openssl/ssl/record/rec_layer_s3.c
Matt Caswell dc84829cc5 Make sure we use the correct SSL object when making a callback
When processing a callback within libssl that applies to TLS the original
SSL object may have been created for TLS directly, or for QUIC. When making
the callback we must make sure that we use the correct SSL object. In the
case of QUIC we must not use the internal only SSL object.

Fixes #25788

Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/25874)
2024-11-07 12:05:34 +01:00

1483 lines
51 KiB
C

/*
* Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/e_os.h"
#include <stdio.h>
#include <limits.h>
#include <errno.h>
#include <assert.h>
#include "../ssl_local.h"
#include "../quic/quic_local.h"
#include <openssl/evp.h>
#include <openssl/buffer.h>
#include <openssl/rand.h>
#include <openssl/core_names.h>
#include "record_local.h"
#include "internal/packet.h"
#include "internal/comp.h"
void RECORD_LAYER_init(RECORD_LAYER *rl, SSL_CONNECTION *s)
{
rl->s = s;
}
int RECORD_LAYER_clear(RECORD_LAYER *rl)
{
int ret = 1;
/* Clear any buffered records we no longer need */
while (rl->curr_rec < rl->num_recs)
ret &= ssl_release_record(rl->s,
&(rl->tlsrecs[rl->curr_rec++]),
0);
rl->wnum = 0;
memset(rl->handshake_fragment, 0, sizeof(rl->handshake_fragment));
rl->handshake_fragment_len = 0;
rl->wpend_tot = 0;
rl->wpend_type = 0;
rl->wpend_buf = NULL;
rl->alert_count = 0;
rl->num_recs = 0;
rl->curr_rec = 0;
BIO_free(rl->rrlnext);
rl->rrlnext = NULL;
if (rl->rrlmethod != NULL)
rl->rrlmethod->free(rl->rrl); /* Ignore return value */
if (rl->wrlmethod != NULL)
rl->wrlmethod->free(rl->wrl); /* Ignore return value */
BIO_free(rl->rrlnext);
rl->rrlmethod = NULL;
rl->wrlmethod = NULL;
rl->rrlnext = NULL;
rl->rrl = NULL;
rl->wrl = NULL;
if (rl->d)
DTLS_RECORD_LAYER_clear(rl);
return ret;
}
int RECORD_LAYER_reset(RECORD_LAYER *rl)
{
int ret;
ret = RECORD_LAYER_clear(rl);
/* We try and reset both record layers even if one fails */
ret &= ssl_set_new_record_layer(rl->s,
SSL_CONNECTION_IS_DTLS(rl->s)
? DTLS_ANY_VERSION : TLS_ANY_VERSION,
OSSL_RECORD_DIRECTION_READ,
OSSL_RECORD_PROTECTION_LEVEL_NONE, NULL, 0,
NULL, 0, NULL, 0, NULL, 0, NULL, 0,
NID_undef, NULL, NULL, NULL);
ret &= ssl_set_new_record_layer(rl->s,
SSL_CONNECTION_IS_DTLS(rl->s)
? DTLS_ANY_VERSION : TLS_ANY_VERSION,
OSSL_RECORD_DIRECTION_WRITE,
OSSL_RECORD_PROTECTION_LEVEL_NONE, NULL, 0,
NULL, 0, NULL, 0, NULL, 0, NULL, 0,
NID_undef, NULL, NULL, NULL);
/* SSLfatal already called in the event of failure */
return ret;
}
/* Checks if we have unprocessed read ahead data pending */
int RECORD_LAYER_read_pending(const RECORD_LAYER *rl)
{
return rl->rrlmethod->unprocessed_read_pending(rl->rrl);
}
/* Checks if we have decrypted unread record data pending */
int RECORD_LAYER_processed_read_pending(const RECORD_LAYER *rl)
{
return (rl->curr_rec < rl->num_recs)
|| rl->rrlmethod->processed_read_pending(rl->rrl);
}
int RECORD_LAYER_write_pending(const RECORD_LAYER *rl)
{
return rl->wpend_tot > 0;
}
static uint32_t ossl_get_max_early_data(SSL_CONNECTION *s)
{
uint32_t max_early_data;
SSL_SESSION *sess = s->session;
/*
* If we are a client then we always use the max_early_data from the
* session/psksession. Otherwise we go with the lowest out of the max early
* data set in the session and the configured max_early_data.
