mirror of
https://github.com/openssl/openssl.git
synced 2025-01-24 13:55:42 +08:00
d0e1a0ae70
Introduce an RCU lock implementation as an alternative locking mechanism to openssl. The api is documented in the ossl_rcu.pod file Read side implementaiton is comparable to that of RWLOCKS: ossl_rcu_read_lock(lock); < critical section in which data can be accessed via ossl_derefrence > ossl_rcu_read_unlock(lock); Write side implementation is: ossl_rcu_write_lock(lock); < critical section in which data can be updated via ossl_assign_pointer and stale data can optionally be scheduled for removal via ossl_rcu_call > ossl_rcu_write_unlock(lock); ... ossl_synchronize_rcu(lock); ossl_rcu_call fixup Reviewed-by: Hugo Landau <hlandau@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/22729)
875 lines
23 KiB
C
875 lines
23 KiB
C
/*
|
|
* Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/* We need to use the OPENSSL_fork_*() deprecated APIs */
|
|
#define OPENSSL_SUPPRESS_DEPRECATED
|
|
|
|
#include <openssl/crypto.h>
|
|
#include <crypto/cryptlib.h>
|
|
#include "internal/cryptlib.h"
|
|
#include "internal/rcu.h"
|
|
#include "rcu_internal.h"
|
|
|
|
#if defined(__sun)
|
|
# include <atomic.h>
|
|
#endif
|
|
|
|
#if defined(__apple_build_version__) && __apple_build_version__ < 6000000
|
|
/*
|
|
* OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
|
|
* __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
|
|
* rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
|
|
* All of this makes impossible to use __atomic_is_lock_free here.
|
|
*
|
|
* See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
|
|
*/
|
|
#define BROKEN_CLANG_ATOMICS
|
|
#endif
|
|
|
|
#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
|
|
|
|
# if defined(OPENSSL_SYS_UNIX)
|
|
# include <sys/types.h>
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
# include <assert.h>
|
|
|
|
# ifdef PTHREAD_RWLOCK_INITIALIZER
|
|
# define USE_RWLOCK
|
|
# endif
|
|
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
|
|
# define ATOMIC_LOAD_N(p,o) __atomic_load_n(p, o)
|
|
# define ATOMIC_STORE_N(p, v, o) __atomic_store_n(p, v, o)
|
|
# define ATOMIC_STORE(p, v, o) __atomic_store(p, v, o)
|
|
# define ATOMIC_EXCHANGE_N(p, v, o) __atomic_exchange_n(p, v, o)
|
|
# define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
|
|
# define ATOMIC_FETCH_ADD(p, v, o) __atomic_fetch_add(p, v, o)
|
|
# define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
|
|
# define ATOMIC_AND_FETCH(p, m, o) __atomic_and_fetch(p, m, o)
|
|
# define ATOMIC_OR_FETCH(p, m, o) __atomic_or_fetch(p, m, o)
|
|
#else
|
|
static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
static inline void *fallback_atomic_load_n(void **p)
|
|
{
|
|
void *ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
ret = *(void **)p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_LOAD_N(p, o) fallback_atomic_load_n((void **)p)
|
|
|
|
static inline void *fallback_atomic_store_n(void **p, void *v)
|
|
{
|
|
void *ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
ret = *p;
|
|
*p = v;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_STORE_N(p, v, o) fallback_atomic_store_n((void **)p, (void *)v)
|
|
|
|
static inline void fallback_atomic_store(void **p, void **v)
|
|
{
|
|
void *ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
ret = *p;
|
|
*p = *v;
|
|
v = ret;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
}
|
|
|
|
# define ATOMIC_STORE(p, v, o) fallback_atomic_store((void **)p, (void **)v)
|
|
|
|
static inline void *fallback_atomic_exchange_n(void **p, void *v)
|
|
{
|
|
void *ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
