mirror of
https://github.com/openssl/openssl.git
synced 2025-01-18 13:44:20 +08:00
469ce8ff48
The "hw" and "hw-.*" style options are historical artifacts, sprung from the time when ENGINE was first designed, with hardware crypto accelerators and HSMs in mind. Today, these options have largely lost their value, replaced by options such as "no-{foo}eng" and "no-engine". This completes the transition by making "hw" and "hw-.*" deprecated, but automatically translated into more modern variants of the same. In the process, we get rid of the last regular expression in Configure's @disablables, a feature that was ill supported anyway. Also, padlock now gets treated just as every other engine. Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/8380)
732 lines
22 KiB
C
732 lines
22 KiB
C
/*
|
|
* Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/opensslconf.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/aes.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/modes.h>
|
|
|
|
#ifndef OPENSSL_NO_PADLOCKENG
|
|
|
|
/*
|
|
* VIA PadLock AES is available *ONLY* on some x86 CPUs. Not only that it
|
|
* doesn't exist elsewhere, but it even can't be compiled on other platforms!
|
|
*/
|
|
|
|
# undef COMPILE_PADLOCKENG
|
|
# if defined(PADLOCK_ASM)
|
|
# define COMPILE_PADLOCKENG
|
|
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
|
|
static ENGINE *ENGINE_padlock(void);
|
|
# endif
|
|
# endif
|
|
|
|
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
|
|
void engine_load_padlock_int(void);
|
|
void engine_load_padlock_int(void)
|
|
{
|
|
/* On non-x86 CPUs it just returns. */
|
|
# ifdef COMPILE_PADLOCKENG
|
|
ENGINE *toadd = ENGINE_padlock();
|
|
if (!toadd)
|
|
return;
|
|
ENGINE_add(toadd);
|
|
ENGINE_free(toadd);
|
|
ERR_clear_error();
|
|
# endif
|
|
}
|
|
|
|
# endif
|
|
|
|
# ifdef COMPILE_PADLOCKENG
|
|
|
|
/* Function for ENGINE detection and control */
|
|
static int padlock_available(void);
|
|
static int padlock_init(ENGINE *e);
|
|
|
|
/* RNG Stuff */
|
|
static RAND_METHOD padlock_rand;
|
|
|
|
/* Cipher Stuff */
|
|
static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
|
|
const int **nids, int nid);
|
|
|
|
/* Engine names */
|
|
static const char *padlock_id = "padlock";
|
|
static char padlock_name[100];
|
|
|
|
/* Available features */
|
|
static int padlock_use_ace = 0; /* Advanced Cryptography Engine */
|
|
static int padlock_use_rng = 0; /* Random Number Generator */
|
|
|
|
/* ===== Engine "management" functions ===== */
|
|
|
|
/* Prepare the ENGINE structure for registration */
|
|
static int padlock_bind_helper(ENGINE *e)
|
|
{
|
|
/* Check available features */
|
|
padlock_available();
|
|
|
|
/*
|
|
* RNG is currently disabled for reasons discussed in commentary just
|
|
* before padlock_rand_bytes function.
|
|
*/
|
|
padlock_use_rng = 0;
|
|
|
|
/* Generate a nice engine name with available features */
|
|
BIO_snprintf(padlock_name, sizeof(padlock_name),
|
|
"VIA PadLock (%s, %s)",
|
|
padlock_use_rng ? "RNG" : "no-RNG",
|
|
padlock_use_ace ? "ACE" : "no-ACE");
|
|
|
|
/* Register everything or return with an error */
|
|
if (!ENGINE_set_id(e, padlock_id) ||
|
|
!ENGINE_set_name(e, padlock_name) ||
|
|
!ENGINE_set_init_function(e, padlock_init) ||
|
|
(padlock_use_ace && !ENGINE_set_ciphers(e, padlock_ciphers)) ||
|
|
(padlock_use_rng && !ENGINE_set_RAND(e, &padlock_rand))) {
|
|
return 0;
|
|
}
|
|
|
|
/* Everything looks good */
|
|
return 1;
|
|
}
|
|
|
|
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
|
|
/* Constructor */
|
|
static ENGINE *ENGINE_padlock(void)
|
|
{
|
|
ENGINE *eng = ENGINE_new();
|
|
|
|
if (eng == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!padlock_bind_helper(eng)) {
|
|
ENGINE_free(eng);
|
|
return NULL;
|
|
}
|
|
|
|
return eng;
|
|
}
|
|
# endif
|
|
|
|
/* Check availability of the engine */
|
|
static int padlock_init(ENGINE *e)
|
|
{
|
|
return (padlock_use_rng || padlock_use_ace);
|
|
}
|
|
|
|
/*
|
|
* This stuff is needed if this ENGINE is being compiled into a
|
|
* self-contained shared-library.
