL, NULL,
|
|
1, 1, 1, 0)))
|
|
goto error;
|
|
|
|
/*
|
|
* Test initial state of shared DRBGs
|
|
*/
|
|
if (!TEST_true(test_drbg_reseed(1,
|
|
primary, public, private,
|
|
NULL, NULL,
|
|
0, 0, 0, 0)))
|
|
goto error;
|
|
|
|
/*
|
|
* Test whether the public and private DRBG are both reseeded when their
|
|
* reseed counters differ from the primary's reseed counter.
|
|
*/
|
|
inc_reseed_counter(primary);
|
|
if (!TEST_true(test_drbg_reseed(1,
|
|
primary, public, private,
|
|
NULL, NULL,
|
|
0, 1, 1, 0)))
|
|
goto error;
|
|
|
|
/*
|
|
* Test whether the public DRBG is reseeded when its reseed counter differs
|
|
* from the primary's reseed counter.
|
|
*/
|
|
inc_reseed_counter(primary);
|
|
inc_reseed_counter(private);
|
|
if (!TEST_true(test_drbg_reseed(1,
|
|
primary, public, private,
|
|
NULL, NULL,
|
|
0, 1, 0, 0)))
|
|
goto error;
|
|
|
|
/*
|
|
* Test whether the private DRBG is reseeded when its reseed counter differs
|
|
* from the primary's reseed counter.
|
|
*/
|
|
inc_reseed_counter(primary);
|
|
inc_reseed_counter(public);
|
|
if (!TEST_true(test_drbg_reseed(1,
|
|
primary, public, private,
|
|
NULL, NULL,
|
|
0, 0, 1, 0)))
|
|
goto error;
|
|
|
|
/* fill 'randomness' buffer with some arbitrary data */
|
|
memset(rand_add_buf, 'r', sizeof(rand_add_buf));
|
|
|
|
/*
|
|
* Test whether all three DRBGs are reseeded by RAND_add().
|
|
* The before_reseed time has to be measured here and passed into the
|
|
* test_drbg_reseed() test, because the primary DRBG gets already reseeded
|
|
* in RAND_add(), whence the check for the condition
|
|
* before_reseed <= reseed_time(primary) will fail if the time value happens
|
|
* to increase between the RAND_add() and the test_drbg_reseed() call.
|
|
*/
|
|
before_reseed = time(NULL);
|
|
RAND_add(rand_add_buf, sizeof(rand_add_buf), sizeof(rand_add_buf));
|
|
if (!TEST_true(test_drbg_reseed(1,
|
|
primary, public, private,
|
|
NULL, NULL,
|
|
1, 1, 1,
|
|
before_reseed)))
|
|
goto error;
|
|
|
|
rv = 1;
|
|
|
|
error:
|
|
return rv;
|
|
}
|
|
|
|
#if defined(OPENSSL_THREADS)
|
|
static int multi_thread_rand_bytes_succeeded = 1;
|
|
static int multi_thread_rand_priv_bytes_succeeded = 1;
|
|
|
|
static int set_reseed_time_interval(EVP_RAND_CTX *drbg, int t)
|
|
{
|
|
OSSL_PARAM params[2];
|
|
|
|
params[0] = OSSL_PARAM_construct_int(OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL,
|
|
&t);
|
|
params[1] = OSSL_PARAM_construct_end();
|
|
return EVP_RAND_CTX_set_params(drbg, params);
|
|
}
|
|
|
|
static void run_multi_thread_test(void)
|
|
{
|
|
unsigned char buf[256];
|
|
time_t start = time(NULL);
|
|
EVP_RAND_CTX *public = NULL, *private = NULL;
|
|
|
|
if (!TEST_ptr(public = RAND_get0_public(NULL))
|
|
|| !TEST_ptr(private = RAND_get0_private(NULL))
|
|
|| !TEST_true(set_reseed_time_interval(private, 1))
|
|
|| !TEST_true(set_reseed_time_interval(public, 1))) {
|
|
multi_thread_rand_bytes_succeeded = 0;
|
|
return;
|
|
}
|
|
|
|
do {
|
|
if (rand_bytes(buf, sizeof(buf)) <= 0)
|
|
multi_thread_rand_bytes_succeeded = 0;
|
|
if (rand_priv_bytes(buf, sizeof(buf)) <= 0)
|
|
multi_thread_rand_priv_bytes_succeeded = 0;
