openssl/fuzz/ml-dsa.c
Andrew Dinh c0cf783178 Add an initial ML-DSA fuzzer
Add an initial version of an ML-DSA fuzzer.  Exercises various ML-DSA
appropriate APIs. Currently it is able to randomly:

1. Attempt to create raw public private keys of various valid and invalid sizes
2. Generate legitimate keys of various sizes using the keygen api
3. Perform sign/verify operations using real generated keys
4. Perform digest sign/verify operations using real generated keys
5. Do an export and import of a key using todata/fromdata
6. Do a comparison of two equal and unequal keys

Reviewed-by: Neil Horman <nhorman@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/26685)
2025-02-15 11:13:38 -05:00

680 lines
22 KiB
C

/*
* Copyright 2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* https://www.openssl.org/source/license.html
* or in the file LICENSE in the source distribution.
*/
/* Test ML-DSA operation. */
#include <string.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/byteorder.h>
#include "internal/nelem.h"
#include "fuzzer.h"
#include "crypto/ml_dsa.h"
/**
* @brief Consumes an 8-bit unsigned integer from a buffer.
*
* This function extracts an 8-bit unsigned integer from the provided buffer,
* updates the buffer pointer, and adjusts the remaining length.
*
* @param buf Pointer to the input buffer.
* @param len Pointer to the size of the remaining buffer; updated after consumption.
* @param val Pointer to store the extracted 8-bit value.
*
* @return Pointer to the updated buffer position after reading the value,
* or NULL if the buffer does not contain enough data.
*/
static uint8_t *consume_uint8_t(const uint8_t *buf, size_t *len, uint8_t *val)
{
if (*len < sizeof(uint8_t))
return NULL;
*val = *buf;
*len -= sizeof(uint8_t);
return (uint8_t *)buf + 1;
}
/**
* @brief Consumes a size_t from a buffer.
*
* This function extracts a size_t from the provided buffer, updates the buffer
* pointer, and adjusts the remaining length.
*
* @param buf Pointer to the input buffer.
* @param len Pointer to the size of the remaining buffer; updated after consumption.
* @param val Pointer to store the extracted size_t value.
*
* @return Pointer to the updated buffer position after reading the value,
* or NULL if the buffer does not contain enough data.
*/
static uint8_t *consume_size_t(const uint8_t *buf, size_t *len, size_t *val)
{
if (*len < sizeof(size_t))
return NULL;
*val = *buf;
*len -= sizeof(size_t);
return (uint8_t *)buf + sizeof(size_t);
}
/**
* @brief Selects a key type and size from a buffer.
*
* This function reads a key size value from the buffer, determines the
* corresponding key type and length, and updates the buffer pointer
* accordingly. If `only_valid` is set, it restricts selection to valid key
* sizes; otherwise, it includes some invalid sizes for testing.
*
* @param buf Pointer to the buffer pointer; updated after reading.
* @param len Pointer to the remaining buffer size; updated accordingly.
* @param keytype Pointer to store the selected key type string.
* @param keylen Pointer to store the selected key length.
* @param only_valid Flag to restrict selection to valid key sizes.
*
* @return 1 if a key type is successfully selected, 0 on failure.
*/
static int select_keytype_and_size(uint8_t **buf, size_t *len,
char **keytype, size_t *keylen,
int only_valid)
{
uint16_t keysize;
uint16_t modulus = 6;
/*
* Note: We don't really care about endianness here, we just want a random
* 16 bit value
*/
*buf = (uint8_t *)OPENSSL_load_u16_le(&keysize, *buf);
*len -= sizeof(uint16_t);
if (*buf == NULL)
return 0;
/*
* If `only_valid` is set, select only ML-DSA-44, ML-DSA-65, and ML-DSA-87.
* Otherwise, include some invalid sizes to trigger error paths.