*/
if (!s->server && sess->ext.max_early_data == 0) {
if (!ossl_assert(s->psksession != NULL
&& s->psksession->ext.max_early_data > 0)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
sess = s->psksession;
}
if (!s->server)
max_early_data = sess->ext.max_early_data;
else if (s->ext.early_data != SSL_EARLY_DATA_ACCEPTED)
max_early_data = s->recv_max_early_data;
else
max_early_data = s->recv_max_early_data < sess->ext.max_early_data
? s->recv_max_early_data : sess->ext.max_early_data;
return max_early_data;
}
static int ossl_early_data_count_ok(SSL_CONNECTION *s, size_t length,
size_t overhead, int send)
{
uint32_t max_early_data;
max_early_data = ossl_get_max_early_data(s);
if (max_early_data == 0) {
SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MUCH_EARLY_DATA);
return 0;
}
/* If we are dealing with ciphertext we need to allow for the overhead */
max_early_data += overhead;
if (s->early_data_count + length > max_early_data) {
SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MUCH_EARLY_DATA);
return 0;
}
s->early_data_count += length;
return 1;
}
size_t ssl3_pending(const SSL *s)
{
size_t i, num = 0;
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
if (sc == NULL)
return 0;
if (SSL_CONNECTION_IS_DTLS(sc)) {
TLS_RECORD *rdata;
pitem *item, *iter;
iter = pqueue_iterator(sc->rlayer.d->buffered_app_data);
while ((item = pqueue_next(&iter)) != NULL) {
rdata = item->data;
num += rdata->length;
}
}
for (i = 0; i < sc->rlayer.num_recs; i++) {
if (sc->rlayer.tlsrecs[i].type != SSL3_RT_APPLICATION_DATA)
return num;
num += sc->rlayer.tlsrecs[i].length;
}
num += sc->rlayer.rrlmethod->app_data_pending(sc->rlayer.rrl);
return num;
}
void SSL_CTX_set_default_read_buffer_len(SSL_CTX *ctx, size_t len)
{
ctx->default_read_buf_len = len;
}
void SSL_set_default_read_buffer_len(SSL *s, size_t len)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL || IS_QUIC(s))
return;
sc->rlayer.default_read_buf_len = len;
}
const char *SSL_rstate_string_long(const SSL *s)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
const char *lng;
if (sc == NULL)
return NULL;
if (sc->rlayer.rrlmethod == NULL || sc->rlayer.rrl == NULL)
return "unknown";
sc->rlayer.rrlmethod->get_state(sc->rlayer.rrl, NULL, &lng);
return lng;
}
const char *SSL_rstate_string(const SSL *s)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
const char *shrt;
if (sc == NULL)
return NULL;
if (sc->rlayer.rrlmethod == NULL || sc->rlayer.rrl == NULL)
return "unknown";
sc->rlayer.rrlmethod->get_state(sc->rlayer.rrl, &shrt, NULL);
return shrt;
}
static int tls_write_check_pending(SSL_CONNECTION *s, uint8_t type,
const unsigned char *buf, size_t len)
{
if (s->rlayer.wpend_tot == 0)
return 0;
/* We have pending data, so do some sanity checks */
if ((s->rlayer.wpend_tot > len)
|| (!(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER)
&& (s->rlayer.wpend_buf != buf))
|| (s->rlayer.wpend_type != type)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_WRITE_RETRY);
return -1;
}
return 1;
}
/*
* Call this to write data in records of type 'type' It will return <= 0 if
* not all data has been sent or non-blocking IO.
*/
int ssl3_write_bytes(SSL *ssl, uint8_t type, const void *buf_, size_t len,
size_t *written)
{
const unsigned char *buf = buf_;
size_t tot;
size_t n, max_send_fragment, split_send_fragment, maxpipes;
int i;
SSL_CONNECTION *s = SSL_CONNECTION_FROM_SSL_ONLY(ssl);
OSSL_RECORD_TEMPLATE tmpls[SSL_MAX_PIPELINES];
unsigned int recversion;
if (s == NULL)
return -1;
s->rwstate = SSL_NOTHING;
tot = s->rlayer.wnum;
/*
* ensure that if we end up with a smaller value of data to write out
* than the original len from a write which didn't complete for
* non-blocking I/O and also somehow ended up avoiding the check for
* this in tls_write_check_pending/SSL_R_BAD_WRITE_RETRY as it must never be
* possible to end up with (len-tot) as a large number that will then
* promptly send beyond the end of the users buffer ... so we trap and
* report the error in a way the user will notice
*/
if ((len < s->rlayer.wnum)
|| ((s->rlayer.wpend_tot != 0)
&& (len < (s->rlayer.wnum + s->rlayer.wpend_tot)))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_LENGTH);
return -1;
}
if (s->early_data_state == SSL_EARLY_DATA_WRITING
&& !ossl_early_data_count_ok(s, len, 0, 1)) {
/* SSLfatal() already called */
return -1;
}
s->rlayer.wnum = 0;
/*
* If we are supposed to be sending a KeyUpdate or NewSessionTicket then go
* into init unless we have writes pending - in which case we should finish
* doing that first.
*/
if (s->rlayer.wpend_tot == 0 && (s->key_update != SSL_KEY_UPDATE_NONE
|| s->ext.extra_tickets_expected > 0))
ossl_statem_set_in_init(s, 1);
/*
* When writing early data on the server side we could be "in_init" in
* between receiving the EoED and the CF - but we don't want to handle those
* messages yet.
*/
if (SSL_in_init(ssl) && !ossl_statem_get_in_handshake(s)
&& s->early_data_state != SSL_EARLY_DATA_UNAUTH_WRITING) {
i = s->handshake_func(ssl);
/* SSLfatal() already called */
if (i < 0)
return i;
if (i == 0) {
return -1;
}
}
i = tls_write_check_pending(s, type, buf, len);
if (i < 0) {
/* SSLfatal() already called */
return i;
} else if (i > 0) {
/* Retry needed */
i = HANDLE_RLAYER_WRITE_RETURN(s,
s->rlayer.wrlmethod->retry_write_records(s->rlayer.wrl));
if (i <= 0) {
s->rlayer.wnum = tot;
return i;
}
tot += s->rlayer.wpend_tot;
s->rlayer.wpend_tot = 0;
} /* else no retry required */
if (tot == 0) {
/*
* We've not previously sent any data for this write so memorize
* arguments so that we can detect bad write retries later
*/
s->rlayer.wpend_tot = 0;
s->rlayer.wpend_type = type;
s->rlayer.wpend_buf = buf;
}
if (tot == len) { /* done? */
*written = tot;
return 1;
}
/* If we have an alert to send, lets send it */
if (s->s3.alert_dispatch > 0) {
i = ssl->method->ssl_dispatch_alert(ssl);
if (i <= 0) {
/* SSLfatal() already called if appropriate */
s->rlayer.wnum = tot;
return i;
}
/* if it went, fall through and send more stuff */
}
n = (len - tot);
max_send_fragment = ssl_get_max_send_fragment(s);
split_send_fragment = ssl_get_split_send_fragment(s);
if (max_send_fragment == 0
|| split_send_fragment == 0
|| split_send_fragment > max_send_fragment) {
/*
* We should have prevented this when we set/get the split and max send
* fragments so we shouldn't get here
*/
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
/*
* Some servers hang if initial client hello is larger than 256 bytes
* and record version number > TLS 1.0
*/
recversion = (s->version == TLS1_3_VERSION) ? TLS1_2_VERSION : s->version;
if (SSL_get_state(ssl) == TLS_ST_CW_CLNT_HELLO
&& !s->renegotiate
&& TLS1_get_version(ssl) > TLS1_VERSION
&& s->hello_retry_request == SSL_HRR_NONE)
recversion = TLS1_VERSION;
for (;;) {
size_t tmppipelen, remain;
size_t j, lensofar = 0;
/*
* Ask the record layer how it would like to split the amount of data
* that we have, and how many of those records it would like in one go.
