mirror of
https://github.com/openssl/openssl.git
synced 2024-12-15 06:01:37 +08:00
9f4d8c63e8
Adjust long lines and correct padding in preprocessor lines to match the formatting rules Signed-off-by: Georgi Valkov <gvalkov@gmail.com> Reviewed-by: Paul Dale <ppzgs1@gmail.com> Reviewed-by: Tom Cosgrove <tom.cosgrove@arm.com> Reviewed-by: Neil Horman <nhorman@openssl.org> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/24941)
1046 lines
30 KiB
C
1046 lines
30 KiB
C
/*
|
|
* Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/* We need to use the OPENSSL_fork_*() deprecated APIs */
|
|
#define OPENSSL_SUPPRESS_DEPRECATED
|
|
|
|
#include <openssl/crypto.h>
|
|
#include <crypto/cryptlib.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/rcu.h"
|
|
#include "rcu_internal.h"
|
|
|
|
#if defined(__clang__) && defined(__has_feature)
|
|
# if __has_feature(thread_sanitizer)
|
|
# define __SANITIZE_THREAD__
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(__SANITIZE_THREAD__)
|
|
# include <sanitizer/tsan_interface.h>
|
|
# define TSAN_FAKE_UNLOCK(x) __tsan_mutex_pre_unlock((x), 0); \
|
|
__tsan_mutex_post_unlock((x), 0)
|
|
|
|
# define TSAN_FAKE_LOCK(x) __tsan_mutex_pre_lock((x), 0); \
|
|
__tsan_mutex_post_lock((x), 0, 0)
|
|
#else
|
|
# define TSAN_FAKE_UNLOCK(x)
|
|
# define TSAN_FAKE_LOCK(x)
|
|
#endif
|
|
|
|
#if defined(__sun)
|
|
# include <atomic.h>
|
|
#endif
|
|
|
|
#if defined(__apple_build_version__) && __apple_build_version__ < 6000000
|
|
/*
|
|
* OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
|
|
* __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
|
|
* rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
|
|
* All of this makes impossible to use __atomic_is_lock_free here.
|
|
*
|
|
* See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
|
|
*/
|
|
# define BROKEN_CLANG_ATOMICS
|
|
#endif
|
|
|
|
#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
|
|
|
|
# if defined(OPENSSL_SYS_UNIX)
|
|
# include <sys/types.h>
|
|
# include <unistd.h>
|
|
# endif
|
|
|
|
# include <assert.h>
|
|
|
|
/*
|
|
* The Non-Stop KLT thread model currently seems broken in its rwlock
|
|
* implementation
|
|
*/
|
|
# if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_)
|
|
# define USE_RWLOCK
|
|
# endif
|
|
|
|
/*
|
|
* For all GNU/clang atomic builtins, we also need fallbacks, to cover all
|
|
* other compilers.
|
|
|
|
* Unfortunately, we can't do that with some "generic type", because there's no
|
|
* guarantee that the chosen generic type is large enough to cover all cases.
|
|
* Therefore, we implement fallbacks for each applicable type, with composed
|
|
* names that include the type they handle.
|
|
*
|
|
* (an anecdote: we previously tried to use |void *| as the generic type, with
|
|
* the thought that the pointer itself is the largest type. However, this is
|
|
* not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
|
|
*
|
|
* All applicable ATOMIC_ macros take the intended type as first parameter, so
|
|
* they can map to the correct fallback function. In the GNU/clang case, that
|
|
* parameter is simply ignored.
|
|
*/
|
|
|
|
/*
|
|
* Internal types used with the ATOMIC_ macros, to make it possible to compose
|
|
* fallback function names.