ret = *p;
|
|
*p = v;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
#define ATOMIC_EXCHANGE_N(p, v, o) fallback_atomic_exchange_n((void **)p, (void *)v)
|
|
|
|
static inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
*p += v;
|
|
ret = *p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
|
|
|
|
static inline uint64_t fallback_atomic_fetch_add(uint64_t *p, uint64_t v)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
ret = *p;
|
|
*p += v;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_FETCH_ADD(p, v, o) fallback_atomic_fetch_add(p, v)
|
|
|
|
static inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
*p -= v;
|
|
ret = *p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
|
|
|
|
static inline uint64_t fallback_atomic_and_fetch(uint64_t *p, uint64_t m)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
*p &= m;
|
|
ret = *p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_AND_FETCH(p, v, o) fallback_atomic_and_fetch(p, v)
|
|
|
|
static inline uint64_t fallback_atomic_or_fetch(uint64_t *p, uint64_t m)
|
|
{
|
|
uint64_t ret;
|
|
|
|
pthread_mutex_lock(&atomic_sim_lock);
|
|
*p |= m;
|
|
ret = *p;
|
|
pthread_mutex_unlock(&atomic_sim_lock);
|
|
return ret;
|
|
}
|
|
|
|
# define ATOMIC_OR_FETCH(p, v, o) fallback_atomic_or_fetch(p, v)
|
|
#endif
|
|
|
|
static CRYPTO_THREAD_LOCAL rcu_thr_key;
|
|
|
|
/*
|
|
* users is broken up into 2 parts
|
|
* bits 0-15 current readers
|
|
* bit 32-63 - ID
|
|
*/
|
|
# define READER_SHIFT 0
|
|
# define ID_SHIFT 32
|
|
# define READER_SIZE 16
|
|
# define ID_SIZE 32
|
|
|
|
# define READER_MASK (((uint64_t)1 << READER_SIZE) - 1)
|
|
# define ID_MASK (((uint64_t)1 << ID_SIZE) - 1)
|
|
# define READER_COUNT(x) (((uint64_t)(x) >> READER_SHIFT) & READER_MASK)
|
|
# define ID_VAL(x) (((uint64_t)(x) >> ID_SHIFT) & ID_MASK)
|
|
# define VAL_READER ((uint64_t)1 << READER_SHIFT)
|
|
# define VAL_ID(x) ((uint64_t)x << ID_SHIFT)
|
|
|
|
/*
|
|
* This is the core of an rcu lock. It tracks the readers and writers for the
|
|
* current quiescence point for a given lock. Users is the 64 bit value that
|
|
* stores the READERS/ID as defined above
|
|
*
|
|
*/
|
|
struct rcu_qp {
|
|
uint64_t users;
|
|
};
|
|
|
|
struct thread_qp {
|
|
struct rcu_qp *qp;
|
|
unsigned int depth;
|
|
CRYPTO_RCU_LOCK *lock;
|
|
};
|
|
|
|
#define MAX_QPS 10
|
|
/*
|
|
* This is the per thread tracking data
|
|
* that is assigned to each thread participating
|
|
* in an rcu qp
|
|
*
|
|
* qp points to the qp that it last acquired
|
|
*
|
|
*/
|
|
struct rcu_thr_data {
|
|
struct thread_qp thread_qps[MAX_QPS];
|
|
};
|
|
|
|
/*
|
|
* This is the internal version of a CRYPTO_RCU_LOCK
|
|
* it is cast from CRYPTO_RCU_LOCK
|
|
*/
|
|
struct rcu_lock_st {
|
|
/* Callbacks to call for next ossl_synchronize_rcu */
|
|
struct rcu_cb_item *cb_items;
|
|
|
|
/* rcu generation counter for in-order retirement */
|
|
uint32_t id_ctr;
|
|
|
|
/* Array of quiescent points for synchronization */
|
|
struct rcu_qp *qp_group;
|
|
|
|
/* Number of elements in qp_group array */
|
|
size_t group_count;
|
|
|
|
/* Index of the current qp in the qp_group array */
|
|
uint64_t reader_idx;
|
|
|
|
/* value of the next id_ctr value to be retired */
|
|
uint32_t next_to_retire;
|
|
|
|
/* index of the next free rcu_qp in the qp_group */
|
|
uint64_t current_alloc_idx;
|
|
|
|
/* number of qp's in qp_group array currently being retired */
|
|
uint32_t writers_alloced;
|
|
|
|
/* lock protecting write side operations */
|
|
pthread_mutex_t write_lock;
|
|
|
|
/* lock protecting updates to writers_alloced/current_alloc_idx */
|
|
pthread_mutex_t alloc_lock;