*/
maxpipes = s->rlayer.wrlmethod->get_max_records(s->rlayer.wrl, type, n,
max_send_fragment,
&split_send_fragment);
/*
* If max_pipelines is 0 then this means "undefined" and we default to
* whatever the record layer wants to do. Otherwise we use the smallest
* value from the number requested by the record layer, and max number
* configured by the user.
*/
if (s->max_pipelines > 0 && maxpipes > s->max_pipelines)
maxpipes = s->max_pipelines;
if (maxpipes > SSL_MAX_PIPELINES)
maxpipes = SSL_MAX_PIPELINES;
if (split_send_fragment > max_send_fragment) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
if (n / maxpipes >= split_send_fragment) {
/*
* We have enough data to completely fill all available
* pipelines
*/
for (j = 0; j < maxpipes; j++) {
tmpls[j].type = type;
tmpls[j].version = recversion;
tmpls[j].buf = &(buf[tot]) + (j * split_send_fragment);
tmpls[j].buflen = split_send_fragment;
}
/* Remember how much data we are going to be sending */
s->rlayer.wpend_tot = maxpipes * split_send_fragment;
} else {
/* We can partially fill all available pipelines */
tmppipelen = n / maxpipes;
remain = n % maxpipes;
/*
* If there is a remainder we add an extra byte to the first few
* pipelines
*/
if (remain > 0)
tmppipelen++;
for (j = 0; j < maxpipes; j++) {
tmpls[j].type = type;
tmpls[j].version = recversion;
tmpls[j].buf = &(buf[tot]) + lensofar;
tmpls[j].buflen = tmppipelen;
lensofar += tmppipelen;
if (j + 1 == remain)
tmppipelen--;
}
/* Remember how much data we are going to be sending */
s->rlayer.wpend_tot = n;
}
i = HANDLE_RLAYER_WRITE_RETURN(s,
s->rlayer.wrlmethod->write_records(s->rlayer.wrl, tmpls, maxpipes));
if (i <= 0) {
/* SSLfatal() already called if appropriate */
s->rlayer.wnum = tot;
return i;
}
if (s->rlayer.wpend_tot == n
|| (type == SSL3_RT_APPLICATION_DATA
&& (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE) != 0)) {
*written = tot + s->rlayer.wpend_tot;
s->rlayer.wpend_tot = 0;
return 1;
}
n -= s->rlayer.wpend_tot;
tot += s->rlayer.wpend_tot;
}
}
int ossl_tls_handle_rlayer_return(SSL_CONNECTION *s, int writing, int ret,
char *file, int line)
{
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
if (ret == OSSL_RECORD_RETURN_RETRY) {
s->rwstate = writing ? SSL_WRITING : SSL_READING;
ret = -1;
} else {
s->rwstate = SSL_NOTHING;
if (ret == OSSL_RECORD_RETURN_EOF) {
if (writing) {
/*
* This shouldn't happen with a writing operation. We treat it
* as fatal.
*/
ERR_new();
ERR_set_debug(file, line, 0);
ossl_statem_fatal(s, SSL_AD_INTERNAL_ERROR,
ERR_R_INTERNAL_ERROR, NULL);
ret = OSSL_RECORD_RETURN_FATAL;
} else if ((s->options & SSL_OP_IGNORE_UNEXPECTED_EOF) != 0) {
SSL_set_shutdown(ssl, SSL_RECEIVED_SHUTDOWN);
s->s3.warn_alert = SSL_AD_CLOSE_NOTIFY;
} else {
ERR_new();
ERR_set_debug(file, line, 0);
/*
* This reason code is part of the API and may be used by
* applications for control flow decisions.
*/
ossl_statem_fatal(s, SSL_AD_DECODE_ERROR,
SSL_R_UNEXPECTED_EOF_WHILE_READING, NULL);
}
} else if (ret == OSSL_RECORD_RETURN_FATAL) {
int al = s->rlayer.rrlmethod->get_alert_code(s->rlayer.rrl);
if (al != SSL_AD_NO_ALERT) {
ERR_new();
ERR_set_debug(file, line, 0);
ossl_statem_fatal(s, al, SSL_R_RECORD_LAYER_FAILURE, NULL);
}
/*
* else some failure but there is no alert code. We don't log an
* error for this. The record layer should have logged an error
* already or, if not, its due to some sys call error which will be
* reported via SSL_ERROR_SYSCALL and errno.
*/
}
/*
* The record layer distinguishes the cases of EOF, non-fatal
* err and retry. Upper layers do not.
* If we got a retry or success then *ret is already correct,
* otherwise we need to convert the return value.
*/
if (ret == OSSL_RECORD_RETURN_NON_FATAL_ERR || ret == OSSL_RECORD_RETURN_EOF)
ret = 0;
else if (ret < OSSL_RECORD_RETURN_NON_FATAL_ERR)
ret = -1;
}
return ret;
}
int ssl_release_record(SSL_CONNECTION *s, TLS_RECORD *rr, size_t length)
{
assert(rr->length >= length);
if (rr->rechandle != NULL) {
if (length == 0)
length = rr->length;
/* The record layer allocated the buffers for this record */
if (HANDLE_RLAYER_READ_RETURN(s,
s->rlayer.rrlmethod->release_record(s->rlayer.rrl,
rr->rechandle,
length)) <= 0) {
/* RLAYER_fatal already called */
return 0;
}
if (length == rr->length)
s->rlayer.curr_rec++;
} else if (length == 0 || length == rr->length) {
/* We allocated the buffers for this record (only happens with DTLS) */
OPENSSL_free(rr->allocdata);
rr->allocdata = NULL;
}
rr->length -= length;
if (rr->length > 0)
rr->off += length;
else
rr->off = 0;
return 1;
}
/*-
* Return up to 'len' payload bytes received in 'type' records.
