openssl/engines/e_dasync.c
Richard Levitte b646179229 Copyright year updates
Reviewed-by: Neil Horman <nhorman@openssl.org>
Release: yes
(cherry picked from commit 0ce7d1f355)

Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/24034)
2024-04-09 13:43:26 +02:00

1007 lines
33 KiB
C

/*
* Copyright 2015-2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* We need to use some engine deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED
/*
* SHA-1 low level APIs are deprecated for public use, but still ok for
* internal use. Note, that due to symbols not being exported, only the
* #defines and structures can be accessed, in this case SHA_CBLOCK and
* sizeof(SHA_CTX).
*/
#include "internal/deprecated.h"
#include <openssl/opensslconf.h>
#if defined(_WIN32)
# include <windows.h>
#endif
#include <stdio.h>
#include <string.h>
#include <openssl/engine.h>
#include <openssl/sha.h>
#include <openssl/aes.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>
#include <openssl/async.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/ssl.h>
#include <openssl/modes.h>
#if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
# undef ASYNC_POSIX
# define ASYNC_POSIX
# include <unistd.h>
#elif defined(_WIN32)
# undef ASYNC_WIN
# define ASYNC_WIN
#endif
#include "e_dasync_err.c"
/* Engine Id and Name */
static const char *engine_dasync_id = "dasync";
static const char *engine_dasync_name = "Dummy Async engine support";
/* Engine Lifetime functions */
static int dasync_destroy(ENGINE *e);
static int dasync_init(ENGINE *e);
static int dasync_finish(ENGINE *e);
void engine_load_dasync_int(void);
/* Set up digests. Just SHA1 for now */
static int dasync_digests(ENGINE *e, const EVP_MD **digest,
const int **nids, int nid);
static void dummy_pause_job(void);
/* SHA1 */
static int dasync_sha1_init(EVP_MD_CTX *ctx);
static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
size_t count);
static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md);
/*
* Holds the EVP_MD object for sha1 in this engine. Set up once only during
* engine bind and can then be reused many times.
*/
static EVP_MD *_hidden_sha1_md = NULL;
static const EVP_MD *dasync_sha1(void)
{
return _hidden_sha1_md;
}
static void destroy_digests(void)
{
EVP_MD_meth_free(_hidden_sha1_md);
_hidden_sha1_md = NULL;
}
static int dasync_digest_nids(const int **nids)
{
static int digest_nids[2] = { 0, 0 };
static int pos = 0;
static int init = 0;
if (!init) {
const EVP_MD *md;
if ((md = dasync_sha1()) != NULL)
digest_nids[pos++] = EVP_MD_get_type(md);
digest_nids[pos] = 0;
init = 1;
}
*nids = digest_nids;
return pos;
}
/* RSA */
static int dasync_pkey(ENGINE *e, EVP_PKEY_METHOD **pmeth,
const int **pnids, int nid);
static int dasync_rsa_init(EVP_PKEY_CTX *ctx);
static void dasync_rsa_cleanup(EVP_PKEY_CTX *ctx);
static int dasync_rsa_paramgen_init(EVP_PKEY_CTX *ctx);
static int dasync_rsa_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
static int dasync_rsa_keygen_init(EVP_PKEY_CTX *ctx);
static int dasync_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
static int dasync_rsa_encrypt_init(EVP_PKEY_CTX *ctx);
static int dasync_rsa_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
size_t *outlen, const unsigned char *in,
size_t inlen);
static int dasync_rsa_decrypt_init(EVP_PKEY_CTX *ctx);
static int dasync_rsa_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
size_t *outlen, const unsigned char *in,
size_t inlen);
static int dasync_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
static int dasync_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
const char *value);
static EVP_PKEY_METHOD *dasync_rsa;
static const EVP_PKEY_METHOD *dasync_rsa_orig;
/* AES */
static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
void *ptr);
static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl);
static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx);
static int dasync_aes256_ctr_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
void *ptr);
static int dasync_aes256_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
static int dasync_aes256_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl);
static int dasync_aes256_ctr_cleanup(EVP_CIPHER_CTX *ctx);
static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
int arg, void *ptr);
static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *iv,
int enc);
static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
unsigned char *out,
const unsigned char *in,
size_t inl);
static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx);
struct dasync_pipeline_ctx {
void *inner_cipher_data;
unsigned int numpipes;
unsigned char **inbufs;