|
|
|
|
/* signal to wake threads waiting on alloc_lock */
|
|
pthread_cond_t alloc_signal;
|
|
|
|
/* lock to enforce in-order retirement */
|
|
pthread_mutex_t prior_lock;
|
|
|
|
/* signal to wake threads waiting on prior_lock */
|
|
pthread_cond_t prior_signal;
|
|
};
|
|
|
|
/*
|
|
* Called on thread exit to free the pthread key
|
|
* associated with this thread, if any
|
|
*/
|
|
static void free_rcu_thr_data(void *ptr)
|
|
{
|
|
struct rcu_thr_data *data =
|
|
(struct rcu_thr_data *)CRYPTO_THREAD_get_local(&rcu_thr_key);
|
|
|
|
OPENSSL_free(data);
|
|
CRYPTO_THREAD_set_local(&rcu_thr_key, NULL);
|
|
}
|
|
|
|
static void ossl_rcu_init(void)
|
|
{
|
|
CRYPTO_THREAD_init_local(&rcu_thr_key, NULL);
|
|
}
|
|
|
|
/* Read side acquisition of the current qp */
|
|
static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
|
|
{
|
|
uint64_t qp_idx;
|
|
|
|
/* get the current qp index */
|
|
for (;;) {
|
|
/*
|
|
* Notes on use of __ATOMIC_ACQUIRE
|
|
* We need to ensure the following:
|
|
* 1) That subsequent operations aren't optimized by hoisting them above
|
|
* this operation. Specifically, we don't want the below re-load of
|
|
* qp_idx to get optimized away
|
|
* 2) We want to ensure that any updating of reader_idx on the write side
|
|
* of the lock is flushed from a local cpu cache so that we see any
|
|
* updates prior to the load. This is a non-issue on cache coherent
|
|
* systems like x86, but is relevant on other arches
|
|
* Note: This applies to the reload below as well
|
|
*/
|
|
qp_idx = (uint64_t)ATOMIC_LOAD_N(&lock->reader_idx, __ATOMIC_ACQUIRE);
|
|
|
|
/*
|
|
* Notes of use of __ATOMIC_RELEASE
|
|
* This counter is only read by the write side of the lock, and so we
|
|
* specify __ATOMIC_RELEASE here to ensure that the write side of the
|
|
* lock see this during the spin loop read of users, as it waits for the
|
|
* reader count to approach zero
|
|
*/
|
|
ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
|
|
__ATOMIC_RELEASE);
|
|
|
|
/* if the idx hasn't changed, we're good, else try again */
|
|
if (qp_idx == (uint64_t)ATOMIC_LOAD_N(&lock->reader_idx, __ATOMIC_ACQUIRE))
|
|
break;
|
|
|
|
/*
|
|
* Notes on use of __ATOMIC_RELEASE
|
|
* As with the add above, we want to ensure that this decrement is
|
|
* seen by the write side of the lock as soon as it happens to prevent
|
|
* undue spinning waiting for write side completion
|
|
*/
|
|
ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
|
|
__ATOMIC_RELEASE);
|
|
}
|
|
|
|
return &lock->qp_group[qp_idx];
|
|
}
|
|
|
|
void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
struct rcu_thr_data *data;
|
|
int i, available_qp = -1;
|
|
|
|
/*
|
|
* we're going to access current_qp here so ask the
|
|
* processor to fetch it
|
|
*/
|
|
data = CRYPTO_THREAD_get_local(&rcu_thr_key);
|
|
|
|
if (data == NULL) {
|
|
data = OPENSSL_zalloc(sizeof(*data));
|
|
OPENSSL_assert(data != NULL);
|
|
CRYPTO_THREAD_set_local(&rcu_thr_key, data);
|
|
ossl_init_thread_start(NULL, NULL, free_rcu_thr_data);
|
|
}
|
|
|
|
for (i = 0; i < MAX_QPS; i++) {
|
|
if (data->thread_qps[i].qp == NULL && available_qp == -1)
|
|
available_qp = i;
|
|
/* If we have a hold on this lock already, we're good */
|
|
if (data->thread_qps[i].lock == lock) {
|
|
data->thread_qps[i].depth++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if we get here, then we don't have a hold on this lock yet
|
|
*/
|
|
assert(available_qp != -1);
|
|
|
|
data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
|
|
data->thread_qps[available_qp].depth = 1;
|
|
data->thread_qps[available_qp].lock = lock;
|
|
}
|
|
|
|