* 'type' is one of the following:
*
* - SSL3_RT_HANDSHAKE (when tls_get_message_header and tls_get_message_body
* call us)
* - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
* - 0 (during a shutdown, no data has to be returned)
*
* If we don't have stored data to work from, read a SSL/TLS record first
* (possibly multiple records if we still don't have anything to return).
*
* This function must handle any surprises the peer may have for us, such as
* Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec
* messages are treated as if they were handshake messages *if* the |recvd_type|
* argument is non NULL.
* Also if record payloads contain fragments too small to process, we store
* them until there is enough for the respective protocol (the record protocol
* may use arbitrary fragmentation and even interleaving):
* Change cipher spec protocol
* just 1 byte needed, no need for keeping anything stored
* Alert protocol
* 2 bytes needed (AlertLevel, AlertDescription)
* Handshake protocol
* 4 bytes needed (HandshakeType, uint24 length) -- we just have
* to detect unexpected Client Hello and Hello Request messages
* here, anything else is handled by higher layers
* Application data protocol
* none of our business
*/
int ssl3_read_bytes(SSL *ssl, uint8_t type, uint8_t *recvd_type,
unsigned char *buf, size_t len,
int peek, size_t *readbytes)
{
int i, j, ret;
size_t n, curr_rec, totalbytes;
TLS_RECORD *rr;
void (*cb) (const SSL *ssl, int type2, int val) = NULL;
int is_tls13;
SSL_CONNECTION *s = SSL_CONNECTION_FROM_SSL_ONLY(ssl);
is_tls13 = SSL_CONNECTION_IS_TLS13(s);
if ((type != 0
&& (type != SSL3_RT_APPLICATION_DATA)
&& (type != SSL3_RT_HANDSHAKE))
|| (peek && (type != SSL3_RT_APPLICATION_DATA))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
if ((type == SSL3_RT_HANDSHAKE) && (s->rlayer.handshake_fragment_len > 0))
/* (partially) satisfy request from storage */
{
unsigned char *src = s->rlayer.handshake_fragment;
unsigned char *dst = buf;
unsigned int k;
/* peek == 0 */
n = 0;
while ((len > 0) && (s->rlayer.handshake_fragment_len > 0)) {
*dst++ = *src++;
len--;
s->rlayer.handshake_fragment_len--;
n++;
}
/* move any remaining fragment bytes: */
for (k = 0; k < s->rlayer.handshake_fragment_len; k++)
s->rlayer.handshake_fragment[k] = *src++;
if (recvd_type != NULL)
*recvd_type = SSL3_RT_HANDSHAKE;
*readbytes = n;
return 1;
}
/*
* Now s->rlayer.handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE.
*/
if (!ossl_statem_get_in_handshake(s) && SSL_in_init(ssl)) {
/* type == SSL3_RT_APPLICATION_DATA */
i = s->handshake_func(ssl);
/* SSLfatal() already called */
if (i < 0)
return i;
if (i == 0)
return -1;
}
start:
s->rwstate = SSL_NOTHING;
/*-
* For each record 'i' up to |num_recs]
* rr[i].type - is the type of record
* rr[i].data, - data
* rr[i].off, - offset into 'data' for next read
* rr[i].length, - number of bytes.
*/
/* get new records if necessary */
if (s->rlayer.curr_rec >= s->rlayer.num_recs) {
s->rlayer.curr_rec = s->rlayer.num_recs = 0;
do {
rr = &s->rlayer.tlsrecs[s->rlayer.num_recs];
ret = HANDLE_RLAYER_READ_RETURN(s,
s->rlayer.rrlmethod->read_record(s->rlayer.rrl,
&rr->rechandle,
&rr->version, &rr->type,
&rr->data, &rr->length,
NULL, NULL));
if (ret <= 0) {
/* SSLfatal() already called if appropriate */
return ret;
}
rr->off = 0;
s->rlayer.num_recs++;
} while (s->rlayer.rrlmethod->processed_read_pending(s->rlayer.rrl)
&& s->rlayer.num_recs < SSL_MAX_PIPELINES);
}
rr = &s->rlayer.tlsrecs[s->rlayer.curr_rec];
if (s->rlayer.handshake_fragment_len > 0
&& rr->type != SSL3_RT_HANDSHAKE
&& SSL_CONNECTION_IS_TLS13(s)) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_MIXED_HANDSHAKE_AND_NON_HANDSHAKE_DATA);
return -1;
}
/*
* Reset the count of consecutive warning alerts if we've got a non-empty
* record that isn't an alert.
*/
if (rr->type != SSL3_RT_ALERT && rr->length != 0)
s->rlayer.alert_count = 0;
/* we now have a packet which can be read and processed */
if (s->s3.change_cipher_spec /* set when we receive ChangeCipherSpec,
* reset by ssl3_get_finished */
&& (rr->type != SSL3_RT_HANDSHAKE)) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_DATA_BETWEEN_CCS_AND_FINISHED);
return -1;
}
/*
* If the other end has shut down, throw anything we read away (even in
* 'peek' mode)
*/
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
s->rlayer.curr_rec++;
s->rwstate = SSL_NOTHING;
return 0;
}
if (type == rr->type
|| (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC
&& type == SSL3_RT_HANDSHAKE && recvd_type != NULL
&& !is_tls13)) {
/*
* SSL3_RT_APPLICATION_DATA or
* SSL3_RT_HANDSHAKE or
* SSL3_RT_CHANGE_CIPHER_SPEC
*/
/*
* make sure that we are not getting application data when we are
* doing a handshake for the first time
*/
if (SSL_in_init(ssl) && type == SSL3_RT_APPLICATION_DATA
&& SSL_IS_FIRST_HANDSHAKE(s)) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_APP_DATA_IN_HANDSHAKE);
return -1;
}
if (type == SSL3_RT_HANDSHAKE
&& rr->type == SSL3_RT_CHANGE_CIPHER_SPEC
&& s->rlayer.handshake_fragment_len > 0) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY);
return -1;
}
if (recvd_type != NULL)
*recvd_type = rr->type;
if (len == 0) {
/*
* Skip a zero length record. This ensures multiple calls to
* SSL_read() with a zero length buffer will eventually cause
* SSL_pending() to report data as being available.
