openssl/crypto/threads_pthread.c
Neil Horman d0e1a0ae70 RCU lock implementation
Introduce an RCU lock implementation as an alternative locking mechanism
to openssl.  The api is documented in the ossl_rcu.pod
file

Read side implementaiton is comparable to that of RWLOCKS:
ossl_rcu_read_lock(lock);
<
critical section in which data can be accessed via
ossl_derefrence
>
ossl_rcu_read_unlock(lock);

Write side implementation is:
ossl_rcu_write_lock(lock);
<
critical section in which data can be updated via
ossl_assign_pointer
and stale data can optionally be scheduled for removal
via ossl_rcu_call
>
ossl_rcu_write_unlock(lock);
...
ossl_synchronize_rcu(lock);

ossl_rcu_call fixup

Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/22729)
2024-02-01 08:33:25 -05:00

875 lines
23 KiB
C

/*
* Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* We need to use the OPENSSL_fork_*() deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED
#include <openssl/crypto.h>
#include <crypto/cryptlib.h>
#include "internal/cryptlib.h"
#include "internal/rcu.h"
#include "rcu_internal.h"
#if defined(__sun)
# include <atomic.h>
#endif
#if defined(__apple_build_version__) && __apple_build_version__ < 6000000
/*
* OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
* __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
* rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
* All of this makes impossible to use __atomic_is_lock_free here.
*
* See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
*/
#define BROKEN_CLANG_ATOMICS
#endif
#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
# if defined(OPENSSL_SYS_UNIX)
# include <sys/types.h>
# include <unistd.h>
#endif
# include <assert.h>
# ifdef PTHREAD_RWLOCK_INITIALIZER
# define USE_RWLOCK
# endif
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
# define ATOMIC_LOAD_N(p,o) __atomic_load_n(p, o)
# define ATOMIC_STORE_N(p, v, o) __atomic_store_n(p, v, o)
# define ATOMIC_STORE(p, v, o) __atomic_store(p, v, o)
# define ATOMIC_EXCHANGE_N(p, v, o) __atomic_exchange_n(p, v, o)
# define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
# define ATOMIC_FETCH_ADD(p, v, o) __atomic_fetch_add(p, v, o)
# define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
# define ATOMIC_AND_FETCH(p, m, o) __atomic_and_fetch(p, m, o)
# define ATOMIC_OR_FETCH(p, m, o) __atomic_or_fetch(p, m, o)
#else
static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
static inline void *fallback_atomic_load_n(void **p)
{
void *ret;
pthread_mutex_lock(&atomic_sim_lock);
ret = *(void **)p;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_LOAD_N(p, o) fallback_atomic_load_n((void **)p)
static inline void *fallback_atomic_store_n(void **p, void *v)
{
void *ret;
pthread_mutex_lock(&atomic_sim_lock);
ret = *p;
*p = v;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_STORE_N(p, v, o) fallback_atomic_store_n((void **)p, (void *)v)
static inline void fallback_atomic_store(void **p, void **v)
{
void *ret;
pthread_mutex_lock(&atomic_sim_lock);
ret = *p;
*p = *v;
v = ret;
pthread_mutex_unlock(&atomic_sim_lock);
}
# define ATOMIC_STORE(p, v, o) fallback_atomic_store((void **)p, (void **)v)
static inline void *fallback_atomic_exchange_n(void **p, void *v)
{
void *ret;
pthread_mutex_lock(&atomic_sim_lock);
ret = *p;
*p = v;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
#define ATOMIC_EXCHANGE_N(p, v, o) fallback_atomic_exchange_n((void **)p, (void *)v)
static inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
{
uint64_t ret;
pthread_mutex_lock(&atomic_sim_lock);
*p += v;
ret = *p;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
static inline uint64_t fallback_atomic_fetch_add(uint64_t *p, uint64_t v)
{
uint64_t ret;
pthread_mutex_lock(&atomic_sim_lock);
ret = *p;
*p += v;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_FETCH_ADD(p, v, o) fallback_atomic_fetch_add(p, v)
static inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
{
uint64_t ret;
pthread_mutex_lock(&atomic_sim_lock);
*p -= v;