|
|
*/
|
|
typedef void *pvoid;
|
|
typedef struct rcu_cb_item *prcu_cb_item;
|
|
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
|
|
&& !defined(USE_ATOMIC_FALLBACKS)
|
|
# if defined(__APPLE__) && defined(__clang__) && defined(__aarch64__)
|
|
/*
|
|
* For pointers, Apple M1 virtualized cpu seems to have some problem using the
|
|
* ldapr instruction (see https://github.com/openssl/openssl/pull/23974)
|
|
* When using the native apple clang compiler, this instruction is emitted for
|
|
* atomic loads, which is bad. So, if
|
|
* 1) We are building on a target that defines __APPLE__ AND
|
|
* 2) We are building on a target using clang (__clang__) AND
|
|
* 3) We are building for an M1 processor (__aarch64__)
|
|
* Then we should not use __atomic_load_n and instead implement our own
|
|
* function to issue the ldar instruction instead, which produces the proper
|
|
* sequencing guarantees
|
|
*/
|
|
static inline void *apple_atomic_load_n_pvoid(void **p,
|
|
ossl_unused int memorder)
|
|
{
|
|
void *ret;
|
|
|
|
__asm volatile("ldar %0, [%1]" : "=r" (ret): "r" (p):);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* For uint64_t, we should be fine, though */
|
|
# define apple_atomic_load_n_uint32_t(p, o) __atomic_load_n(p, o)
|
|
# define apple_atomic_load_n_uint64_t(p, o) __atomic_load_n(p, o)
|
|
|
|
# define ATOMIC_LOAD_N(t, p, o) apple_atomic_load_n_##t(p, o)
|
|
# else
|
|
# define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
|
|
# endif
|
|
# define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
|
|
# define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
|
|
# define ATOMIC_EXCHANGE_N(t, p, v, o) __atomic_exchange_n(p, v, o)
|
|
# define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
|
|
# define ATOMIC_FETCH_ADD(p, v, o) __atomic_fetch_add(p, v, o)
|
|
# define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
|
|
# define ATOMIC_AND_FETCH(p, m, o) __atomic_and_fetch(p, m, o)
|
|
# define ATOMIC_OR_FETCH(p, m, o) __atomic_or_fetch(p, m, o)
|
|
# else
|
|
static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
# define IMPL_fallback_atomic_load_n(t) \
|
|
static ossl_inline t fallback_atomic_load_n_##t(t *p) \
|
|
{ \
|
|
t ret; \
|
|
\
|
|
pthread_mutex_lock(&atomic_sim_lock); \
|
|
ret = *p; \
|
|
pthread_mutex_unlock(&atomic_sim_lock); \
|
|
return ret; \
|
|
}
|
|
IMPL_fallback_atomic_load_n(uint32_t)
|
|
IMPL_fallback_atomic_load_n(uint64_t)
|
|
IMPL_fallback_atomic_load_n(pvoid)
|
|
|
|
# define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
|
|
|
|
# define IMPL_fallback_atomic_store_n(t) \
|
|
static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \
|
|
{ \
|
|
t ret; \
|
|
\
|
|
pthread_mutex_lock(&atomic_sim_lock); \
|
|
ret = *p; \
|
|
*p = v; \
|
|
pthread_mutex_unlock(&atomic_sim_lock); \
|
|
return ret; \
|
|
}
|
|
IMPL_fallback_atomic_store_n(uint32_t)
|
|
IMPL_fallback_atomic_store_n(uint64_t)
|
|
|
|
# define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
|
|
|
|
# define IMPL_fallback_atomic_store(t) \
|
|
static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \
|
|
{ \
|
|
pthread_mutex_lock(&atomic_sim_lock); \
|
|
*p = *v; \
|
|
pthread_mutex_unlock(&atomic_sim_lock); \
|
|
}
|
|
IMPL_fallback_atomic_store(uint64_t)
|
|
IMPL_fallback_atomic_store(pvoid)
|
|
|
|
# define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
|
|
|
|
# define IMPL_fallback_atomic_exchange_n(t) \
|
|
static ossl_inline t fallback_atomic_exchange_n_##t(t *p, t v) \
|
|
{ \
|
|
t ret; \
|
|
\
|
|
pthread_mutex_lock(&atomic_sim_lock); \
|
|
ret = *p; \
|
|
*p = v; \
|
|
pthread_mutex_unlock(&atomic_sim_lock); \
|
|
return ret; \
|
|
}
|
|
IMPL_fallback_atomic_exchange_n(uint64_t)
|
|
IMPL_fallback_atomic_exchange_n(prcu_cb_item)
|
|
|
|
# define ATOMIC_EXCHANGE_N(t, p, v, o) fallback_atomic_exchange_n_##t(p, v)
|
|
|
|
/*
|
|
* The fallbacks that follow don't need any per type implementation, as
|
|
* they are designed for uint64_t only. If there comes a time when multiple
|
|
* types need to be covered, it's relatively easy to refactor them the same
|
|
* way as the fallbacks above.