*/
if (only_valid)
modulus = 3;
/*
* Note, keylens for valid values (cases 0-2) are taken based on input
* values from our unit tests
*/
switch (keysize % modulus) {
case 0:
*keytype = "ML-DSA-44";
*keylen = ML_DSA_44_PUB_LEN;
break;
case 1:
*keytype = "ML-DSA-65";
*keylen = ML_DSA_65_PUB_LEN;
break;
case 2:
*keytype = "ML-DSA-87";
*keylen = ML_DSA_87_PUB_LEN;
break;
case 3:
/* select invalid alg */
*keytype = "ML-DSA-33";
*keylen = 33;
break;
case 4:
/* Select valid alg, but bogus size */
*keytype = "ML-DSA-87";
*buf = (uint8_t *)OPENSSL_load_u16_le(&keysize, *buf);
*len -= sizeof(uint16_t);
*keylen = (size_t)keysize;
*keylen %= ML_DSA_87_PUB_LEN; /* size to our key buffer */
break;
default:
*keytype = NULL;
*keylen = 0;
break;
}
return 1;
}
/**
* @brief Creates an ML-DSA raw key from a buffer.
*
* This function selects a key type and size from the buffer, generates a random
* key of the appropriate length, and creates either a public or private ML-DSA
* key using OpenSSL's EVP_PKEY interface.
*
* @param buf Pointer to the buffer pointer; updated after reading.
* @param len Pointer to the remaining buffer size; updated accordingly.
* @param key1 Pointer to store the generated EVP_PKEY key (public or private).
* @param key2 Unused parameter (reserved for future use).
*
* @note The generated key is allocated using OpenSSL's EVP_PKEY functions
* and should be freed appropriately using `EVP_PKEY_free()`.
*/
static void create_ml_dsa_raw_key(uint8_t **buf, size_t *len,
void **key1, void **key2)
{
EVP_PKEY *pubkey;
char *keytype = NULL;
size_t keylen = 0;
/* MAX_ML_DSA_PRIV_LEN is longer of that and ML_DSA_87_PUB_LEN */
uint8_t key[MAX_ML_DSA_PRIV_LEN];
int pub = 0;
if (!select_keytype_and_size(buf, len, &keytype, &keylen, 0))
return;
/*
* Select public or private key creation based on the low order bit of the
* next buffer value.
* Note that keylen as returned from select_keytype_and_size is a public key
* length, so make the adjustment to private key lengths here.
*/
if ((*buf)[0] & 0x1) {
pub = 1;
} else {
switch (keylen) {
case (ML_DSA_44_PUB_LEN):
keylen = ML_DSA_44_PRIV_LEN;
break;
case (ML_DSA_65_PUB_LEN):
keylen = ML_DSA_65_PRIV_LEN;
break;
case (ML_DSA_87_PUB_LEN):
keylen = ML_DSA_87_PRIV_LEN;
break;
default:
return;
}
}
/*
* libfuzzer provides by default up to 4096 bit input buffers, but it's
* typically much less (between 1 and 100 bytes) so use RAND_bytes here
* instead
*/
if (!RAND_bytes(key, keylen))
return;
/*
* Try to generate either a raw public or private key using random data
* Because the input is completely random, it's effectively certain this
* operation will fail, but it will still exercise the code paths below,
* which is what we want the fuzzer to do
*/
if (pub == 1)
pubkey = EVP_PKEY_new_raw_public_key_ex(NULL, keytype, NULL, key, keylen);
else
pubkey = EVP_PKEY_new_raw_private_key_ex(NULL, keytype, NULL, key, keylen);
*key1 = pubkey;
return;
}
static int keygen_ml_dsa_real_key_helper(uint8_t **buf, size_t *len,
EVP_PKEY **key)
{
char *keytype = NULL;
size_t keylen = 0;
EVP_PKEY_CTX *ctx = NULL;
int ret = 0;
/*
* Only generate valid key types and lengths. Note, no adjustment is made to
* keylen here, as the provider is responsible for selecting the keys and
* sizes for us during the EVP_PKEY_keygen call
*/
if (!select_keytype_and_size(buf, len, &keytype, &keylen, 1))
goto err;
ctx = EVP_PKEY_CTX_new_from_name(NULL, keytype, NULL);
if (!ctx) {
fprintf(stderr, "Failed to generate ctx\n");
goto err;
}
if (!EVP_PKEY_keygen_init(ctx)) {
fprintf(stderr, "Failed to init keygen ctx\n");
goto err;
}
*key = EVP_PKEY_new();
if (*key == NULL)
goto err;
if (!EVP_PKEY_generate(ctx, key)) {
fprintf(stderr, "Failed to generate new real key\n");
goto err;
}
ret = 1;
err:
EVP_PKEY_CTX_free(ctx);
return ret;
}
/**
* @brief Generates a valid ML-DSA key using OpenSSL.