ret = *p;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
static inline uint64_t fallback_atomic_and_fetch(uint64_t *p, uint64_t m)
{
uint64_t ret;
pthread_mutex_lock(&atomic_sim_lock);
*p &= m;
ret = *p;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_AND_FETCH(p, v, o) fallback_atomic_and_fetch(p, v)
static inline uint64_t fallback_atomic_or_fetch(uint64_t *p, uint64_t m)
{
uint64_t ret;
pthread_mutex_lock(&atomic_sim_lock);
*p |= m;
ret = *p;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_OR_FETCH(p, v, o) fallback_atomic_or_fetch(p, v)
#endif
static CRYPTO_THREAD_LOCAL rcu_thr_key;
/*
* users is broken up into 2 parts
* bits 0-15 current readers
* bit 32-63 - ID
*/
# define READER_SHIFT 0
# define ID_SHIFT 32
# define READER_SIZE 16
# define ID_SIZE 32
# define READER_MASK (((uint64_t)1 << READER_SIZE) - 1)
# define ID_MASK (((uint64_t)1 << ID_SIZE) - 1)
# define READER_COUNT(x) (((uint64_t)(x) >> READER_SHIFT) & READER_MASK)
# define ID_VAL(x) (((uint64_t)(x) >> ID_SHIFT) & ID_MASK)
# define VAL_READER ((uint64_t)1 << READER_SHIFT)
# define VAL_ID(x) ((uint64_t)x << ID_SHIFT)
/*
* This is the core of an rcu lock. It tracks the readers and writers for the
* current quiescence point for a given lock. Users is the 64 bit value that
* stores the READERS/ID as defined above
*
*/
struct rcu_qp {
uint64_t users;
};
struct thread_qp {
struct rcu_qp *qp;
unsigned int depth;
CRYPTO_RCU_LOCK *lock;
};
#define MAX_QPS 10
/*
* This is the per thread tracking data
* that is assigned to each thread participating
* in an rcu qp
*
* qp points to the qp that it last acquired
*
*/
struct rcu_thr_data {
struct thread_qp thread_qps[MAX_QPS];
};
/*
* This is the internal version of a CRYPTO_RCU_LOCK
* it is cast from CRYPTO_RCU_LOCK
*/
struct rcu_lock_st {
/* Callbacks to call for next ossl_synchronize_rcu */
struct rcu_cb_item *cb_items;
/* rcu generation counter for in-order retirement */
uint32_t id_ctr;
/* Array of quiescent points for synchronization */
struct rcu_qp *qp_group;
/* Number of elements in qp_group array */
size_t group_count;
/* Index of the current qp in the qp_group array */
uint64_t reader_idx;
/* value of the next id_ctr value to be retired */
uint32_t next_to_retire;
/* index of the next free rcu_qp in the qp_group */
uint64_t current_alloc_idx;
/* number of qp's in qp_group array currently being retired */
uint32_t writers_alloced;
/* lock protecting write side operations */
pthread_mutex_t write_lock;
/* lock protecting updates to writers_alloced/current_alloc_idx */
pthread_mutex_t alloc_lock;
/* signal to wake threads waiting on alloc_lock */
pthread_cond_t alloc_signal;
/* lock to enforce in-order retirement */
pthread_mutex_t prior_lock;
/* signal to wake threads waiting on prior_lock */
pthread_cond_t prior_signal;
};
/*
* Called on thread exit to free the pthread key
* associated with this thread, if any
*/
static void free_rcu_thr_data(void *ptr)
{
struct rcu_thr_data *data =
(struct rcu_thr_data *)CRYPTO_THREAD_get_local(&rcu_thr_key);
OPENSSL_free(data);
CRYPTO_THREAD_set_local(&rcu_thr_key, NULL);
}
static void ossl_rcu_init(void)
{
CRYPTO_THREAD_init_local(&rcu_thr_key, NULL);
}
/* Read side acquisition of the current qp */
static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
{
uint64_t qp_idx;
/* get the current qp index */
for (;;) {
/*
* Notes on use of __ATOMIC_ACQUIRE
* We need to ensure the following:
* 1) That subsequent operations aren't optimized by hoisting them above
* this operation. Specifically, we don't want the below re-load of
* qp_idx to get optimized away
* 2) We want to ensure that any updating of reader_idx on the write side
* of the lock is flushed from a local cpu cache so that we see any
* updates prior to the load. This is a non-issue on cache coherent
* systems like x86, but is relevant on other arches
* Note: This applies to the reload below as well
*/
qp_idx = (uint64_t)ATOMIC_LOAD_N(&lock->reader_idx, __ATOMIC_ACQUIRE);
/*
* Notes of use of __ATOMIC_RELEASE