|
|
}
|
|
while (time(NULL) - start < 5);
|
|
}
|
|
|
|
# if defined(OPENSSL_SYS_WINDOWS)
|
|
|
|
typedef HANDLE thread_t;
|
|
|
|
static DWORD WINAPI thread_run(LPVOID arg)
|
|
{
|
|
run_multi_thread_test();
|
|
/*
|
|
* Because we're linking with a static library, we must stop each
|
|
* thread explicitly, or so says OPENSSL_thread_stop(3)
|
|
*/
|
|
OPENSSL_thread_stop();
|
|
return 0;
|
|
}
|
|
|
|
static int run_thread(thread_t *t)
|
|
{
|
|
*t = CreateThread(NULL, 0, thread_run, NULL, 0, NULL);
|
|
return *t != NULL;
|
|
}
|
|
|
|
static int wait_for_thread(thread_t thread)
|
|
{
|
|
return WaitForSingleObject(thread, INFINITE) == 0;
|
|
}
|
|
|
|
# else
|
|
|
|
typedef pthread_t thread_t;
|
|
|
|
static void *thread_run(void *arg)
|
|
{
|
|
run_multi_thread_test();
|
|
/*
|
|
* Because we're linking with a static library, we must stop each
|
|
* thread explicitly, or so says OPENSSL_thread_stop(3)
|
|
*/
|
|
OPENSSL_thread_stop();
|
|
return NULL;
|
|
}
|
|
|
|
static int run_thread(thread_t *t)
|
|
{
|
|
return pthread_create(t, NULL, thread_run, NULL) == 0;
|
|
}
|
|
|
|
static int wait_for_thread(thread_t thread)
|
|
{
|
|
return pthread_join(thread, NULL) == 0;
|
|
}
|
|
|
|
# endif
|
|
|
|
/*
|
|
* The main thread will also run the test, so we'll have THREADS+1 parallel
|
|
* tests running
|
|
*/
|
|
# define THREADS 3
|
|
|
|
static int test_multi_thread(void)
|
|
{
|
|
thread_t t[THREADS];
|
|
int i;
|
|
|
|
for (i = 0; i < THREADS; i++)
|
|
run_thread(&t[i]);
|
|
run_multi_thread_test();
|
|
for (i = 0; i < THREADS; i++)
|
|
wait_for_thread(t[i]);
|
|
|
|
if (!TEST_true(multi_thread_rand_bytes_succeeded))
|
|
return 0;
|
|
if (!TEST_true(multi_thread_rand_priv_bytes_succeeded))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static EVP_RAND_CTX *new_drbg(EVP_RAND_CTX *parent)
|
|
{
|
|
OSSL_PARAM params[2];
|
|
EVP_RAND *rand = NULL;
|
|
EVP_RAND_CTX *drbg = NULL;
|
|
|
|
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_CIPHER,
|
|
"AES-256-CTR", 0);
|
|
params[1] = OSSL_PARAM_construct_end();
|
|
|
|
if (!TEST_ptr(rand = EVP_RAND_fetch(NULL, "CTR-DRBG", NULL))
|
|
|| !TEST_ptr(drbg = EVP_RAND_CTX_new(rand, parent))
|
|
|| !TEST_true(EVP_RAND_CTX_set_params(drbg, params))) {
|
|
EVP_RAND_CTX_free(drbg);
|
|
drbg = NULL;
|
|
}
|
|
EVP_RAND_free(rand);
|
|
return drbg;
|
|
}
|
|
|
|
static int test_rand_prediction_resistance(void)
|
|
{
|
|
EVP_RAND_CTX *x = NULL, *y = NULL, *z = NULL;
|
|
unsigned char buf1[51], buf2[sizeof(buf1)];
|
|
int ret = 0, xreseed, yreseed, zreseed;
|
|
|
|
if (using_fips_rng())
|
|
return TEST_skip("CRNGT cannot be disabled");
|
|
|
|
/* Initialise a three long DRBG chain */
|
|
if (!TEST_ptr(x = new_drbg(NULL))
|
|
|| !TEST_true(disable_crngt(x))
|
|
|| !TEST_true(EVP_RAND_instantiate(x, 0, 0, NULL, 0, NULL))
|
|
|| !TEST_ptr(y = new_drbg(x))
|
|
|| !TEST_true(EVP_RAND_instantiate(y, 0, 0, NULL, 0, NULL))
|
|
|| !TEST_ptr(z = new_drbg(y))
|
|
|| !TEST_true(EVP_RAND_instantiate(z, 0, 0, NULL, 0, NULL)))
|
|
goto err;
|
|
|
|
/*
|
|
* During a normal reseed, only the last DRBG in the chain should
|
|
* be reseeded.