*
* This function selects a valid ML-DSA key type and size from the buffer,
* initializes an OpenSSL EVP_PKEY context, and generates a cryptographic key
* accordingly.
*
* @param buf Pointer to the buffer pointer; updated after reading.
* @param len Pointer to the remaining buffer size; updated accordingly.
* @param key1 Pointer to store the first generated EVP_PKEY key.
* @param key2 Pointer to store the second generated EVP_PKEY key.
*
* @note The generated key is allocated using OpenSSL's EVP_PKEY functions
* and should be freed using `EVP_PKEY_free()`.
*/
static void keygen_ml_dsa_real_key(uint8_t **buf, size_t *len,
void **key1, void **key2)
{
if (!keygen_ml_dsa_real_key_helper(buf, len, (EVP_PKEY **)key1)
|| !keygen_ml_dsa_real_key_helper(buf, len, (EVP_PKEY **)key2))
fprintf(stderr, "Unable to generate valid keys");
}
/**
* @brief Performs key sign and verify using an EVP_PKEY.
*
* This function generates a random key, signs random data using the provided
* public key, then verifies it. It makes use of OpenSSL's EVP_PKEY API for
* encryption and decryption.
*
* @param[out] buf Unused output buffer (reserved for future use).
* @param[out] len Unused length parameter (reserved for future use).
* @param[in] key1 Pointer to an EVP_PKEY structure used for key operations.
* @param[in] in2 Unused input parameter (reserved for future use).
* @param[out] out1 Unused output parameter (reserved for future use).
* @param[out] out2 Unused output parameter (reserved for future use).
*/
static void ml_dsa_sign_verify(uint8_t **buf, size_t *len, void *key1,
void *in2, void **out1, void **out2)
{
EVP_PKEY *key = (EVP_PKEY *)key1;
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_from_pkey(NULL, key, NULL);
EVP_SIGNATURE *sig_alg = NULL;
unsigned char *sig = NULL;
size_t sig_len = 0, tbslen;
unsigned char *tbs = NULL;
/* Ownership of alg is retained by the pkey object */
const char *alg = EVP_PKEY_get0_type_name(key);
const OSSL_PARAM params[] = {
OSSL_PARAM_octet_string("context-string",
(unsigned char *)"A context string", 16),
OSSL_PARAM_END
};
if (!consume_size_t(*buf, len, &tbslen)) {
fprintf(stderr, "Failed to set tbslen");
goto err;
}
/* Keep tbslen within a reasonable value we can malloc */
tbslen = (tbslen % 2048) + 1;
if ((tbs = OPENSSL_malloc(tbslen)) == NULL
|| ctx == NULL || alg == NULL
|| !RAND_bytes_ex(NULL, tbs, tbslen, 0)) {
fprintf(stderr, "Failed basic initialization\n");
goto err;
}
/*
* Because ML-DSA is fundamentally a one-shot algorithm like "pure" Ed25519
* and Ed448, we don't have any immediate plans to implement intermediate
* sign/verify functions. Therefore, we only test the one-shot functions.