|
|
*/
|
|
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
|
|
static int padlock_bind_fn(ENGINE *e, const char *id)
|
|
{
|
|
if (id && (strcmp(id, padlock_id) != 0)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!padlock_bind_helper(e)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
IMPLEMENT_DYNAMIC_CHECK_FN()
|
|
IMPLEMENT_DYNAMIC_BIND_FN(padlock_bind_fn)
|
|
# endif /* !OPENSSL_NO_DYNAMIC_ENGINE */
|
|
/* ===== Here comes the "real" engine ===== */
|
|
|
|
/* Some AES-related constants */
|
|
# define AES_BLOCK_SIZE 16
|
|
# define AES_KEY_SIZE_128 16
|
|
# define AES_KEY_SIZE_192 24
|
|
# define AES_KEY_SIZE_256 32
|
|
/*
|
|
* Here we store the status information relevant to the current context.
|
|
*/
|
|
/*
|
|
* BIG FAT WARNING: Inline assembler in PADLOCK_XCRYPT_ASM() depends on
|
|
* the order of items in this structure. Don't blindly modify, reorder,
|
|
* etc!
|
|
*/
|
|
struct padlock_cipher_data {
|
|
unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */
|
|
union {
|
|
unsigned int pad[4];
|
|
struct {
|
|
int rounds:4;
|
|
int dgst:1; /* n/a in C3 */
|
|
int align:1; /* n/a in C3 */
|
|
int ciphr:1; /* n/a in C3 */
|
|
unsigned int keygen:1;
|
|
int interm:1;
|
|
unsigned int encdec:1;
|
|
int ksize:2;
|
|
} b;
|
|
} cword; /* Control word */
|
|
AES_KEY ks; /* Encryption key */
|
|
};
|
|
|
|
/* Interface to assembler module */
|
|
unsigned int padlock_capability(void);
|
|
void padlock_key_bswap(AES_KEY *key);
|
|
void padlock_verify_context(struct padlock_cipher_data *ctx);
|
|
void padlock_reload_key(void);
|
|
void padlock_aes_block(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx);
|
|
int padlock_ecb_encrypt(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx, size_t len);
|
|
int padlock_cbc_encrypt(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx, size_t len);
|
|
int padlock_cfb_encrypt(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx, size_t len);
|
|
int padlock_ofb_encrypt(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx, size_t len);
|
|
int padlock_ctr32_encrypt(void *out, const void *inp,
|
|
struct padlock_cipher_data *ctx, size_t len);
|
|
int padlock_xstore(void *out, int edx);
|
|
void padlock_sha1_oneshot(void *ctx, const void *inp, size_t len);
|
|
void padlock_sha1(void *ctx, const void *inp, size_t len);
|
|
void padlock_sha256_oneshot(void *ctx, const void *inp, size_t len);
|
|
void padlock_sha256(void *ctx, const void *inp, size_t len);
|
|
|
|
/*
|
|
* Load supported features of the CPU to see if the PadLock is available.