*/
if (rr->length == 0 && !ssl_release_record(s, rr, 0))
return -1;
return 0;
}
totalbytes = 0;
curr_rec = s->rlayer.curr_rec;
do {
if (len - totalbytes > rr->length)
n = rr->length;
else
n = len - totalbytes;
memcpy(buf, &(rr->data[rr->off]), n);
buf += n;
if (peek) {
/* Mark any zero length record as consumed CVE-2016-6305 */
if (rr->length == 0 && !ssl_release_record(s, rr, 0))
return -1;
} else {
if (!ssl_release_record(s, rr, n))
return -1;
}
if (rr->length == 0
|| (peek && n == rr->length)) {
rr++;
curr_rec++;
}
totalbytes += n;
} while (type == SSL3_RT_APPLICATION_DATA
&& curr_rec < s->rlayer.num_recs
&& totalbytes < len);
if (totalbytes == 0) {
/* We must have read empty records. Get more data */
goto start;
}
*readbytes = totalbytes;
return 1;
}
/*
* If we get here, then type != rr->type; if we have a handshake message,
* then it was unexpected (Hello Request or Client Hello) or invalid (we
* were actually expecting a CCS).
*/
/*
* Lets just double check that we've not got an SSLv2 record
*/
if (rr->version == SSL2_VERSION) {
/*
* Should never happen. ssl3_get_record() should only give us an SSLv2
* record back if this is the first packet and we are looking for an
* initial ClientHello. Therefore |type| should always be equal to
* |rr->type|. If not then something has gone horribly wrong
*/
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return -1;
}
if (ssl->method->version == TLS_ANY_VERSION
&& (s->server || rr->type != SSL3_RT_ALERT)) {
/*
* If we've got this far and still haven't decided on what version
* we're using then this must be a client side alert we're dealing
* with. We shouldn't be receiving anything other than a ClientHello
* if we are a server.
*/
s->version = rr->version;
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_MESSAGE);
return -1;
}
/*-
* s->rlayer.handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAKE;
* (Possibly rr is 'empty' now, i.e. rr->length may be 0.)
*/
if (rr->type == SSL3_RT_ALERT) {
unsigned int alert_level, alert_descr;
const unsigned char *alert_bytes = rr->data + rr->off;
PACKET alert;
if (!PACKET_buf_init(&alert, alert_bytes, rr->length)
|| !PACKET_get_1(&alert, &alert_level)
|| !PACKET_get_1(&alert, &alert_descr)
|| PACKET_remaining(&alert) != 0) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_INVALID_ALERT);
return -1;
}
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_ALERT, alert_bytes, 2, ssl,
s->msg_callback_arg);
if (s->info_callback != NULL)
cb = s->info_callback;
else if (ssl->ctx->info_callback != NULL)
cb = ssl->ctx->info_callback;
if (cb != NULL) {
j = (alert_level << 8) | alert_descr;
cb(ssl, SSL_CB_READ_ALERT, j);
}
if ((!is_tls13 && alert_level == SSL3_AL_WARNING)
|| (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED)) {
s->s3.warn_alert = alert_descr;
if (!ssl_release_record(s, rr, 0))
return -1;
s->rlayer.alert_count++;
if (s->rlayer.alert_count == MAX_WARN_ALERT_COUNT) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
SSL_R_TOO_MANY_WARN_ALERTS);
return -1;
}
}
/*
* Apart from close_notify the only other warning alert in TLSv1.3
* is user_cancelled - which we just ignore.
*/
if (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED) {
goto start;
} else if (alert_descr == SSL_AD_CLOSE_NOTIFY
&& (is_tls13 || alert_level == SSL3_AL_WARNING)) {
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
return 0;
} else if (alert_level == SSL3_AL_FATAL || is_tls13) {
s->rwstate = SSL_NOTHING;
s->s3.fatal_alert = alert_descr;
SSLfatal_data(s, SSL_AD_NO_ALERT,
SSL_AD_REASON_OFFSET + alert_descr,
"SSL alert number %d", alert_descr);
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
if (!ssl_release_record(s, rr, 0))
return -1;
SSL_CTX_remove_session(s->session_ctx, s->session);
return 0;
} else if (alert_descr == SSL_AD_NO_RENEGOTIATION) {
/*
* This is a warning but we receive it if we requested
* renegotiation and the peer denied it. Terminate with a fatal
* alert because if application tried to renegotiate it
* presumably had a good reason and expects it to succeed. In
* future we might have a renegotiation where we don't care if
* the peer refused it where we carry on.
*/
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_RENEGOTIATION);
return -1;
} else if (alert_level == SSL3_AL_WARNING) {
/* We ignore any other warning alert in TLSv1.2 and below */
goto start;
}
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_UNKNOWN_ALERT_TYPE);
return -1;
}
if ((s->shutdown & SSL_SENT_SHUTDOWN) != 0) {
if (rr->type == SSL3_RT_HANDSHAKE) {
BIO *rbio;
/*
* We ignore any handshake messages sent to us unless they are
* TLSv1.3 in which case we want to process them. For all other
* handshake messages we can't do anything reasonable with them
* because we are unable to write any response due to having already
* sent close_notify.
*/
if (!SSL_CONNECTION_IS_TLS13(s)) {
if (!ssl_release_record(s, rr, 0))
return -1;
if ((s->mode & SSL_MODE_AUTO_RETRY) != 0)
goto start;
s->rwstate = SSL_READING;
rbio = SSL_get_rbio(ssl);
BIO_clear_retry_flags(rbio);
BIO_set_retry_read(rbio);
return -1;
}
} else {
/*
* The peer is continuing to send application data, but we have
* already sent close_notify. If this was expected we should have
* been called via SSL_read() and this would have been handled
* above.