*/
if ((sig_alg = EVP_SIGNATURE_fetch(NULL, alg, NULL)) == NULL
|| EVP_PKEY_sign_message_init(ctx, sig_alg, params) <= 0
|| EVP_PKEY_sign(ctx, NULL, &sig_len, tbs, tbslen) <= 0
|| (sig = OPENSSL_zalloc(sig_len)) == NULL
|| EVP_PKEY_sign(ctx, sig, &sig_len, tbs, tbslen) <= 0) {
fprintf(stderr, "Failed to sign message\n");
goto err;
}
/* Verify signature */
EVP_PKEY_CTX_free(ctx);
ctx = NULL;
if ((ctx = EVP_PKEY_CTX_new_from_pkey(NULL, key, NULL)) == NULL
|| EVP_PKEY_verify_message_init(ctx, sig_alg, params) <= 0
|| EVP_PKEY_verify(ctx, sig, sig_len, tbs, tbslen) <= 0) {
fprintf(stderr, "Failed to verify message\n");
goto err;
}
err:
OPENSSL_free(tbs);
EVP_PKEY_CTX_free(ctx);
EVP_SIGNATURE_free(sig_alg);
OPENSSL_free(sig);
return;
}
/**
* @brief Performs key sign and verify using an EVP_PKEY.
*
* This function generates a random key, signs random data using the provided
* public key, then verifies it. It makes use of OpenSSL's EVP_PKEY API for
* encryption and decryption.
*
* @param[out] buf Unused output buffer (reserved for future use).
* @param[out] len Unused length parameter (reserved for future use).
* @param[in] key1 Pointer to an EVP_PKEY structure used for key operations.
* @param[in] in2 Unused input parameter (reserved for future use).
* @param[out] out1 Unused output parameter (reserved for future use).
* @param[out] out2 Unused output parameter (reserved for future use).
*/
static void ml_dsa_digest_sign_verify(uint8_t **buf, size_t *len, void *key1,
void *in2, void **out1, void **out2)
{
EVP_PKEY *key = (EVP_PKEY *)key1;
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
EVP_SIGNATURE *sig_alg = NULL;
unsigned char *sig = NULL;
size_t sig_len, tbslen;
unsigned char *tbs = NULL;
const OSSL_PARAM params[] = {
OSSL_PARAM_octet_string("context-string",
(unsigned char *)"A context string", 16),
OSSL_PARAM_END
};
if (!consume_size_t(*buf, len, &tbslen)) {
fprintf(stderr, "Failed to set tbslen");
goto err;
}
/* Keep tbslen within a reasonable value we can malloc */
tbslen = (tbslen % 2048) + 1;
if ((tbs = OPENSSL_malloc(tbslen)) == NULL
|| ctx == NULL
|| !RAND_bytes_ex(NULL, tbs, tbslen, 0)) {
fprintf(stderr, "Failed basic initialization\n");
goto err;
}
/*
* Because ML-DSA is fundamentally a one-shot algorithm like "pure" Ed25519
* and Ed448, we don't have any immediate plans to implement intermediate
* sign/verify functions. Therefore, we only test the one-shot functions.
*/
if (!EVP_DigestSignInit_ex(ctx, NULL, NULL, NULL, "?fips=true", key, params)
|| EVP_DigestSign(ctx, NULL, &sig_len, tbs, tbslen) <= 0
|| (sig = OPENSSL_malloc(sig_len)) == NULL
|| EVP_DigestSign(ctx, sig, &sig_len, tbs, tbslen) <= 0) {
fprintf(stderr, "Failed to sign digest with EVP_DigestSign\n");
goto err;
}
/* Verify signature */
EVP_MD_CTX_free(ctx);
ctx = NULL;
if ((ctx = EVP_MD_CTX_new()) == NULL
|| EVP_DigestVerifyInit_ex(ctx, NULL, NULL, NULL, "?fips=true", key,
params) <= 0
|| EVP_DigestVerify(ctx, sig, sig_len, tbs, tbslen) <= 0) {
fprintf(stderr, "Failed to verify digest with EVP_DigestVerify\n");
goto err;
}
err:
OPENSSL_free(tbs);
EVP_MD_CTX_free(ctx);
EVP_SIGNATURE_free(sig_alg);
OPENSSL_free(sig);
return;
}
/**
* @brief Exports and imports an ML-DSA key.