|
|
*/
|
|
static int padlock_available(void)
|
|
{
|
|
unsigned int edx = padlock_capability();
|
|
|
|
/* Fill up some flags */
|
|
padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6));
|
|
padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2));
|
|
|
|
return padlock_use_ace + padlock_use_rng;
|
|
}
|
|
|
|
/* ===== AES encryption/decryption ===== */
|
|
|
|
# if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb)
|
|
# define NID_aes_128_cfb NID_aes_128_cfb128
|
|
# endif
|
|
|
|
# if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb)
|
|
# define NID_aes_128_ofb NID_aes_128_ofb128
|
|
# endif
|
|
|
|
# if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb)
|
|
# define NID_aes_192_cfb NID_aes_192_cfb128
|
|
# endif
|
|
|
|
# if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb)
|
|
# define NID_aes_192_ofb NID_aes_192_ofb128
|
|
# endif
|
|
|
|
# if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb)
|
|
# define NID_aes_256_cfb NID_aes_256_cfb128
|
|
# endif
|
|
|
|
# if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb)
|
|
# define NID_aes_256_ofb NID_aes_256_ofb128
|
|
# endif
|
|
|
|
/* List of supported ciphers. */
|
|
static const int padlock_cipher_nids[] = {
|
|
NID_aes_128_ecb,
|
|
NID_aes_128_cbc,
|
|
NID_aes_128_cfb,
|
|
NID_aes_128_ofb,
|
|
NID_aes_128_ctr,
|
|
|
|
NID_aes_192_ecb,
|
|
NID_aes_192_cbc,
|
|
NID_aes_192_cfb,
|
|
NID_aes_192_ofb,
|
|
NID_aes_192_ctr,
|
|
|
|
NID_aes_256_ecb,
|
|
NID_aes_256_cbc,
|
|
NID_aes_256_cfb,
|
|
NID_aes_256_ofb,
|
|
NID_aes_256_ctr
|
|
};
|
|
|
|
static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids) /
|
|
sizeof(padlock_cipher_nids[0]));
|
|
|
|
/* Function prototypes ... */
|
|
static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
|
const unsigned char *iv, int enc);
|
|
|
|
# define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \
|
|
( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) )
|
|
# define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\
|
|
NEAREST_ALIGNED(EVP_CIPHER_CTX_get_cipher_data(ctx)))
|
|
|
|
static int
|
|
padlock_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
|
const unsigned char *in_arg, size_t nbytes)
|
|
{
|
|
return padlock_ecb_encrypt(out_arg, in_arg,
|
|
ALIGNED_CIPHER_DATA(ctx), nbytes);
|
|
}
|
|
|
|
static int
|
|
padlock_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
|
const unsigned char *in_arg, size_t nbytes)
|
|
{
|
|
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
|
|
int ret;
|
|
|
|
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
|
|
if ((ret = padlock_cbc_encrypt(out_arg, in_arg, cdata, nbytes)))
|
|
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
padlock_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
|
const unsigned char *in_arg, size_t nbytes)
|
|
{
|
|
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
|
|
size_t chunk;
|
|
|
|
if ((chunk = EVP_CIPHER_CTX_num(ctx))) { /* borrow chunk variable */
|
|
unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);
|
|
|
|
if (chunk >= AES_BLOCK_SIZE)
|
|
return 0; /* bogus value */
|
|
|
|
if (EVP_CIPHER_CTX_encrypting(ctx))
|
|
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
|
|
ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk];
|
|
chunk++, nbytes--;
|
|
} else
|
|
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
|
|
unsigned char c = *(in_arg++);
|
|
*(out_arg++) = c ^ ivp[chunk];
|
|
ivp[chunk++] = c, nbytes--;
|
|
}
|
|
|
|
EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
|
|
}
|
|
|
|
if (nbytes == 0)
|
|
return 1;
|
|
|
|
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
|
|
|
|
if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
|
|
if (!padlock_cfb_encrypt(out_arg, in_arg, cdata, chunk))
|
|
return 0;
|
|
nbytes -= chunk;
|
|
}
|
|
|
|
if (nbytes) {
|
|
unsigned char *ivp = cdata->iv;
|
|
|
|
out_arg += chunk;
|
|
in_arg += chunk;
|
|
EVP_CIPHER_CTX_set_num(ctx, nbytes);
|
|
if (cdata->cword.b.encdec) {
|
|
cdata->cword.b.encdec = 0;
|
|
padlock_reload_key();
|
|
padlock_aes_block(ivp, ivp, cdata);
|
|
cdata->cword.b.encdec = 1;
|
|
padlock_reload_key();
|
|
while (nbytes) {
|
|
unsigned char c = *(in_arg++);
|
|
*(out_arg++) = c ^ *ivp;
|
|
*(ivp++) = c, nbytes--;
|
|
}
|
|
} else {
|
|
padlock_reload_key();
|
|
padlock_aes_block(ivp, ivp, cdata);
|
|
padlock_reload_key();
|
|
while (nbytes) {
|
|
*ivp = *(out_arg++) = *(in_arg++) ^ *ivp;
|
|
ivp++, nbytes--;
|
|
}
|
|
}
|
|
}
|
|
|
|
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
padlock_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
|
const unsigned char *in_arg, size_t nbytes)
|
|
{
|
|
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
|
|
size_t chunk;
|
|
|
|
/*
|
|
* ctx->num is maintained in byte-oriented modes, such as CFB and OFB...