void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
int i;
|
|
struct rcu_thr_data *data = CRYPTO_THREAD_get_local(&rcu_thr_key);
|
|
uint64_t ret;
|
|
|
|
assert(data != NULL);
|
|
|
|
for (i = 0; i < MAX_QPS; i++) {
|
|
if (data->thread_qps[i].lock == lock) {
|
|
/*
|
|
* As with read side acquisition, we use __ATOMIC_RELEASE here
|
|
* to ensure that the decrement is published immediately
|
|
* to any write side waiters
|
|
*/
|
|
data->thread_qps[i].depth--;
|
|
if (data->thread_qps[i].depth == 0) {
|
|
ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users, VAL_READER,
|
|
__ATOMIC_RELEASE);
|
|
OPENSSL_assert(ret != UINT64_MAX);
|
|
data->thread_qps[i].qp = NULL;
|
|
data->thread_qps[i].lock = NULL;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* if we get here, we're trying to unlock a lock that we never acquired
|
|
* thats fatal
|
|
*/
|
|
assert(0);
|
|
}
|
|
|
|
/*
|
|
* Write side allocation routine to get the current qp
|
|
* and replace it with a new one
|
|
*/
|
|
static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
uint64_t new_id;
|
|
uint64_t current_idx;
|
|
|
|
pthread_mutex_lock(&lock->alloc_lock);
|
|
|
|
/*
|
|
* we need at least one qp to be available with one
|
|
* left over, so that readers can start working on
|
|
* one that isn't yet being waited on
|
|
*/
|
|
while (lock->group_count - lock->writers_alloced < 2)
|
|
/* we have to wait for one to be free */
|
|
pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
|
|
|
|
current_idx = lock->current_alloc_idx;
|
|
|
|
/* Allocate the qp */
|
|
lock->writers_alloced++;
|
|
|
|
/* increment the allocation index */
|
|
lock->current_alloc_idx =
|
|
(lock->current_alloc_idx + 1) % lock->group_count;
|
|
|
|
/* get and insert a new id */
|
|
new_id = lock->id_ctr;
|
|
lock->id_ctr++;
|
|
|
|
new_id = VAL_ID(new_id);
|
|
/*
|
|
* Even though we are under a write side lock here
|
|
* We need to use atomic instructions to ensure that the results
|
|
* of this update are published to the read side prior to updating the
|
|
* reader idx below
|
|
*/
|
|
ATOMIC_AND_FETCH(&lock->qp_group[current_idx].users, ID_MASK,
|
|
__ATOMIC_RELEASE);
|
|
ATOMIC_OR_FETCH(&lock->qp_group[current_idx].users, new_id,
|
|
__ATOMIC_RELEASE);
|
|
|
|
/*
|
|
* update the reader index to be the prior qp
|
|
* Note the use of __ATOMIC_RELEASE here is based on the corresponding use
|
|
* of __ATOMIC_ACQUIRE in get_hold_current_qp, as we wan't any publication
|
|
* of this value to be seen on the read side immediately after it happens
|
|
*/
|
|
ATOMIC_STORE_N(&lock->reader_idx, lock->current_alloc_idx,
|
|
__ATOMIC_RELEASE);
|
|
|
|
/* wake up any waiters */
|
|
pthread_cond_signal(&lock->alloc_signal);
|
|
pthread_mutex_unlock(&lock->alloc_lock);
|
|
return &lock->qp_group[current_idx];
|
|
}
|
|
|
|
static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
|
|
{
|
|
pthread_mutex_lock(&lock->alloc_lock);
|
|
lock->writers_alloced--;
|
|
pthread_cond_signal(&lock->alloc_signal);
|
|
pthread_mutex_unlock(&lock->alloc_lock);
|
|
}
|
|
|
|
static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
|
|
int count)
|
|
{
|
|
struct rcu_qp *new =
|
|
OPENSSL_zalloc(sizeof(*new) * count);
|
|
|
|
lock->group_count = count;
|
|
return new;
|
|
}
|
|
|
|
void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
pthread_mutex_lock(&lock->write_lock);
|
|
}
|
|
|
|
void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
pthread_mutex_unlock(&lock->write_lock);
|
|
}
|
|
|
|
void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
struct rcu_qp *qp;
|
|
uint64_t count;
|
|
struct rcu_cb_item *cb_items, *tmpcb;
|
|
|
|