* No alert sent because we already sent close_notify
*/
if (!ssl_release_record(s, rr, 0))
return -1;
SSLfatal(s, SSL_AD_NO_ALERT,
SSL_R_APPLICATION_DATA_AFTER_CLOSE_NOTIFY);
return -1;
}
}
/*
* For handshake data we have 'fragment' storage, so fill that so that we
* can process the header at a fixed place. This is done after the
* "SHUTDOWN" code above to avoid filling the fragment storage with data
* that we're just going to discard.
*/
if (rr->type == SSL3_RT_HANDSHAKE) {
size_t dest_maxlen = sizeof(s->rlayer.handshake_fragment);
unsigned char *dest = s->rlayer.handshake_fragment;
size_t *dest_len = &s->rlayer.handshake_fragment_len;
n = dest_maxlen - *dest_len; /* available space in 'dest' */
if (rr->length < n)
n = rr->length; /* available bytes */
/* now move 'n' bytes: */
if (n > 0) {
memcpy(dest + *dest_len, rr->data + rr->off, n);
*dest_len += n;
}
/*
* We release the number of bytes consumed, or the whole record if it
* is zero length
*/
if ((n > 0 || rr->length == 0) && !ssl_release_record(s, rr, n))
return -1;
if (*dest_len < dest_maxlen)
goto start; /* fragment was too small */
}
if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC) {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY);
return -1;
}
/*
* Unexpected handshake message (ClientHello, NewSessionTicket (TLS1.3) or
* protocol violation)
*/
if ((s->rlayer.handshake_fragment_len >= 4)
&& !ossl_statem_get_in_handshake(s)) {
int ined = (s->early_data_state == SSL_EARLY_DATA_READING);
/* We found handshake data, so we're going back into init */
ossl_statem_set_in_init(s, 1);
i = s->handshake_func(ssl);
/* SSLfatal() already called if appropriate */
if (i < 0)
return i;
if (i == 0) {
return -1;
}
/*
* If we were actually trying to read early data and we found a
* handshake message, then we don't want to continue to try and read
* the application data any more. It won't be "early" now.
*/
if (ined)
return -1;
if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
if (!RECORD_LAYER_read_pending(&s->rlayer)) {
BIO *bio;
/*
* In the case where we try to read application data, but we
* trigger an SSL handshake, we return -1 with the retry
* option set. Otherwise renegotiation may cause nasty
* problems in the blocking world
*/
s->rwstate = SSL_READING;
bio = SSL_get_rbio(ssl);
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return -1;
}
}
goto start;
}
switch (rr->type) {
default:
/*
* TLS 1.0 and 1.1 say you SHOULD ignore unrecognised record types, but
* TLS 1.2 says you MUST send an unexpected message alert. We use the
* TLS 1.2 behaviour for all protocol versions to prevent issues where
* no progress is being made and the peer continually sends unrecognised
* record types, using up resources processing them.
*/
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD);
return -1;
case SSL3_RT_CHANGE_CIPHER_SPEC:
case SSL3_RT_ALERT:
case SSL3_RT_HANDSHAKE:
/*
* we already handled all of these, with the possible exception of
* SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but
* that should not happen when type != rr->type
*/
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, ERR_R_INTERNAL_ERROR);
return -1;
case SSL3_RT_APPLICATION_DATA:
/*
* At this point, we were expecting handshake data, but have
* application data. If the library was running inside ssl3_read()
* (i.e. in_read_app_data is set) and it makes sense to read
* application data at this point (session renegotiation not yet
* started), we will indulge it.
*/
if (ossl_statem_app_data_allowed(s)) {
s->s3.in_read_app_data = 2;
return -1;
} else if (ossl_statem_skip_early_data(s)) {
/*
* This can happen after a client sends a CH followed by early_data,
* but the server responds with a HelloRetryRequest. The server
* reads the next record from the client expecting to find a
* plaintext ClientHello but gets a record which appears to be
* application data. The trial decrypt "works" because null
* decryption was applied. We just skip it and move on to the next
* record.
*/
if (!ossl_early_data_count_ok(s, rr->length,
EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
/* SSLfatal() already called */
return -1;
}
if (!ssl_release_record(s, rr, 0))
return -1;
goto start;
} else {
SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD);
return -1;
}
}
}
/*
* Returns true if the current rrec was sent in SSLv2 backwards compatible
* format and false otherwise.