|
|
*/
|
|
if ((chunk = EVP_CIPHER_CTX_num(ctx))) { /* borrow chunk variable */
|
|
unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);
|
|
|
|
if (chunk >= AES_BLOCK_SIZE)
|
|
return 0; /* bogus value */
|
|
|
|
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
|
|
*(out_arg++) = *(in_arg++) ^ ivp[chunk];
|
|
chunk++, nbytes--;
|
|
}
|
|
|
|
EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
|
|
}
|
|
|
|
if (nbytes == 0)
|
|
return 1;
|
|
|
|
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
|
|
|
|
if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
|
|
if (!padlock_ofb_encrypt(out_arg, in_arg, cdata, chunk))
|
|
return 0;
|
|
nbytes -= chunk;
|
|
}
|
|
|
|
if (nbytes) {
|
|
unsigned char *ivp = cdata->iv;
|
|
|
|
out_arg += chunk;
|
|
in_arg += chunk;
|
|
EVP_CIPHER_CTX_set_num(ctx, nbytes);
|
|
padlock_reload_key(); /* empirically found */
|
|
padlock_aes_block(ivp, ivp, cdata);
|
|
padlock_reload_key(); /* empirically found */
|
|
while (nbytes) {
|
|
*(out_arg++) = *(in_arg++) ^ *ivp;
|
|
ivp++, nbytes--;
|
|
}
|
|
}
|
|
|
|
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void padlock_ctr32_encrypt_glue(const unsigned char *in,
|
|
unsigned char *out, size_t blocks,
|
|
struct padlock_cipher_data *ctx,
|
|
const unsigned char *ivec)
|
|
{
|
|
memcpy(ctx->iv, ivec, AES_BLOCK_SIZE);
|
|
padlock_ctr32_encrypt(out, in, ctx, AES_BLOCK_SIZE * blocks);
|
|
}
|
|
|
|
static int
|
|
padlock_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
|
|
const unsigned char *in_arg, size_t nbytes)
|
|
{
|
|
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
|
|
unsigned int num = EVP_CIPHER_CTX_num(ctx);
|
|
|
|
CRYPTO_ctr128_encrypt_ctr32(in_arg, out_arg, nbytes,
|
|
cdata, EVP_CIPHER_CTX_iv_noconst(ctx),
|
|
EVP_CIPHER_CTX_buf_noconst(ctx), &num,
|
|
(ctr128_f) padlock_ctr32_encrypt_glue);
|
|
|
|
EVP_CIPHER_CTX_set_num(ctx, (size_t)num);
|
|
return 1;
|
|
}
|
|
|
|
# define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE
|
|
# define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE
|
|
# define EVP_CIPHER_block_size_OFB 1
|
|
# define EVP_CIPHER_block_size_CFB 1
|
|
# define EVP_CIPHER_block_size_CTR 1
|
|
|
|
/*
|
|
* Declaring so many ciphers by hand would be a pain. Instead introduce a bit
|
|
* of preprocessor magic :-)
|
|
*/
|
|
# define DECLARE_AES_EVP(ksize,lmode,umode) \
|
|
static EVP_CIPHER *_hidden_aes_##ksize##_##lmode = NULL; \
|
|
static const EVP_CIPHER *padlock_aes_##ksize##_##lmode(void) \
|
|
{ \
|
|
if (_hidden_aes_##ksize##_##lmode == NULL \
|
|
&& ((_hidden_aes_##ksize##_##lmode = \
|
|
EVP_CIPHER_meth_new(NID_aes_##ksize##_##lmode, \
|
|
EVP_CIPHER_block_size_##umode, \
|
|
AES_KEY_SIZE_##ksize)) == NULL \
|
|
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_##ksize##_##lmode, \
|
|
AES_BLOCK_SIZE) \
|
|
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_##ksize##_##lmode, \
|
|
0 | EVP_CIPH_##umode##_MODE) \
|
|
|| !EVP_CIPHER_meth_set_init(_hidden_aes_##ksize##_##lmode, \
|
|
padlock_aes_init_key) \
|
|
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_##ksize##_##lmode, \
|
|
padlock_##lmode##_cipher) \
|
|
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_##ksize##_##lmode, \
|
|
sizeof(struct padlock_cipher_data) + 16) \
|
|
|| !EVP_CIPHER_meth_set_set_asn1_params(_hidden_aes_##ksize##_##lmode, \
|
|
EVP_CIPHER_set_asn1_iv) \
|
|
|| !EVP_CIPHER_meth_set_get_asn1_params(_hidden_aes_##ksize##_##lmode, \
|
|
EVP_CIPHER_get_asn1_iv))) { \
|
|
EVP_CIPHER_meth_free(_hidden_aes_##ksize##_##lmode); \