* This counter is only read by the write side of the lock, and so we
* specify __ATOMIC_RELEASE here to ensure that the write side of the
* lock see this during the spin loop read of users, as it waits for the
* reader count to approach zero
*/
ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
__ATOMIC_RELEASE);
/* if the idx hasn't changed, we're good, else try again */
if (qp_idx == (uint64_t)ATOMIC_LOAD_N(&lock->reader_idx, __ATOMIC_ACQUIRE))
break;
/*
* Notes on use of __ATOMIC_RELEASE
* As with the add above, we want to ensure that this decrement is
* seen by the write side of the lock as soon as it happens to prevent
* undue spinning waiting for write side completion
*/
ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
__ATOMIC_RELEASE);
}
return &lock->qp_group[qp_idx];
}
void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
{
struct rcu_thr_data *data;
int i, available_qp = -1;
/*
* we're going to access current_qp here so ask the
* processor to fetch it
*/
data = CRYPTO_THREAD_get_local(&rcu_thr_key);
if (data == NULL) {
data = OPENSSL_zalloc(sizeof(*data));
OPENSSL_assert(data != NULL);
CRYPTO_THREAD_set_local(&rcu_thr_key, data);
ossl_init_thread_start(NULL, NULL, free_rcu_thr_data);
}
for (i = 0; i < MAX_QPS; i++) {
if (data->thread_qps[i].qp == NULL && available_qp == -1)
available_qp = i;
/* If we have a hold on this lock already, we're good */
if (data->thread_qps[i].lock == lock) {
data->thread_qps[i].depth++;
return;
}
}
/*
* if we get here, then we don't have a hold on this lock yet
*/
assert(available_qp != -1);
data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
data->thread_qps[available_qp].depth = 1;
data->thread_qps[available_qp].lock = lock;
}
void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
{
int i;
struct rcu_thr_data *data = CRYPTO_THREAD_get_local(&rcu_thr_key);
uint64_t ret;
assert(data != NULL);
for (i = 0; i < MAX_QPS; i++) {
if (data->thread_qps[i].lock == lock) {
/*
* As with read side acquisition, we use __ATOMIC_RELEASE here
* to ensure that the decrement is published immediately
* to any write side waiters
*/
data->thread_qps[i].depth--;
if (data->thread_qps[i].depth == 0) {
ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users, VAL_READER,
__ATOMIC_RELEASE);
OPENSSL_assert(ret != UINT64_MAX);
data->thread_qps[i].qp = NULL;
data->thread_qps[i].lock = NULL;
}
return;
}
}
/*
* if we get here, we're trying to unlock a lock that we never acquired
* thats fatal
*/
assert(0);
}
/*
* Write side allocation routine to get the current qp
* and replace it with a new one
*/
static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
{
uint64_t new_id;
uint64_t current_idx;
pthread_mutex_lock(&lock->alloc_lock);
/*
* we need at least one qp to be available with one
* left over, so that readers can start working on
* one that isn't yet being waited on
*/
while (lock->group_count - lock->writers_alloced < 2)
/* we have to wait for one to be free */
pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
current_idx = lock->current_alloc_idx;
/* Allocate the qp */
lock->writers_alloced++;
/* increment the allocation index */
lock->current_alloc_idx =
(lock->current_alloc_idx + 1) % lock->group_count;
/* get and insert a new id */
new_id = lock->id_ctr;
lock->id_ctr++;
new_id = VAL_ID(new_id);
/*
* Even though we are under a write side lock here
* We need to use atomic instructions to ensure that the results
* of this update are published to the read side prior to updating the
* reader idx below
*/
ATOMIC_AND_FETCH(&lock->qp_group[current_idx].users, ID_MASK,
__ATOMIC_RELEASE);
ATOMIC_OR_FETCH(&lock->qp_group[current_idx].users, new_id,
__ATOMIC_RELEASE);
/*
* update the reader index to be the prior qp
* Note the use of __ATOMIC_RELEASE here is based on the corresponding use
* of __ATOMIC_ACQUIRE in get_hold_current_qp, as we wan't any publication
* of this value to be seen on the read side immediately after it happens
*/
ATOMIC_STORE_N(&lock->reader_idx, lock->current_alloc_idx,