|
|
*/
|
|
inc_reseed_counter(y);
|
|
xreseed = reseed_counter(x);
|
|
yreseed = reseed_counter(y);
|
|
zreseed = reseed_counter(z);
|
|
if (!TEST_true(EVP_RAND_reseed(z, 0, NULL, 0, NULL, 0))
|
|
|| !TEST_int_eq(reseed_counter(x), xreseed)
|
|
|| !TEST_int_eq(reseed_counter(y), yreseed)
|
|
|| !TEST_int_gt(reseed_counter(z), zreseed))
|
|
goto err;
|
|
|
|
/*
|
|
* When prediction resistance is requested, the request should be
|
|
* propagated to the primary, so that the entire DRBG chain reseeds.
|
|
*/
|
|
zreseed = reseed_counter(z);
|
|
if (!TEST_true(EVP_RAND_reseed(z, 1, NULL, 0, NULL, 0))
|
|
|| !TEST_int_gt(reseed_counter(x), xreseed)
|
|
|| !TEST_int_gt(reseed_counter(y), yreseed)
|
|
|| !TEST_int_gt(reseed_counter(z), zreseed))
|
|
goto err;
|
|
|
|
/*
|
|
* During a normal generate, only the last DRBG should be reseed */
|
|
inc_reseed_counter(y);
|
|
xreseed = reseed_counter(x);
|
|
yreseed = reseed_counter(y);
|
|
zreseed = reseed_counter(z);
|
|
if (!TEST_true(EVP_RAND_generate(z, buf1, sizeof(buf1), 0, 0, NULL, 0))
|
|
|| !TEST_int_eq(reseed_counter(x), xreseed)
|
|
|| !TEST_int_eq(reseed_counter(y), yreseed)
|
|
|| !TEST_int_gt(reseed_counter(z), zreseed))
|
|
goto err;
|
|
|
|
/*
|
|
* When a prediction resistant generate is requested, the request
|
|
* should be propagated to the primary, reseeding the entire DRBG chain.
|
|
*/
|
|
zreseed = reseed_counter(z);
|
|
if (!TEST_true(EVP_RAND_generate(z, buf2, sizeof(buf2), 0, 1, NULL, 0))
|
|
|| !TEST_int_gt(reseed_counter(x), xreseed)
|
|
|| !TEST_int_gt(reseed_counter(y), yreseed)
|
|
|| !TEST_int_gt(reseed_counter(z), zreseed)
|
|
|| !TEST_mem_ne(buf1, sizeof(buf1), buf2, sizeof(buf2)))
|
|
goto err;
|
|
|
|
/* Verify that a normal reseed still only reseeds the last DRBG */
|
|
inc_reseed_counter(y);
|
|
xreseed = reseed_counter(x);
|
|
yreseed = reseed_counter(y);
|
|
zreseed = reseed_counter(z);
|
|
if (!TEST_true(EVP_RAND_reseed(z, 0, NULL, 0, NULL, 0))
|
|
|| !TEST_int_eq(reseed_counter(x), xreseed)
|
|
|| !TEST_int_eq(reseed_counter(y), yreseed)
|
|
|| !TEST_int_gt(reseed_counter(z), zreseed))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
EVP_RAND_CTX_free(z);
|
|
EVP_RAND_CTX_free(y);
|
|
EVP_RAND_CTX_free(x);
|
|
return ret;
|
|
}
|
|
|
|
int setup_tests(void)
|
|
{
|
|
ADD_TEST(test_rand_reseed);
|
|
#if defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_RAND_SEED_EGD)
|
|
ADD_ALL_TESTS(test_rand_fork_safety, RANDOM_SIZE);
|
|
#endif
|
|
ADD_TEST(test_rand_prediction_resistance);
|
|
#if defined(OPENSSL_THREADS)
|
|
ADD_TEST(test_multi_thread);
|
|
#endif
|
|
return 1;
|
|
}
|