|
|
_hidden_aes_##ksize##_##lmode = NULL; \
|
|
} \
|
|
return _hidden_aes_##ksize##_##lmode; \
|
|
}
|
|
|
|
DECLARE_AES_EVP(128, ecb, ECB)
|
|
DECLARE_AES_EVP(128, cbc, CBC)
|
|
DECLARE_AES_EVP(128, cfb, CFB)
|
|
DECLARE_AES_EVP(128, ofb, OFB)
|
|
DECLARE_AES_EVP(128, ctr, CTR)
|
|
|
|
DECLARE_AES_EVP(192, ecb, ECB)
|
|
DECLARE_AES_EVP(192, cbc, CBC)
|
|
DECLARE_AES_EVP(192, cfb, CFB)
|
|
DECLARE_AES_EVP(192, ofb, OFB)
|
|
DECLARE_AES_EVP(192, ctr, CTR)
|
|
|
|
DECLARE_AES_EVP(256, ecb, ECB)
|
|
DECLARE_AES_EVP(256, cbc, CBC)
|
|
DECLARE_AES_EVP(256, cfb, CFB)
|
|
DECLARE_AES_EVP(256, ofb, OFB)
|
|
DECLARE_AES_EVP(256, ctr, CTR)
|
|
|
|
static int
|
|
padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids,
|
|
int nid)
|
|
{
|
|
/* No specific cipher => return a list of supported nids ... */
|
|
if (!cipher) {
|
|
*nids = padlock_cipher_nids;
|
|
return padlock_cipher_nids_num;
|
|
}
|
|
|
|
/* ... or the requested "cipher" otherwise */
|
|
switch (nid) {
|
|
case NID_aes_128_ecb:
|
|
*cipher = padlock_aes_128_ecb();
|
|
break;
|
|
case NID_aes_128_cbc:
|
|
*cipher = padlock_aes_128_cbc();
|
|
break;
|
|
case NID_aes_128_cfb:
|
|
*cipher = padlock_aes_128_cfb();
|
|
break;
|
|
case NID_aes_128_ofb:
|
|
*cipher = padlock_aes_128_ofb();
|
|
break;
|
|
case NID_aes_128_ctr:
|
|
*cipher = padlock_aes_128_ctr();
|
|
break;
|
|
|
|
case NID_aes_192_ecb:
|
|
*cipher = padlock_aes_192_ecb();
|
|
break;
|
|
case NID_aes_192_cbc:
|
|
*cipher = padlock_aes_192_cbc();
|
|
break;
|
|
case NID_aes_192_cfb:
|
|
*cipher = padlock_aes_192_cfb();
|
|
break;
|
|
case NID_aes_192_ofb:
|
|
*cipher = padlock_aes_192_ofb();
|
|
break;
|
|
case NID_aes_192_ctr:
|
|
*cipher = padlock_aes_192_ctr();
|
|
break;
|
|
|
|
case NID_aes_256_ecb:
|
|
*cipher = padlock_aes_256_ecb();
|
|
break;
|
|
case NID_aes_256_cbc:
|
|
*cipher = padlock_aes_256_cbc();
|
|
break;
|
|
case NID_aes_256_cfb:
|
|
*cipher = padlock_aes_256_cfb();
|
|
break;
|
|
case NID_aes_256_ofb:
|
|
*cipher = padlock_aes_256_ofb();
|
|
break;
|
|
case NID_aes_256_ctr:
|
|
*cipher = padlock_aes_256_ctr();
|
|
break;
|
|
|
|
default:
|
|
/* Sorry, we don't support this NID */
|
|
*cipher = NULL;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Prepare the encryption key for PadLock usage */
|
|
static int
|
|
padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
|
const unsigned char *iv, int enc)
|
|
{
|
|
struct padlock_cipher_data *cdata;
|
|
int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8;
|
|
unsigned long mode = EVP_CIPHER_CTX_mode(ctx);
|
|
|
|
if (key == NULL)
|
|
return 0; /* ERROR */
|
|
|
|
cdata = ALIGNED_CIPHER_DATA(ctx);
|
|
memset(cdata, 0, sizeof(*cdata));
|
|
|
|
/* Prepare Control word. */
|
|
if (mode == EVP_CIPH_OFB_MODE || mode == EVP_CIPH_CTR_MODE)
|
|
cdata->cword.b.encdec = 0;
|
|
else
|
|
cdata->cword.b.encdec = (EVP_CIPHER_CTX_encrypting(ctx) == 0);
|
|
cdata->cword.b.rounds = 10 + (key_len - 128) / 32;
|
|
cdata->cword.b.ksize = (key_len - 128) / 64;
|
|
|
|
switch (key_len) {
|
|
case 128:
|
|
/*
|
|
* PadLock can generate an extended key for AES128 in hardware
|
|
*/
|
|
memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128);
|
|
cdata->cword.b.keygen = 0;
|
|
break;
|
|
|
|
case 192:
|
|
case 256:
|
|
/*
|
|
* Generate an extended AES key in software. Needed for AES192/AES256
|
|
*/
|
|
/*
|
|
* Well, the above applies to Stepping 8 CPUs and is listed as
|
|
* hardware errata. They most likely will fix it at some point and
|
|
* then a check for stepping would be due here.