*
* This function extracts key material from the given key (`key1`), exports it
* as parameters, and then attempts to reconstruct a new key from those
* parameters. It uses OpenSSL's `EVP_PKEY_todata()` and `EVP_PKEY_fromdata()`
* functions for this process.
*
* @param[out] buf Unused output buffer (reserved for future use).
* @param[out] len Unused output length (reserved for future use).
* @param[in] key1 The key to be exported and imported.
* @param[in] key2 Unused input key (reserved for future use).
* @param[out] out1 Unused output parameter (reserved for future use).
* @param[out] out2 Unused output parameter (reserved for future use).
*
* @note If any step in the export-import process fails, the function
* logs an error and cleans up allocated resources.
*/
static void ml_dsa_export_import(uint8_t **buf, size_t *len, void *key1,
void *key2, void **out1, void **out2)
{
EVP_PKEY *alice = (EVP_PKEY *)key1;
EVP_PKEY *new_key = NULL;
EVP_PKEY_CTX *ctx = NULL;
OSSL_PARAM *params = NULL;
if (!EVP_PKEY_todata(alice, EVP_PKEY_KEYPAIR, &params)) {
fprintf(stderr, "Failed todata\n");
goto err;
}
ctx = EVP_PKEY_CTX_new_from_pkey(NULL, alice, NULL);
if (ctx == NULL) {
fprintf(stderr, "Failed new ctx\n");
goto err;
}
if (!EVP_PKEY_fromdata(ctx, &new_key, EVP_PKEY_KEYPAIR, params)) {
fprintf(stderr, "Failed fromdata\n");
goto err;
}
err:
EVP_PKEY_CTX_free(ctx);
EVP_PKEY_free(new_key);
OSSL_PARAM_free(params);
}
/**
* @brief Compares two cryptographic keys and performs equality checks.
*
* This function takes in two cryptographic keys, casts them to `EVP_PKEY`
* structures, and checks their equality using `EVP_PKEY_eq()`. The purpose of
* `buf`, `len`, `out1`, and `out2` parameters is not clear from the function's
* current implementation.
*
* @param buf Unused parameter (purpose unclear).
* @param len Unused parameter (purpose unclear).
* @param key1 First key, expected to be an `EVP_PKEY *`.
* @param key2 Second key, expected to be an `EVP_PKEY *`.
* @param out1 Unused parameter (purpose unclear).
* @param out2 Unused parameter (purpose unclear).
*/
static void ml_dsa_compare(uint8_t **buf, size_t *len, void *key1,
void *key2, void **out1, void **out2)
{
EVP_PKEY *alice = (EVP_PKEY *)key1;
EVP_PKEY *bob = (EVP_PKEY *)key2;
EVP_PKEY_eq(alice, alice);
EVP_PKEY_eq(alice, bob);
}
/**
* @brief Frees allocated ML-DSA keys.
*
* This function releases memory associated with up to four EVP_PKEY objects by
* calling `EVP_PKEY_free()` on each provided key.
*
* @param key1 Pointer to the first key to be freed.
* @param key2 Pointer to the second key to be freed.
* @param key3 Pointer to the third key to be freed.
* @param key4 Pointer to the fourth key to be freed.
*
* @note This function assumes that each key is either a valid EVP_PKEY
* object or NULL. Passing NULL is safe and has no effect.
*/
static void cleanup_ml_dsa_keys(void *key1, void *key2,
void *key3, void *key4)
{
EVP_PKEY_free((EVP_PKEY *)key1);
EVP_PKEY_free((EVP_PKEY *)key2);
EVP_PKEY_free((EVP_PKEY *)key3);
EVP_PKEY_free((EVP_PKEY *)key4);
}
/**
* @brief Represents an operation table entry for cryptographic operations.
*
* This structure defines a table entry containing function pointers for setting
* up, executing, and cleaning up cryptographic operations, along with
* associated metadata such as a name and description.
*
* @struct op_table_entry
*/
struct op_table_entry {
/** Name of the operation. */
char *name;
/** Description of the operation. */
char *desc;
/**
* @brief Function pointer for setting up the operation.
*
* @param buf Pointer to the buffer pointer; may be updated.