*/
int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl)
{
if (SSL_CONNECTION_IS_DTLS(rl->s))
return 0;
return rl->tlsrecs[0].version == SSL2_VERSION;
}
static OSSL_FUNC_rlayer_msg_callback_fn rlayer_msg_callback_wrapper;
static void rlayer_msg_callback_wrapper(int write_p, int version,
int content_type, const void *buf,
size_t len, void *cbarg)
{
SSL_CONNECTION *s = cbarg;
SSL *ssl = SSL_CONNECTION_GET_USER_SSL(s);
if (s->msg_callback != NULL)
s->msg_callback(write_p, version, content_type, buf, len, ssl,
s->msg_callback_arg);
}
static OSSL_FUNC_rlayer_security_fn rlayer_security_wrapper;
static int rlayer_security_wrapper(void *cbarg, int op, int bits, int nid,
void *other)
{
SSL_CONNECTION *s = cbarg;
return ssl_security(s, op, bits, nid, other);
}
static OSSL_FUNC_rlayer_padding_fn rlayer_padding_wrapper;
static size_t rlayer_padding_wrapper(void *cbarg, int type, size_t len)
{
SSL_CONNECTION *s = cbarg;
SSL *ssl = SSL_CONNECTION_GET_USER_SSL(s);
return s->rlayer.record_padding_cb(ssl, type, len,
s->rlayer.record_padding_arg);
}
static const OSSL_DISPATCH rlayer_dispatch[] = {
{ OSSL_FUNC_RLAYER_SKIP_EARLY_DATA, (void (*)(void))ossl_statem_skip_early_data },
{ OSSL_FUNC_RLAYER_MSG_CALLBACK, (void (*)(void))rlayer_msg_callback_wrapper },
{ OSSL_FUNC_RLAYER_SECURITY, (void (*)(void))rlayer_security_wrapper },
{ OSSL_FUNC_RLAYER_PADDING, (void (*)(void))rlayer_padding_wrapper },
OSSL_DISPATCH_END
};
void ossl_ssl_set_custom_record_layer(SSL_CONNECTION *s,
const OSSL_RECORD_METHOD *meth,
void *rlarg)
{
s->rlayer.custom_rlmethod = meth;
s->rlayer.rlarg = rlarg;
}
static const OSSL_RECORD_METHOD *ssl_select_next_record_layer(SSL_CONNECTION *s,
int direction,
int level)
{
if (s->rlayer.custom_rlmethod != NULL)
return s->rlayer.custom_rlmethod;
if (level == OSSL_RECORD_PROTECTION_LEVEL_NONE) {
if (SSL_CONNECTION_IS_DTLS(s))
return &ossl_dtls_record_method;
return &ossl_tls_record_method;
}
#ifndef OPENSSL_NO_KTLS
/* KTLS does not support renegotiation */
if (level == OSSL_RECORD_PROTECTION_LEVEL_APPLICATION
&& (s->options & SSL_OP_ENABLE_KTLS) != 0
&& (SSL_CONNECTION_IS_TLS13(s) || SSL_IS_FIRST_HANDSHAKE(s)))
return &ossl_ktls_record_method;
#endif
/* Default to the current OSSL_RECORD_METHOD */
return direction == OSSL_RECORD_DIRECTION_READ ? s->rlayer.rrlmethod
: s->rlayer.wrlmethod;
}
static int ssl_post_record_layer_select(SSL_CONNECTION *s, int direction)
{
const OSSL_RECORD_METHOD *thismethod;
OSSL_RECORD_LAYER *thisrl;
if (direction == OSSL_RECORD_DIRECTION_READ) {
thismethod = s->rlayer.rrlmethod;
thisrl = s->rlayer.rrl;
} else {
thismethod = s->rlayer.wrlmethod;
thisrl = s->rlayer.wrl;
}
#ifndef OPENSSL_NO_KTLS
{
SSL *ssl = SSL_CONNECTION_GET_SSL(s);
if (s->rlayer.rrlmethod == &ossl_ktls_record_method) {
/* KTLS does not support renegotiation so disallow it */
SSL_set_options(ssl, SSL_OP_NO_RENEGOTIATION);
}
}
#endif
if (SSL_IS_FIRST_HANDSHAKE(s) && thismethod->set_first_handshake != NULL)
thismethod->set_first_handshake(thisrl, 1);
if (s->max_pipelines != 0 && thismethod->set_max_pipelines != NULL)
thismethod->set_max_pipelines(thisrl, s->max_pipelines);
return 1;
}
int ssl_set_new_record_layer(SSL_CONNECTION *s, int version,
int direction, int level,
unsigned char *secret, size_t secretlen,
unsigned char *key, size_t keylen,
unsigned char *iv, size_t ivlen,
unsigned char *mackey, size_t mackeylen,
const EVP_CIPHER *ciph, size_t taglen,
int mactype, const EVP_MD *md,
const SSL_COMP *comp, const EVP_MD *kdfdigest)
{
OSSL_PARAM options[5], *opts = options;
OSSL_PARAM settings[6], *set = settings;
const OSSL_RECORD_METHOD **thismethod;
OSSL_RECORD_LAYER **thisrl, *newrl = NULL;
BIO *thisbio;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
const OSSL_RECORD_METHOD *meth;
int use_etm, stream_mac = 0, tlstree = 0;
unsigned int maxfrag = (direction == OSSL_RECORD_DIRECTION_WRITE)
? ssl_get_max_send_fragment(s)
: SSL3_RT_MAX_PLAIN_LENGTH;
int use_early_data = 0;
uint32_t max_early_data;
COMP_METHOD *compm = (comp == NULL) ? NULL : comp->method;
meth = ssl_select_next_record_layer(s, direction, level);
if (direction == OSSL_RECORD_DIRECTION_READ) {
thismethod = &s->rlayer.rrlmethod;
thisrl = &s->rlayer.rrl;
thisbio = s->rbio;
} else {
thismethod = &s->rlayer.wrlmethod;
thisrl = &s->rlayer.wrl;
thisbio = s->wbio;
}
if (meth == NULL)
meth = *thismethod;
if (!ossl_assert(meth != NULL)) {
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
/* Parameters that *may* be supported by a record layer if passed */
*opts++ = OSSL_PARAM_construct_uint64(OSSL_LIBSSL_RECORD_LAYER_PARAM_OPTIONS,
&s->options);
*opts++ = OSSL_PARAM_construct_uint32(OSSL_LIBSSL_RECORD_LAYER_PARAM_MODE,
&s->mode);
if (direction == OSSL_RECORD_DIRECTION_READ) {
*opts++ = OSSL_PARAM_construct_size_t(OSSL_LIBSSL_RECORD_LAYER_READ_BUFFER_LEN,
&s->rlayer.default_read_buf_len);
*opts++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_READ_AHEAD,
&s->rlayer.read_ahead);
} else {
*opts++ = OSSL_PARAM_construct_size_t(OSSL_LIBSSL_RECORD_LAYER_PARAM_BLOCK_PADDING,
&s->rlayer.block_padding);
*opts++ = OSSL_PARAM_construct_size_t(OSSL_LIBSSL_RECORD_LAYER_PARAM_HS_PADDING,
&s->rlayer.hs_padding);
}
*opts = OSSL_PARAM_construct_end();
/* Parameters that *must* be supported by a record layer if passed */
if (direction == OSSL_RECORD_DIRECTION_READ) {
use_etm = SSL_READ_ETM(s) ? 1 : 0;
if ((s->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM) != 0)
stream_mac = 1;
if ((s->mac_flags & SSL_MAC_FLAG_READ_MAC_TLSTREE) != 0)
tlstree = 1;
} else {
use_etm = SSL_WRITE_ETM(s) ? 1 : 0;
if ((s->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) != 0)
stream_mac = 1;
if ((s->mac_flags & SSL_MAC_FLAG_WRITE_MAC_TLSTREE) != 0)
tlstree = 1;
}
if (use_etm)
*set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_USE_ETM,
&use_etm);
if (stream_mac)
*set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_STREAM_MAC,
&stream_mac);
if (tlstree)
*set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_TLSTREE,
&tlstree);
/*
* We only need to do this for the read side. The write side should already
* have the correct value due to the ssl_get_max_send_fragment() call above
*/
if (direction == OSSL_RECORD_DIRECTION_READ
&& s->session != NULL
&& USE_MAX_FRAGMENT_LENGTH_EXT(s->session))
maxfrag = GET_MAX_FRAGMENT_LENGTH(s->session);
if (maxfrag != SSL3_RT_MAX_PLAIN_LENGTH)
*set++ = OSSL_PARAM_construct_uint(OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_FRAG_LEN,
&maxfrag);
/*
* The record layer must check the amount of early data sent or received
* using the early keys. A server also needs to worry about rejected early
* data that might arrive when the handshake keys are in force.