|
|
*/
|
|
|
|
static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
*p += v;
|
|
ret = *p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
|
|
|
|
static ossl_inline uint64_t fallback_atomic_fetch_add(uint64_t *p, uint64_t v)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
ret = *p;
|
|
*p += v;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_FETCH_ADD(p, v, o) fallback_atomic_fetch_add(p, v)
|
|
|
|
static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
*p -= v;
|
|
ret = *p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
|
|
|
|
static ossl_inline uint64_t fallback_atomic_and_fetch(uint64_t *p, uint64_t m)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
*p &= m;
|
|
ret = *p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_AND_FETCH(p, v, o) fallback_atomic_and_fetch(p, v)
|
|
|
|
static ossl_inline uint64_t fallback_atomic_or_fetch(uint64_t *p, uint64_t m)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
*p |= m;
|
|
ret = *p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_OR_FETCH(p, v, o) fallback_atomic_or_fetch(p, v)
|
|
# endif
|
|
|
|
/*
|
|
* users is broken up into 2 parts
|
|
* bits 0-15 current readers
|
|
* bit 32-63 ID
|
|
*/
|
|
# define READER_SHIFT 0
|
|
# define ID_SHIFT 32
|
|
/* TODO: READER_SIZE 32 in threads_win.c */
|
|
# define READER_SIZE 16
|
|
# define ID_SIZE 32
|
|
|
|
# define READER_MASK (((uint64_t)1 << READER_SIZE) - 1)
|
|
# define ID_MASK (((uint64_t)1 << ID_SIZE) - 1)
|
|
# define READER_COUNT(x) ((uint32_t)(((uint64_t)(x) >> READER_SHIFT) & \
|
|
READER_MASK))
|
|
# define ID_VAL(x) ((uint32_t)(((uint64_t)(x) >> ID_SHIFT) & ID_MASK))
|
|
# define VAL_READER ((uint64_t)1 << READER_SHIFT)
|
|
# define VAL_ID(x) ((uint64_t)x << ID_SHIFT)
|
|
|
|
/*
|
|
* This is the core of an rcu lock. It tracks the readers and writers for the
|
|
* current quiescence point for a given lock. Users is the 64 bit value that
|
|
* stores the READERS/ID as defined above
|
|
*
|
|
*/
|
|
struct rcu_qp {
|
|
uint64_t users;
|
|
};
|
|
|
|
struct thread_qp {
|
|
struct rcu_qp *qp;
|
|
unsigned int depth;
|
|
CRYPTO_RCU_LOCK *lock;
|
|
};
|
|
|
|
# define MAX_QPS 10
|
|
/*
|
|
* This is the per thread tracking data
|
|
* that is assigned to each thread participating
|
|
* in an rcu qp
|
|
*
|
|
* qp points to the qp that it last acquired
|
|
*
|
|
*/
|
|
struct rcu_thr_data {
|
|
struct thread_qp thread_qps[MAX_QPS];
|
|
};
|
|
|
|
/*
|
|
* This is the internal version of a CRYPTO_RCU_LOCK
|
|
* it is cast from CRYPTO_RCU_LOCK
|
|
*/
|
|
struct rcu_lock_st {
|
|
/* Callbacks to call for next ossl_synchronize_rcu */
|
|
struct rcu_cb_item *cb_items;
|
|
|
|
/* The context we are being created against */
|
|
OSSL_LIB_CTX *ctx;
|
|
|
|
/* rcu generation counter for in-order retirement */
|
|
uint32_t id_ctr;
|
|
|
|
/* TODO: can be moved before id_ctr for better alignment */
|
|
/* Array of quiescent points for synchronization */
|
|
struct rcu_qp *qp_group;
|
|
|
|
/* Number of elements in qp_group array */
|
|
uint32_t group_count;
|
|
|
|
/* Index of the current qp in the qp_group array */
|
|
uint32_t reader_idx;
|
|
|
|
/* value of the next id_ctr value to be retired */
|
|
uint32_t next_to_retire;
|
|
|
|
/* index of the next free rcu_qp in the qp_group */
|
|
uint32_t current_alloc_idx;
|
|
|
|
/* number of qp's in qp_group array currently being retired */
|
|
uint32_t writers_alloced;
|
|
|
|
/* lock protecting write side operations */
|
|
pthread_mutex_t write_lock;
|
|
|
|
/* lock protecting updates to writers_alloced/current_alloc_idx */
|
|
pthread_mutex_t alloc_lock;
|
|
|
|
/* signal to wake threads waiting on alloc_lock */
|
|
pthread_cond_t alloc_signal;
|
|
|
|
/* lock to enforce in-order retirement */
|
|
pthread_mutex_t prior_lock;
|
|
|
|
/* signal to wake threads waiting on prior_lock */
|
|
pthread_cond_t prior_signal;
|
|
};
|
|
|
|
/* Read side acquisition of the current qp */
|
|
static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
|
|
{
|
|