* @param len Pointer to the remaining buffer size; may be updated.
* @param out1 Pointer to store the first output of the setup function.
* @param out2 Pointer to store the second output of the setup function.
*/
void (*setup)(uint8_t **buf, size_t *len, void **out1, void **out2);
/**
* @brief Function pointer for executing the operation.
*
* @param buf Pointer to the buffer pointer; may be updated.
* @param len Pointer to the remaining buffer size; may be updated.
* @param in1 First input parameter for the operation.
* @param in2 Second input parameter for the operation.
* @param out1 Pointer to store the first output of the operation.
* @param out2 Pointer to store the second output of the operation.
*/
void (*doit)(uint8_t **buf, size_t *len, void *in1, void *in2,
void **out1, void **out2);
/**
* @brief Function pointer for cleaning up after the operation.
*
* @param in1 First input parameter to be cleaned up.
* @param in2 Second input parameter to be cleaned up.
* @param out1 First output parameter to be cleaned up.
* @param out2 Second output parameter to be cleaned up.
*/
void (*cleanup)(void *in1, void *in2, void *out1, void *out2);
};
static struct op_table_entry ops[] = {
{
"Generate ML-DSA raw key",
"Try generate a raw keypair using random data. Usually fails",
create_ml_dsa_raw_key,
NULL,
cleanup_ml_dsa_keys
}, {
"Generate ML-DSA keypair, using EVP_PKEY_keygen",
"Generates a real ML-DSA keypair, should always work",
keygen_ml_dsa_real_key,
NULL,
cleanup_ml_dsa_keys
}, {
"Do a sign/verify operation on a key",
"Generate key, sign random data, verify it, should work",
keygen_ml_dsa_real_key,
ml_dsa_sign_verify,
cleanup_ml_dsa_keys
}, {
"Do a digest sign/verify operation on a key",
"Generate key, digest sign random data, verify it, should work",
keygen_ml_dsa_real_key,
ml_dsa_digest_sign_verify,
cleanup_ml_dsa_keys
}, {
"Do an export/import of key data",
"Exercise EVP_PKEY_todata/fromdata",
keygen_ml_dsa_real_key,
ml_dsa_export_import,
cleanup_ml_dsa_keys
}, {
"Compare keys for equality",
"Compare key1/key1 and key1/key2 for equality",
keygen_ml_dsa_real_key,
ml_dsa_compare,
cleanup_ml_dsa_keys
}
};
int FuzzerInitialize(int *argc, char ***argv)
{
return 0;
}
/**
* @brief Processes a fuzzing input by selecting and executing an operation.
*
* This function interprets the first byte of the input buffer to determine an
* operation to execute. It then follows a setup, execution, and cleanup
* sequence based on the selected operation.
*
* @param buf Pointer to the input buffer.
* @param len Length of the input buffer.
*
* @return 0 on successful execution, -1 if the input is too short.
*
* @note The function requires at least 32 bytes in the buffer to proceed.
* It utilizes the `ops` operation table to dynamically determine and
* execute the selected operation.
*/
int FuzzerTestOneInput(const uint8_t *buf, size_t len)
{
uint8_t operation;
uint8_t *buffer_cursor;
void *in1 = NULL, *in2 = NULL;
void *out1 = NULL, *out2 = NULL;
if (len < 32)
return -1;
/* Get the first byte of the buffer to tell us what operation to perform */
buffer_cursor = consume_uint8_t(buf, &len, &operation);
if (buffer_cursor == NULL)
return -1;
/* Adjust for operational array size */
operation %= OSSL_NELEM(ops);
/* And run our setup/doit/cleanup sequence */
if (ops[operation].setup != NULL)
ops[operation].setup(&buffer_cursor, &len, &in1, &in2);
if (ops[operation].doit != NULL)
ops[operation].doit(&buffer_cursor, &len, in1, in2, &out1, &out2);
if (ops[operation].cleanup != NULL)
ops[operation].cleanup(in1, in2, out1, out2);
return 0;
}
void FuzzerCleanup(void)
{
OPENSSL_cleanup();
}