__ATOMIC_RELEASE);
/* wake up any waiters */
pthread_cond_signal(&lock->alloc_signal);
pthread_mutex_unlock(&lock->alloc_lock);
return &lock->qp_group[current_idx];
}
static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
{
pthread_mutex_lock(&lock->alloc_lock);
lock->writers_alloced--;
pthread_cond_signal(&lock->alloc_signal);
pthread_mutex_unlock(&lock->alloc_lock);
}
static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
int count)
{
struct rcu_qp *new =
OPENSSL_zalloc(sizeof(*new) * count);
lock->group_count = count;
return new;
}
void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
{
pthread_mutex_lock(&lock->write_lock);
}
void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
{
pthread_mutex_unlock(&lock->write_lock);
}
void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
{
struct rcu_qp *qp;
uint64_t count;
struct rcu_cb_item *cb_items, *tmpcb;
/*
* __ATOMIC_ACQ_REL is used here to ensure that we get any prior published
* writes before we read, and publish our write immediately
*/
cb_items = ATOMIC_EXCHANGE_N(&lock->cb_items, NULL, __ATOMIC_ACQ_REL);
qp = update_qp(lock);
/*
* wait for the reader count to reach zero
* Note the use of __ATOMIC_ACQUIRE here to ensure that any
* prior __ATOMIC_RELEASE write operation in get_hold_current_qp
* is visible prior to our read
*/
do {
count = (uint64_t)ATOMIC_LOAD_N(&qp->users, __ATOMIC_ACQUIRE);
} while (READER_COUNT(count) != 0);
/* retire in order */
pthread_mutex_lock(&lock->prior_lock);
while (lock->next_to_retire != ID_VAL(count))
pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
lock->next_to_retire++;
pthread_cond_broadcast(&lock->prior_signal);
pthread_mutex_unlock(&lock->prior_lock);
retire_qp(lock, qp);
/* handle any callbacks that we have */
while (cb_items != NULL) {
tmpcb = cb_items;
cb_items = cb_items->next;
tmpcb->fn(tmpcb->data);
OPENSSL_free(tmpcb);
}
}
int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
{
struct rcu_cb_item *new =
OPENSSL_zalloc(sizeof(*new));
if (new == NULL)
return 0;
new->data = data;
new->fn = cb;
/*
* Use __ATOMIC_ACQ_REL here to indicate that any prior writes to this
* list are visible to us prior to reading, and publish the new value
* immediately
*/
new->next = ATOMIC_EXCHANGE_N(&lock->cb_items, new, __ATOMIC_ACQ_REL);
return 1;
}
void *ossl_rcu_uptr_deref(void **p)
{
return (void *)ATOMIC_LOAD_N(p, __ATOMIC_ACQUIRE);
}
void ossl_rcu_assign_uptr(void **p, void **v)
{
ATOMIC_STORE(p, v, __ATOMIC_RELEASE);
}
static CRYPTO_ONCE rcu_init_once = CRYPTO_ONCE_STATIC_INIT;
CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers)
{
struct rcu_lock_st *new;
if (!CRYPTO_THREAD_run_once(&rcu_init_once, ossl_rcu_init))
return NULL;
if (num_writers < 1)
num_writers = 1;
new = OPENSSL_zalloc(sizeof(*new));
if (new == NULL)
return NULL;
pthread_mutex_init(&new->write_lock, NULL);
pthread_mutex_init(&new->prior_lock, NULL);
pthread_mutex_init(&new->alloc_lock, NULL);
pthread_cond_init(&new->prior_signal, NULL);
pthread_cond_init(&new->alloc_signal, NULL);
new->qp_group = allocate_new_qp_group(new, num_writers + 1);
if (new->qp_group == NULL) {
OPENSSL_free(new);
new = NULL;
}
return new;
}
void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
{
struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
if (lock == NULL)
return;
/* make sure we're synchronized */
ossl_synchronize_rcu(rlock);
OPENSSL_free(rlock->qp_group);
/* There should only be a single qp left now */
OPENSSL_free(rlock);
}
CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
{
# ifdef USE_RWLOCK
CRYPTO_RWLOCK *lock;
if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
/* Don't set error, to avoid recursion blowup. */
return NULL;
if (pthread_rwlock_init(lock, NULL) != 0) {
OPENSSL_free(lock);
return NULL;
}
# else
pthread_mutexattr_t attr;
CRYPTO_RWLOCK *lock;
if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
/* Don't set error, to avoid recursion blowup. */
return NULL;
/*
* We don't use recursive mutexes, but try to catch errors if we do.