uint32_t qp_idx;
|
|
|
|
/* get the current qp index */
|
|
for (;;) {
|
|
/*
|
|
* Notes on use of __ATOMIC_ACQUIRE
|
|
* We need to ensure the following:
|
|
* 1) That subsequent operations aren't optimized by hoisting them above
|
|
* this operation. Specifically, we don't want the below re-load of
|
|
* qp_idx to get optimized away
|
|
* 2) We want to ensure that any updating of reader_idx on the write side
|
|
* of the lock is flushed from a local cpu cache so that we see any
|
|
* updates prior to the load. This is a non-issue on cache coherent
|
|
* systems like x86, but is relevant on other arches
|
|
* Note: This applies to the reload below as well
|
|
*/
|
|
qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_ACQUIRE);
|
|
|
|
/*
|
|
* Notes of use of __ATOMIC_RELEASE
|
|
* This counter is only read by the write side of the lock, and so we
|
|
* specify __ATOMIC_RELEASE here to ensure that the write side of the
|
|
* lock see this during the spin loop read of users, as it waits for the
|
|
* reader count to approach zero
|
|
*/
|
|
ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
|
|
__ATOMIC_RELEASE);
|
|
|
|
/* if the idx hasn't changed, we're good, else try again */
|
|
if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx,
|
|
__ATOMIC_ACQUIRE))
|
|
break;
|
|
|
|
/*
|
|
* Notes on use of __ATOMIC_RELEASE
|
|
* As with the add above, we want to ensure that this decrement is
|
|
* seen by the write side of the lock as soon as it happens to prevent
|
|
* undue spinning waiting for write side completion
|
|
*/
|
|
ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
|
|
__ATOMIC_RELEASE);
|
|
}
|
|
|
|
return &lock->qp_group[qp_idx];
|
|
}
|
|
|
|
static void ossl_rcu_free_local_data(void *arg)
|
|
{
|
|
OSSL_LIB_CTX *ctx = arg;
|
|
CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
|
|
struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
|
|
|
|
OPENSSL_free(data);
|
|
CRYPTO_THREAD_set_local(lkey, NULL);
|
|
}
|
|
|
|
void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
struct rcu_thr_data *data;
|
|
int i, available_qp = -1;
|
|
CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
|
|
|
|
/*
|
|
* we're going to access current_qp here so ask the
|
|
* processor to fetch it
|
|
*/
|
|
data = CRYPTO_THREAD_get_local(lkey);
|
|
|
|
if (data == NULL) {
|
|
data = OPENSSL_zalloc(sizeof(*data));
|
|
OPENSSL_assert(data != NULL);
|
|
CRYPTO_THREAD_set_local(lkey, data);
|
|
ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
|
|
}
|
|
|
|
for (i = 0; i < MAX_QPS; i++) {
|
|
if (data->thread_qps[i].qp == NULL && available_qp == -1)
|
|
available_qp = i;
|
|
/* If we have a hold on this lock already, we're good */
|
|
if (data->thread_qps[i].lock == lock) {
|
|
data->thread_qps[i].depth++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if we get here, then we don't have a hold on this lock yet
|
|
*/
|
|
assert(available_qp != -1);
|
|
|
|
data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
|
|
data->thread_qps[available_qp].depth = 1;
|
|
data->thread_qps[available_qp].lock = lock;
|
|
}
|
|
|
|
void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
int i;
|
|
CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
|
|
struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
|
|
uint64_t ret;
|
|
|
|
assert(data != NULL);
|
|
|
|
for (i = 0; i < MAX_QPS; i++) {
|
|
if (data->thread_qps[i].lock == lock) {
|
|
/*
|
|
* As with read side acquisition, we use __ATOMIC_RELEASE here
|
|
* to ensure that the decrement is published immediately
|
|
* to any write side waiters
|
|
*/
|
|
data->thread_qps[i].depth--;
|
|
if (data->thread_qps[i].depth == 0) {
|
|
ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users,
|
|
VAL_READER, __ATOMIC_RELEASE);
|
|
OPENSSL_assert(ret != UINT64_MAX);
|
|
data->thread_qps[i].qp = NULL;
|
|
data->thread_qps[i].lock = NULL;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* If we get here, we're trying to unlock a lock that we never acquired -
|
|
* that's fatal.