|
|
*/
|
|
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
|
&& !enc)
|
|
AES_set_decrypt_key(key, key_len, &cdata->ks);
|
|
else
|
|
AES_set_encrypt_key(key, key_len, &cdata->ks);
|
|
# ifndef AES_ASM
|
|
/*
|
|
* OpenSSL C functions use byte-swapped extended key.
|
|
*/
|
|
padlock_key_bswap(&cdata->ks);
|
|
# endif
|
|
cdata->cword.b.keygen = 1;
|
|
break;
|
|
|
|
default:
|
|
/* ERROR */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is done to cover for cases when user reuses the
|
|
* context for new key. The catch is that if we don't do
|
|
* this, padlock_eas_cipher might proceed with old key...
|
|
*/
|
|
padlock_reload_key();
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* ===== Random Number Generator ===== */
|
|
/*
|
|
* This code is not engaged. The reason is that it does not comply
|
|
* with recommendations for VIA RNG usage for secure applications
|
|
* (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it
|
|
* provide meaningful error control...
|
|
*/
|
|
/*
|
|
* Wrapper that provides an interface between the API and the raw PadLock
|
|
* RNG
|
|
*/
|
|
static int padlock_rand_bytes(unsigned char *output, int count)
|
|
{
|
|
unsigned int eax, buf;
|
|
|
|
while (count >= 8) {
|
|
eax = padlock_xstore(output, 0);
|
|
if (!(eax & (1 << 6)))
|
|
return 0; /* RNG disabled */
|
|
/* this ---vv--- covers DC bias, Raw Bits and String Filter */
|
|
if (eax & (0x1F << 10))
|
|
return 0;
|
|
if ((eax & 0x1F) == 0)
|
|
continue; /* no data, retry... */
|
|
if ((eax & 0x1F) != 8)
|
|
return 0; /* fatal failure... */
|
|
output += 8;
|
|
count -= 8;
|
|
}
|
|
while (count > 0) {
|
|
eax = padlock_xstore(&buf, 3);
|
|
if (!(eax & (1 << 6)))
|
|
return 0; /* RNG disabled */
|
|
/* this ---vv--- covers DC bias, Raw Bits and String Filter */
|
|
if (eax & (0x1F << 10))
|
|
return 0;
|
|
if ((eax & 0x1F) == 0)
|
|
continue; /* no data, retry... */
|
|
if ((eax & 0x1F) != 1)
|
|
return 0; /* fatal failure... */
|
|
*output++ = (unsigned char)buf;
|
|
count--;
|
|
}
|
|
OPENSSL_cleanse(&buf, sizeof(buf));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Dummy but necessary function */
|
|
static int padlock_rand_status(void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/* Prepare structure for registration */
|
|
static RAND_METHOD padlock_rand = {
|
|
NULL, /* seed */
|
|
padlock_rand_bytes, /* bytes */
|
|
NULL, /* cleanup */
|
|
NULL, /* add */
|
|
padlock_rand_bytes, /* pseudorand */
|
|
padlock_rand_status, /* rand status */
|
|
};
|
|
|
|
# endif /* COMPILE_PADLOCKENG */
|
|
#endif /* !OPENSSL_NO_PADLOCKENG */
|
|
|
|
#if defined(OPENSSL_NO_PADLOCKENG) || !defined(COMPILE_PADLOCKENG)
|
|
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
|
|
OPENSSL_EXPORT
|
|
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns);
|
|
OPENSSL_EXPORT
|
|
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
IMPLEMENT_DYNAMIC_CHECK_FN()
|
|
# endif
|
|
#endif
|