/*
|
|
* __ATOMIC_ACQ_REL is used here to ensure that we get any prior published
|
|
* writes before we read, and publish our write immediately
|
|
*/
|
|
cb_items = ATOMIC_EXCHANGE_N(&lock->cb_items, NULL, __ATOMIC_ACQ_REL);
|
|
|
|
qp = update_qp(lock);
|
|
|
|
/*
|
|
* wait for the reader count to reach zero
|
|
* Note the use of __ATOMIC_ACQUIRE here to ensure that any
|
|
* prior __ATOMIC_RELEASE write operation in get_hold_current_qp
|
|
* is visible prior to our read
|
|
*/
|
|
do {
|
|
count = (uint64_t)ATOMIC_LOAD_N(&qp->users, __ATOMIC_ACQUIRE);
|
|
} while (READER_COUNT(count) != 0);
|
|
|
|
/* retire in order */
|
|
pthread_mutex_lock(&lock->prior_lock);
|
|
while (lock->next_to_retire != ID_VAL(count))
|
|
pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
|
|
lock->next_to_retire++;
|
|
pthread_cond_broadcast(&lock->prior_signal);
|
|
pthread_mutex_unlock(&lock->prior_lock);
|
|
|
|
retire_qp(lock, qp);
|
|
|
|
/* handle any callbacks that we have */
|
|
while (cb_items != NULL) {
|
|
tmpcb = cb_items;
|
|
cb_items = cb_items->next;
|
|
tmpcb->fn(tmpcb->data);
|
|
OPENSSL_free(tmpcb);
|
|
}
|
|
}
|
|
|
|
int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
|
|
{
|
|
struct rcu_cb_item *new =
|
|
OPENSSL_zalloc(sizeof(*new));
|
|
|
|
if (new == NULL)
|
|
return 0;
|
|
|
|
new->data = data;
|
|
new->fn = cb;
|
|
/*
|
|
* Use __ATOMIC_ACQ_REL here to indicate that any prior writes to this
|
|
* list are visible to us prior to reading, and publish the new value
|
|
* immediately
|
|
*/
|
|
new->next = ATOMIC_EXCHANGE_N(&lock->cb_items, new, __ATOMIC_ACQ_REL);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void *ossl_rcu_uptr_deref(void **p)
|
|
{
|
|
return (void *)ATOMIC_LOAD_N(p, __ATOMIC_ACQUIRE);
|
|
}
|
|
|
|
void ossl_rcu_assign_uptr(void **p, void **v)
|
|
{
|
|
ATOMIC_STORE(p, v, __ATOMIC_RELEASE);
|
|
}
|
|
|
|
static CRYPTO_ONCE rcu_init_once = CRYPTO_ONCE_STATIC_INIT;
|
|
|
|
CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers)
|
|
{
|
|
struct rcu_lock_st *new;
|
|
|
|
if (!CRYPTO_THREAD_run_once(&rcu_init_once, ossl_rcu_init))
|
|
return NULL;
|
|
|
|
if (num_writers < 1)
|
|
num_writers = 1;
|
|
|
|
new = OPENSSL_zalloc(sizeof(*new));
|
|
if (new == NULL)
|
|
return NULL;
|
|
|
|
pthread_mutex_init(&new->write_lock, NULL);
|
|
pthread_mutex_init(&new->prior_lock, NULL);
|
|
pthread_mutex_init(&new->alloc_lock, NULL);
|
|
pthread_cond_init(&new->prior_signal, NULL);
|
|
pthread_cond_init(&new->alloc_signal, NULL);
|
|
new->qp_group = allocate_new_qp_group(new, num_writers + 1);
|
|
if (new->qp_group == NULL) {
|
|
OPENSSL_free(new);
|
|
new = NULL;
|
|
}
|
|
return new;
|
|
}
|
|
|
|
void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
|
|
{
|
|
struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
|
|
|
|
if (lock == NULL)
|
|
return;
|
|
|
|
/* make sure we're synchronized */
|
|
ossl_synchronize_rcu(rlock);
|
|
|
|
OPENSSL_free(rlock->qp_group);
|
|
/* There should only be a single qp left now */
|
|
OPENSSL_free(rlock);
|
|
}
|
|
|
|
CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
CRYPTO_RWLOCK *lock;
|
|
|
|
if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
|
|
/* Don't set error, to avoid recursion blowup. */
|
|
return NULL;
|
|
|
|
if (pthread_rwlock_init(lock, NULL) != 0) {
|
|
OPENSSL_free(lock);
|
|
return NULL;
|
|
}
|
|
# else
|
|
pthread_mutexattr_t attr;
|
|
CRYPTO_RWLOCK *lock;
|
|
|
|
if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
|
|
/* Don't set error, to avoid recursion blowup. */
|
|
return NULL;
|
|
|
|
/*
|
|
* We don't use recursive mutexes, but try to catch errors if we do.