|
|
*/
|
|
assert(0);
|
|
}
|
|
|
|
/*
|
|
* Write side allocation routine to get the current qp
|
|
* and replace it with a new one
|
|
*/
|
|
static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
uint64_t new_id;
|
|
uint32_t current_idx;
|
|
|
|
pthread_mutex_lock(&lock->alloc_lock);
|
|
|
|
/*
|
|
* we need at least one qp to be available with one
|
|
* left over, so that readers can start working on
|
|
* one that isn't yet being waited on
|
|
*/
|
|
while (lock->group_count - lock->writers_alloced < 2)
|
|
/* we have to wait for one to be free */
|
|
pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
|
|
|
|
current_idx = lock->current_alloc_idx;
|
|
|
|
/* Allocate the qp */
|
|
lock->writers_alloced++;
|
|
|
|
/* increment the allocation index */
|
|
lock->current_alloc_idx =
|
|
(lock->current_alloc_idx + 1) % lock->group_count;
|
|
|
|
/* get and insert a new id */
|
|
new_id = VAL_ID(lock->id_ctr);
|
|
lock->id_ctr++;
|
|
|
|
/*
|
|
* Even though we are under a write side lock here
|
|
* We need to use atomic instructions to ensure that the results
|
|
* of this update are published to the read side prior to updating the
|
|
* reader idx below
|
|
*/
|
|
ATOMIC_AND_FETCH(&lock->qp_group[current_idx].users, ID_MASK,
|
|
__ATOMIC_RELEASE);
|
|
ATOMIC_OR_FETCH(&lock->qp_group[current_idx].users, new_id,
|
|
__ATOMIC_RELEASE);
|
|
|
|
/*
|
|
* Update the reader index to be the prior qp.
|
|
* Note the use of __ATOMIC_RELEASE here is based on the corresponding use
|
|
* of __ATOMIC_ACQUIRE in get_hold_current_qp, as we want any publication
|
|
* of this value to be seen on the read side immediately after it happens
|
|
*/
|
|
ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx,
|
|
__ATOMIC_RELEASE);
|
|
|
|
/* wake up any waiters */
|
|
pthread_cond_signal(&lock->alloc_signal);
|
|
pthread_mutex_unlock(&lock->alloc_lock);
|
|
return &lock->qp_group[current_idx];
|
|
}
|
|
|
|
static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
|
|
{
|
|
pthread_mutex_lock(&lock->alloc_lock);
|
|
lock->writers_alloced--;
|
|
pthread_cond_signal(&lock->alloc_signal);
|
|
pthread_mutex_unlock(&lock->alloc_lock);
|
|
}
|
|
|
|
/* TODO: count should be unsigned, e.g uint32_t */
|
|
/* a negative value could result in unexpected behaviour */
|
|
static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
|
|
int count)
|
|
{
|
|
struct rcu_qp *new =
|
|
OPENSSL_zalloc(sizeof(*new) * count);
|
|
|
|
lock->group_count = count;
|
|
return new;
|
|
}
|
|
|
|
void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
pthread_mutex_lock(&lock->write_lock);
|
|
TSAN_FAKE_UNLOCK(&lock->write_lock);
|
|
}
|
|
|
|
void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
TSAN_FAKE_LOCK(&lock->write_lock);
|
|
pthread_mutex_unlock(&lock->write_lock);
|
|
}
|
|
|
|
void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
struct rcu_qp *qp;
|
|
uint64_t count;
|
|
struct rcu_cb_item *cb_items, *tmpcb;
|
|
|
|
pthread_mutex_lock(&lock->write_lock);
|
|
cb_items = lock->cb_items;
|
|
lock->cb_items = NULL;
|
|
pthread_mutex_unlock(&lock->write_lock);
|
|
|
|
qp = update_qp(lock);
|
|
|
|
/*
|
|
* wait for the reader count to reach zero
|
|