*/
pthread_mutexattr_init(&attr);
# if !defined (__TANDEM) && !defined (_SPT_MODEL_)
# if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
# endif
# else
/* The SPT Thread Library does not define MUTEX attributes. */
# endif
if (pthread_mutex_init(lock, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
OPENSSL_free(lock);
return NULL;
}
pthread_mutexattr_destroy(&attr);
# endif
return lock;
}
__owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
if (pthread_rwlock_rdlock(lock) != 0)
return 0;
# else
if (pthread_mutex_lock(lock) != 0) {
assert(errno != EDEADLK && errno != EBUSY);
return 0;
}
# endif
return 1;
}
__owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
if (pthread_rwlock_wrlock(lock) != 0)
return 0;
# else
if (pthread_mutex_lock(lock) != 0) {
assert(errno != EDEADLK && errno != EBUSY);
return 0;
}
# endif
return 1;
}
int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
if (pthread_rwlock_unlock(lock) != 0)
return 0;
# else
if (pthread_mutex_unlock(lock) != 0) {
assert(errno != EPERM);
return 0;
}
# endif
return 1;
}
void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
{
if (lock == NULL)
return;
# ifdef USE_RWLOCK
pthread_rwlock_destroy(lock);
# else
pthread_mutex_destroy(lock);
# endif
OPENSSL_free(lock);
return;
}
int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
{
if (pthread_once(once, init) != 0)
return 0;
return 1;
}
int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
{
if (pthread_key_create(key, cleanup) != 0)
return 0;
return 1;
}
void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
{
return pthread_getspecific(*key);
}
int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
{
if (pthread_setspecific(*key, val) != 0)
return 0;
return 1;
}
int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
{
if (pthread_key_delete(*key) != 0)
return 0;
return 1;
}
CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
{
return pthread_self();
}
int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
{
return pthread_equal(a, b);
}
int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
{
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
if (__atomic_is_lock_free(sizeof(*val), val)) {
*ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
return 1;
}
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
/* This will work for all future Solaris versions. */
if (ret != NULL) {
*ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
return 1;
}
# endif
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
return 0;
*val += amount;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
}
int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
CRYPTO_RWLOCK *lock)
{
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
if (__atomic_is_lock_free(sizeof(*val), val)) {
*ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
return 1;
}
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
/* This will work for all future Solaris versions. */
if (ret != NULL) {
*ret = atomic_or_64_nv(val, op);
return 1;
}
# endif
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
return 0;
*val |= op;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
}
int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
{
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
if (__atomic_is_lock_free(sizeof(*val), val)) {
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
return 1;
}
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
/* This will work for all future Solaris versions. */
if (ret != NULL) {
*ret = atomic_or_64_nv(val, 0);
return 1;
}
# endif
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
return 0;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
}
int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
{
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
if (__atomic_is_lock_free(sizeof(*val), val)) {
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
return 1;
}
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
/* This will work for all future Solaris versions. */
if (ret != NULL) {
*ret = (int *)atomic_or_uint_nv((unsigned int *)val, 0);
return 1;
}
# endif
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
return 0;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
}
# ifndef FIPS_MODULE
int openssl_init_fork_handlers(void)
{
return 1;
}
# endif /* FIPS_MODULE */
int openssl_get_fork_id(void)
{
return getpid();
}
#endif