*/
if (s->server && direction == OSSL_RECORD_DIRECTION_READ) {
use_early_data = (level == OSSL_RECORD_PROTECTION_LEVEL_EARLY
|| level == OSSL_RECORD_PROTECTION_LEVEL_HANDSHAKE);
} else if (!s->server && direction == OSSL_RECORD_DIRECTION_WRITE) {
use_early_data = (level == OSSL_RECORD_PROTECTION_LEVEL_EARLY);
}
if (use_early_data) {
max_early_data = ossl_get_max_early_data(s);
if (max_early_data != 0)
*set++ = OSSL_PARAM_construct_uint32(OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_EARLY_DATA,
&max_early_data);
}
*set = OSSL_PARAM_construct_end();
for (;;) {
int rlret;
BIO *prev = NULL;
BIO *next = NULL;
unsigned int epoch = 0;
OSSL_DISPATCH rlayer_dispatch_tmp[OSSL_NELEM(rlayer_dispatch)];
size_t i, j;
if (direction == OSSL_RECORD_DIRECTION_READ) {
prev = s->rlayer.rrlnext;
if (SSL_CONNECTION_IS_DTLS(s)
&& level != OSSL_RECORD_PROTECTION_LEVEL_NONE)
epoch = dtls1_get_epoch(s, SSL3_CC_READ); /* new epoch */
#ifndef OPENSSL_NO_DGRAM
if (SSL_CONNECTION_IS_DTLS(s))
next = BIO_new(BIO_s_dgram_mem());
else
#endif
next = BIO_new(BIO_s_mem());
if (next == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
s->rlayer.rrlnext = next;
} else {
if (SSL_CONNECTION_IS_DTLS(s)
&& level != OSSL_RECORD_PROTECTION_LEVEL_NONE)
epoch = dtls1_get_epoch(s, SSL3_CC_WRITE); /* new epoch */
}
/*
* Create a copy of the dispatch array, missing out wrappers for
* callbacks that we don't need.
*/
for (i = 0, j = 0; i < OSSL_NELEM(rlayer_dispatch); i++) {
switch (rlayer_dispatch[i].function_id) {
case OSSL_FUNC_RLAYER_MSG_CALLBACK:
if (s->msg_callback == NULL)
continue;
break;
case OSSL_FUNC_RLAYER_PADDING:
if (s->rlayer.record_padding_cb == NULL)
continue;
break;
default:
break;
}
rlayer_dispatch_tmp[j++] = rlayer_dispatch[i];
}
rlret = meth->new_record_layer(sctx->libctx, sctx->propq, version,
s->server, direction, level, epoch,
secret, secretlen, key, keylen, iv,
ivlen, mackey, mackeylen, ciph, taglen,
mactype, md, compm, kdfdigest, prev,
thisbio, next, NULL, NULL, settings,
options, rlayer_dispatch_tmp, s,
s->rlayer.rlarg, &newrl);
BIO_free(prev);
switch (rlret) {
case OSSL_RECORD_RETURN_FATAL:
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_RECORD_LAYER_FAILURE);
return 0;
case OSSL_RECORD_RETURN_NON_FATAL_ERR:
if (*thismethod != meth && *thismethod != NULL) {
/*
* We tried a new record layer method, but it didn't work out,
* so we fallback to the original method and try again
*/
meth = *thismethod;
continue;
}
SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_NO_SUITABLE_RECORD_LAYER);
return 0;
case OSSL_RECORD_RETURN_SUCCESS:
break;
default:
/* Should not happen */
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
break;
}
/*
* Free the old record layer if we have one except in the case of DTLS when
* writing and there are still buffered sent messages in our queue. In that
* case the record layer is still referenced by those buffered messages for
* potential retransmit. Only when those buffered messages get freed do we
* free the record layer object (see dtls1_hm_fragment_free)
*/
if (!SSL_CONNECTION_IS_DTLS(s)
|| direction == OSSL_RECORD_DIRECTION_READ
|| pqueue_peek(s->d1->sent_messages) == NULL) {
if (*thismethod != NULL && !(*thismethod)->free(*thisrl)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
}
*thisrl = newrl;
*thismethod = meth;
return ssl_post_record_layer_select(s, direction);
}
int ssl_set_record_protocol_version(SSL_CONNECTION *s, int vers)
{
if (!ossl_assert(s->rlayer.rrlmethod != NULL)
|| !ossl_assert(s->rlayer.wrlmethod != NULL))
return 0;
s->rlayer.rrlmethod->set_protocol_version(s->rlayer.rrl, s->version);
s->rlayer.wrlmethod->set_protocol_version(s->rlayer.wrl, s->version);
return 1;
}