* Note the use of __ATOMIC_ACQUIRE here to ensure that any
|
|
* prior __ATOMIC_RELEASE write operation in get_hold_current_qp
|
|
* is visible prior to our read
|
|
*/
|
|
do {
|
|
count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
|
|
} while (READER_COUNT(count) != 0);
|
|
|
|
/* retire in order */
|
|
pthread_mutex_lock(&lock->prior_lock);
|
|
while (lock->next_to_retire != ID_VAL(count))
|
|
pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
|
|
lock->next_to_retire++;
|
|
pthread_cond_broadcast(&lock->prior_signal);
|
|
pthread_mutex_unlock(&lock->prior_lock);
|
|
|
|
retire_qp(lock, qp);
|
|
|
|
/* handle any callbacks that we have */
|
|
while (cb_items != NULL) {
|
|
tmpcb = cb_items;
|
|
cb_items = cb_items->next;
|
|
tmpcb->fn(tmpcb->data);
|
|
OPENSSL_free(tmpcb);
|
|
}
|
|
}
|
|
|
|
int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
|
|
{
|
|
struct rcu_cb_item *new =
|
|
OPENSSL_zalloc(sizeof(*new));
|
|
|
|
if (new == NULL)
|
|
return 0;
|
|
|
|
new->data = data;
|
|
new->fn = cb;
|
|
/*
|
|
* Use __ATOMIC_ACQ_REL here to indicate that any prior writes to this
|
|
* list are visible to us prior to reading, and publish the new value
|
|
* immediately
|
|
*/
|
|
new->next = ATOMIC_EXCHANGE_N(prcu_cb_item, &lock->cb_items, new,
|
|
__ATOMIC_ACQ_REL);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void *ossl_rcu_uptr_deref(void **p)
|
|
{
|
|
return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
|
|
}
|
|
|
|
void ossl_rcu_assign_uptr(void **p, void **v)
|
|
{
|
|
ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
|
|
}
|
|
|
|
CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
|
|
{
|
|
struct rcu_lock_st *new;
|
|
|
|
if (num_writers < 1)
|
|
num_writers = 1;
|
|
|
|
ctx = ossl_lib_ctx_get_concrete(ctx);
|
|
if (ctx == NULL)
|
|
return 0;
|
|
|
|
new = OPENSSL_zalloc(sizeof(*new));
|
|
if (new == NULL)
|
|
return NULL;
|
|
|
|
new->ctx = ctx;
|
|
pthread_mutex_init(&new->write_lock, NULL);
|
|
pthread_mutex_init(&new->prior_lock, NULL);
|
|
pthread_mutex_init(&new->alloc_lock, NULL);
|
|
pthread_cond_init(&new->prior_signal, NULL);
|
|
pthread_cond_init(&new->alloc_signal, NULL);
|
|
new->qp_group = allocate_new_qp_group(new, num_writers + 1);
|
|
if (new->qp_group == NULL) {
|
|
OPENSSL_free(new);
|
|
new = NULL;
|
|
}
|
|
return new;
|
|
}
|
|
|
|
void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
|
|
|
|
if (lock == NULL)
|
|
return;
|
|
|
|
/* make sure we're synchronized */
|
|
ossl_synchronize_rcu(rlock);
|
|
|
|
OPENSSL_free(rlock->qp_group);
|
|
/* There should only be a single qp left now */
|
|
OPENSSL_free(rlock);
|
|
}
|
|
|
|
CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
CRYPTO_RWLOCK *lock;
|
|
|
|
if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
|
|
/* Don't set error, to avoid recursion blowup. */
|
|
return NULL;
|
|
|
|
if (pthread_rwlock_init(lock, NULL) != 0) {
|
|
OPENSSL_free(lock);
|
|
return NULL;
|
|
}
|
|
# else
|
|
pthread_mutexattr_t attr;
|
|
CRYPTO_RWLOCK *lock;
|
|
|
|
if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
|
|
/* Don't set error, to avoid recursion blowup. */
|
|
return NULL;
|
|
|
|
/*
|
|
* We don't use recursive mutexes, but try to catch errors if we do.