|
|
*/
|
|
pthread_mutexattr_init(&attr);
|
|
# if !defined (__TANDEM) && !defined (_SPT_MODEL_)
|
|
# if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
|
|
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
|
|
# endif
|
|
# else
|
|
/* The SPT Thread Library does not define MUTEX attributes. */
|
|
# endif
|
|
|
|
if (pthread_mutex_init(lock, &attr) != 0) {
|
|
pthread_mutexattr_destroy(&attr);
|
|
OPENSSL_free(lock);
|
|
return NULL;
|
|
}
|
|
|
|
pthread_mutexattr_destroy(&attr);
|
|
# endif
|
|
|
|
return lock;
|
|
}
|
|
|
|
__owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
if (pthread_rwlock_rdlock(lock) != 0)
|
|
return 0;
|
|
# else
|
|
if (pthread_mutex_lock(lock) != 0) {
|
|
assert(errno != EDEADLK && errno != EBUSY);
|
|
return 0;
|
|
}
|
|
# endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
__owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
if (pthread_rwlock_wrlock(lock) != 0)
|
|
return 0;
|
|
# else
|
|
if (pthread_mutex_lock(lock) != 0) {
|
|
assert(errno != EDEADLK && errno != EBUSY);
|
|
return 0;
|
|
}
|
|
# endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
|
|
{
|
|
# ifdef USE_RWLOCK
|
|
if (pthread_rwlock_unlock(lock) != 0)
|
|
return 0;
|
|
# else
|
|
if (pthread_mutex_unlock(lock) != 0) {
|
|
assert(errno != EPERM);
|
|
return 0;
|
|
}
|
|
# endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
|
|
{
|
|
if (lock == NULL)
|
|
return;
|
|
|
|
# ifdef USE_RWLOCK
|
|
pthread_rwlock_destroy(lock);
|
|
# else
|
|
pthread_mutex_destroy(lock);
|
|
# endif
|
|
OPENSSL_free(lock);
|
|
|
|
return;
|
|
}
|
|
|
|
int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
|
|
{
|
|
if (pthread_once(once, init) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
|
|
{
|
|
if (pthread_key_create(key, cleanup) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
|
|
{
|
|
return pthread_getspecific(*key);
|
|
}
|
|
|
|
int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
|
|
{
|
|
if (pthread_setspecific(*key, val) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
|
|
{
|
|
if (pthread_key_delete(*key) != 0)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
|
|
{
|
|
return pthread_self();
|
|
}
|
|
|
|
int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
|
|
{
|
|
return pthread_equal(a, b);
|
|
}
|
|
|
|
int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
*ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
|
|
*val += amount;
|
|
*ret = *val;
|
|
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
|
|
CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
*ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_or_64_nv(val, op);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
|
return 0;
|
|
*val |= op;
|
|
*ret = *val;
|
|
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = atomic_or_64_nv(val, 0);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
|
|
return 0;
|
|
*ret = *val;
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
|
|
{
|
|
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
|
|
if (__atomic_is_lock_free(sizeof(*val), val)) {
|
|
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
|
|
return 1;
|
|
}
|
|
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
|
/* This will work for all future Solaris versions. */
|
|
if (ret != NULL) {
|
|
*ret = (int *)atomic_or_uint_nv((unsigned int *)val, 0);
|
|
return 1;
|
|
}
|
|
# endif
|
|
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
|
|
return 0;
|
|
*ret = *val;
|
|
if (!CRYPTO_THREAD_unlock(lock))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
# ifndef FIPS_MODULE
|
|
int openssl_init_fork_handlers(void)
|
|
{
|
|
return 1;
|
|
}
|
|
# endif /* FIPS_MODULE */
|
|
|
|
int openssl_get_fork_id(void)
|
|
{
|
|
return getpid();
|
|
}
|
|
#endif
|