openssl/crypto/ec/ecp_mont.c
Nicola Tuveri 3712436071 EC point multiplication: add ladder scaffold
for specialized Montgomery ladder implementations

PR #6009 and #6070 replaced the default EC point multiplication path for
prime and binary curves with a unified Montgomery ladder implementation
with various timing attack defenses (for the common paths when a secret
scalar is feed to the point multiplication).
The newly introduced default implementation directly used
EC_POINT_add/dbl in the main loop.

The scaffolding introduced by this commit allows EC_METHODs to define a
specialized `ladder_step` function to improve performances by taking
advantage of efficient formulas for differential addition-and-doubling
and different coordinate systems.

- `ladder_pre` is executed before the main loop of the ladder: by
  default it copies the input point P into S, and doubles it into R.
  Specialized implementations could, e.g., use this hook to transition
  to different coordinate systems before copying and doubling;
- `ladder_step` is the core of the Montgomery ladder loop: by default it
  computes `S := R+S; R := 2R;`, but specific implementations could,
  e.g., implement a more efficient formula for differential
  addition-and-doubling;
- `ladder_post` is executed after the Montgomery ladder loop: by default
  it's a noop, but specialized implementations could, e.g., use this
  hook to transition back from the coordinate system used for optimizing
  the differential addition-and-doubling or recover the y coordinate of
  the result point.

This commit also renames `ec_mul_consttime` to `ec_scalar_mul_ladder`,
as it better corresponds to what this function does: nothing can be
truly said about the constant-timeness of the overall execution of this
function, given that the underlying operations are not necessarily
constant-time themselves.
What this implementation ensures is that the same fixed sequence of
operations is executed for each scalar multiplication (for a given
EC_GROUP), with no dependency on the value of the input scalar.

Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>

Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
2018-07-16 10:17:40 +01:00

243 lines
6.6 KiB
C

/*
* Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include "ec_lcl.h"
const EC_METHOD *EC_GFp_mont_method(void)
{
static const EC_METHOD ret = {
EC_FLAGS_DEFAULT_OCT,
NID_X9_62_prime_field,
ec_GFp_mont_group_init,
ec_GFp_mont_group_finish,
ec_GFp_mont_group_clear_finish,
ec_GFp_mont_group_copy,
ec_GFp_mont_group_set_curve,
ec_GFp_simple_group_get_curve,
ec_GFp_simple_group_get_degree,
ec_group_simple_order_bits,
ec_GFp_simple_group_check_discriminant,
ec_GFp_simple_point_init,
ec_GFp_simple_point_finish,
ec_GFp_simple_point_clear_finish,
ec_GFp_simple_point_copy,
ec_GFp_simple_point_set_to_infinity,
ec_GFp_simple_set_Jprojective_coordinates_GFp,
ec_GFp_simple_get_Jprojective_coordinates_GFp,
ec_GFp_simple_point_set_affine_coordinates,
ec_GFp_simple_point_get_affine_coordinates,
0, 0, 0,
ec_GFp_simple_add,
ec_GFp_simple_dbl,
ec_GFp_simple_invert,
ec_GFp_simple_is_at_infinity,
ec_GFp_simple_is_on_curve,
ec_GFp_simple_cmp,
ec_GFp_simple_make_affine,
ec_GFp_simple_points_make_affine,
0 /* mul */ ,
0 /* precompute_mult */ ,
0 /* have_precompute_mult */ ,
ec_GFp_mont_field_mul,
ec_GFp_mont_field_sqr,
0 /* field_div */ ,
ec_GFp_mont_field_encode,
ec_GFp_mont_field_decode,
ec_GFp_mont_field_set_to_one,
ec_key_simple_priv2oct,
ec_key_simple_oct2priv,
0, /* set private */
ec_key_simple_generate_key,
ec_key_simple_check_key,
ec_key_simple_generate_public_key,
0, /* keycopy */
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
ec_GFp_simple_blind_coordinates,
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;
}
int ec_GFp_mont_group_init(EC_GROUP *group)
{
int ok;
ok = ec_GFp_simple_group_init(group);
group->field_data1 = NULL;
group->field_data2 = NULL;
return ok;
}
void ec_GFp_mont_group_finish(EC_GROUP *group)
{
BN_MONT_CTX_free(group->field_data1);
group->field_data1 = NULL;
BN_free(group->field_data2);
group->field_data2 = NULL;
ec_GFp_simple_group_finish(group);
}
void ec_GFp_mont_group_clear_finish(EC_GROUP *group)
{
BN_MONT_CTX_free(group->field_data1);
group->field_data1 = NULL;
BN_clear_free(group->field_data2);
group->field_data2 = NULL;
ec_GFp_simple_group_clear_finish(group);
}
int ec_GFp_mont_group_copy(EC_GROUP *dest, const EC_GROUP *src)
{
BN_MONT_CTX_free(dest->field_data1);
dest->field_data1 = NULL;
BN_clear_free(dest->field_data2);
dest->field_data2 = NULL;
if (!ec_GFp_simple_group_copy(dest, src))
return 0;
if (src->field_data1 != NULL) {
dest->field_data1 = BN_MONT_CTX_new();
if (dest->field_data1 == NULL)
return 0;
if (!BN_MONT_CTX_copy(dest->field_data1, src->field_data1))
goto err;
}
if (src->field_data2 != NULL) {
dest->field_data2 = BN_dup(src->field_data2);
if (dest->field_data2 == NULL)
goto err;
}
return 1;
err:
BN_MONT_CTX_free(dest->field_data1);
dest->field_data1 = NULL;
return 0;
}
int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BN_MONT_CTX *mont = NULL;
BIGNUM *one = NULL;
int ret = 0;
BN_MONT_CTX_free(group->field_data1);
group->field_data1 = NULL;
BN_free(group->field_data2);
group->field_data2 = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
mont = BN_MONT_CTX_new();
if (mont == NULL)
goto err;
if (!BN_MONT_CTX_set(mont, p, ctx)) {
ECerr(EC_F_EC_GFP_MONT_GROUP_SET_CURVE, ERR_R_BN_LIB);
goto err;
}
one = BN_new();
if (one == NULL)
goto err;
if (!BN_to_montgomery(one, BN_value_one(), mont, ctx))
goto err;
group->field_data1 = mont;
mont = NULL;
group->field_data2 = one;
one = NULL;
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
if (!ret) {
BN_MONT_CTX_free(group->field_data1);
group->field_data1 = NULL;
BN_free(group->field_data2);
group->field_data2 = NULL;
}
err:
BN_free(one);
BN_CTX_free(new_ctx);
BN_MONT_CTX_free(mont);
return ret;
}
int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx)
{
if (group->field_data1 == NULL) {
ECerr(EC_F_EC_GFP_MONT_FIELD_MUL, EC_R_NOT_INITIALIZED);
return 0;
}
return BN_mod_mul_montgomery(r, a, b, group->field_data1, ctx);
}
int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
BN_CTX *ctx)
{
if (group->field_data1 == NULL) {
ECerr(EC_F_EC_GFP_MONT_FIELD_SQR, EC_R_NOT_INITIALIZED);
return 0;
}
return BN_mod_mul_montgomery(r, a, a, group->field_data1, ctx);
}
int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r,
const BIGNUM *a, BN_CTX *ctx)
{
if (group->field_data1 == NULL) {
ECerr(EC_F_EC_GFP_MONT_FIELD_ENCODE, EC_R_NOT_INITIALIZED);
return 0;
}
return BN_to_montgomery(r, a, (BN_MONT_CTX *)group->field_data1, ctx);
}
int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r,
const BIGNUM *a, BN_CTX *ctx)
{
if (group->field_data1 == NULL) {
ECerr(EC_F_EC_GFP_MONT_FIELD_DECODE, EC_R_NOT_INITIALIZED);
return 0;
}
return BN_from_montgomery(r, a, group->field_data1, ctx);
}
int ec_GFp_mont_field_set_to_one(const EC_GROUP *group, BIGNUM *r,
BN_CTX *ctx)
{
if (group->field_data2 == NULL) {
ECerr(EC_F_EC_GFP_MONT_FIELD_SET_TO_ONE, EC_R_NOT_INITIALIZED);
return 0;
}
if (!BN_copy(r, group->field_data2))
return 0;
return 1;
}