|
|
*/
|
|
pthread_mutexattr_init(&attr);
|
|
# if !defined (__TANDEM) && !defined (_SPT_MODEL_)
|
|
# if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
|
|
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
|
|
# endif
|
|
# else
|
|
/* The SPT Thread Library does not define MUTEX attributes. */
|
|
# endif
|
|
|
|
if (pthread_mutex_init(lock, &attr) != 0) {
|
|
pthread_mutexattr_destroy(&attr);
|
|
OPENSSL_free(lock);
|
|
return NULL;
|
|
}
|
|
|
|
pthread_mutexattr_destroy(&attr);
|
|
# endif
|
|
|
|
return lock;
|
|
}
|
|
|
|
__owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
if (pthread_rwlock_rdlock(lock) != 0)
|
|
return 0;
|
|
# else
|
|
if (pthread_mutex_lock(lock) != 0) {
|
|
assert(errno != EDEADLK && errno != EBUSY);
|
|
return 0;
|
|
}
|
|
# endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
__owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
if (pthread_rwlock_wrlock(lock) != 0)
|
|
return 0;
|
|
# else
|
|
if (pthread_mutex_lock(lock) != 0) {
|
|
assert(errno != EDEADLK && errno != EBUSY);
|
|
return 0;
|
|
}
|
|
# endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
if (pthread_rwlock_unlock(lock) != 0)
|
|
return 0;
|
|
# else
|
|
if (pthread_mutex_unlock(lock) != 0) {
|
|
assert(errno != EPERM);
|
|
return 0;
|
|
}
|
|
# endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
|
|
{
|
|
if (lock == NULL)
|
|
return;
|
|
|
|
# ifdef USE_RWLOCK
|
|
pthread_rwlock_destroy(lock);
|
|
# else
|
|
pthread_mutex_destroy(lock);
|
|
# endif
|
|
OPENSSL_free(lock);
|
|
|
|
return;
|
|
}
|
|
|
|
int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
|
|
{
|
|
if (pthread_once(once, init) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
|
|
{
|
|
if (pthread_key_create(key, cleanup) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
|
|
{
|
|
return pthread_getspecific(*key);
|
|
}
|
|
|
|
int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
|
|
{
|
|
if (pthread_setspecific(*key, val) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
|
|
{
|
|
if (pthread_key_delete(*key) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
|
|
{
|
|
return pthread_self();
|
|
}
|
|
|
|
int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
|
|
{
|
|
return pthread_equal(a, b);
|
|
}
|
|
|
|
int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
*ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
|
|
*val += amount;
|
|
*ret = *val;
|
|
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
|
|
CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
*ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_add_64_nv(val, op);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
*val += op;
|
|
*ret = *val;
|
|
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
|
|
CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
*ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_and_64_nv(val, op);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
*val &= op;
|
|
*ret = *val;
|
|
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
|
|
CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
*ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_or_64_nv(val, op);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
*val |= op;
|
|
*ret = *val;
|
|
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_or_64_nv(val, 0);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
|
|
return 0;
|
|
*ret = *val;
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*dst), dst)) {
|
|
__atomic_store(dst, &val, __ATOMIC_RELEASE);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
atomic_swap_64(dst, val);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
*dst = val;
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = (int)atomic_or_uint_nv((unsigned int *)val, 0);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
|
|
return 0;
|
|
*ret = *val;
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
# ifndef FIPS_MODULE
|
|
int openssl_init_fork_handlers(void)
|
|
{
|
|
return 1;
|
|
}
|
|
# endif /* FIPS_MODULE */
|
|
|
|
int openssl_get_fork_id(void)
|
|
{
|
|
return getpid();
|
|
}
|
|
#endif
|