unsigned char **outbufs;
size_t *lens;
unsigned char tlsaad[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN];
unsigned int aadctr;
};
/*
* Holds the EVP_CIPHER object for aes_128_cbc in this engine. Set up once only
* during engine bind and can then be reused many times.
*/
static EVP_CIPHER *_hidden_aes_128_cbc = NULL;
static const EVP_CIPHER *dasync_aes_128_cbc(void)
{
return _hidden_aes_128_cbc;
}
static EVP_CIPHER *_hidden_aes_256_ctr = NULL;
static const EVP_CIPHER *dasync_aes_256_ctr(void)
{
return _hidden_aes_256_ctr;
}
/*
* Holds the EVP_CIPHER object for aes_128_cbc_hmac_sha1 in this engine. Set up
* once only during engine bind and can then be reused many times.
*
* This 'stitched' cipher depends on the EVP_aes_128_cbc_hmac_sha1() cipher,
* which is implemented only if the AES-NI instruction set extension is available
* (see OPENSSL_IA32CAP(3)). If that's not the case, then this cipher will not
* be available either.
*
* Note: Since it is a legacy mac-then-encrypt cipher, modern TLS peers (which
* negotiate the encrypt-then-mac extension) won't negotiate it anyway.
*/
static EVP_CIPHER *_hidden_aes_128_cbc_hmac_sha1 = NULL;
static const EVP_CIPHER *dasync_aes_128_cbc_hmac_sha1(void)
{
return _hidden_aes_128_cbc_hmac_sha1;
}
static void destroy_ciphers(void)
{
EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
EVP_CIPHER_meth_free(_hidden_aes_256_ctr);
EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
_hidden_aes_128_cbc = NULL;
_hidden_aes_256_ctr = NULL;
_hidden_aes_128_cbc_hmac_sha1 = NULL;
}
static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid);
static int dasync_cipher_nids[] = {
NID_aes_128_cbc,
NID_aes_256_ctr,
NID_aes_128_cbc_hmac_sha1,
0
};
static int bind_dasync(ENGINE *e)
{
/* Setup RSA */
if ((dasync_rsa_orig = EVP_PKEY_meth_find(EVP_PKEY_RSA)) == NULL
|| (dasync_rsa = EVP_PKEY_meth_new(EVP_PKEY_RSA,
EVP_PKEY_FLAG_AUTOARGLEN)) == NULL)
return 0;
EVP_PKEY_meth_set_init(dasync_rsa, dasync_rsa_init);
EVP_PKEY_meth_set_cleanup(dasync_rsa, dasync_rsa_cleanup);
EVP_PKEY_meth_set_paramgen(dasync_rsa, dasync_rsa_paramgen_init,
dasync_rsa_paramgen);
EVP_PKEY_meth_set_keygen(dasync_rsa, dasync_rsa_keygen_init,
dasync_rsa_keygen);
EVP_PKEY_meth_set_encrypt(dasync_rsa, dasync_rsa_encrypt_init,
dasync_rsa_encrypt);
EVP_PKEY_meth_set_decrypt(dasync_rsa, dasync_rsa_decrypt_init,
dasync_rsa_decrypt);
EVP_PKEY_meth_set_ctrl(dasync_rsa, dasync_rsa_ctrl,
dasync_rsa_ctrl_str);
/* Ensure the dasync error handling is set up */
ERR_load_DASYNC_strings();
if (!ENGINE_set_id(e, engine_dasync_id)
|| !ENGINE_set_name(e, engine_dasync_name)
|| !ENGINE_set_pkey_meths(e, dasync_pkey)
|| !ENGINE_set_digests(e, dasync_digests)
|| !ENGINE_set_ciphers(e, dasync_ciphers)
|| !ENGINE_set_destroy_function(e, dasync_destroy)
|| !ENGINE_set_init_function(e, dasync_init)
|| !ENGINE_set_finish_function(e, dasync_finish)) {
DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
return 0;
}
/*
* Set up the EVP_CIPHER and EVP_MD objects for the ciphers/digests
* supplied by this engine
*/
_hidden_sha1_md = EVP_MD_meth_new(NID_sha1, NID_sha1WithRSAEncryption);
if (_hidden_sha1_md == NULL
|| !EVP_MD_meth_set_result_size(_hidden_sha1_md, SHA_DIGEST_LENGTH)
|| !EVP_MD_meth_set_input_blocksize(_hidden_sha1_md, SHA_CBLOCK)
|| !EVP_MD_meth_set_app_datasize(_hidden_sha1_md,
sizeof(EVP_MD *) + sizeof(SHA_CTX))
|| !EVP_MD_meth_set_flags(_hidden_sha1_md, EVP_MD_FLAG_DIGALGID_ABSENT)
|| !EVP_MD_meth_set_init(_hidden_sha1_md, dasync_sha1_init)
|| !EVP_MD_meth_set_update(_hidden_sha1_md, dasync_sha1_update)
|| !EVP_MD_meth_set_final(_hidden_sha1_md, dasync_sha1_final)) {
EVP_MD_meth_free(_hidden_sha1_md);
_hidden_sha1_md = NULL;
}
_hidden_aes_128_cbc = EVP_CIPHER_meth_new(NID_aes_128_cbc,
16 /* block size */,
16 /* key len */);
if (_hidden_aes_128_cbc == NULL
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc,16)
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc,
EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_CBC_MODE
| EVP_CIPH_FLAG_PIPELINE
| EVP_CIPH_CUSTOM_COPY)
|| !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc,
dasync_aes128_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc,
dasync_aes128_cbc_cipher)
|| !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc,
dasync_aes128_cbc_cleanup)
|| !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc,
dasync_aes128_cbc_ctrl)
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc,
sizeof(struct dasync_pipeline_ctx))) {
EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
_hidden_aes_128_cbc = NULL;
}
_hidden_aes_256_ctr = EVP_CIPHER_meth_new(NID_aes_256_ctr,
1 /* block size */,
32 /* key len */);
if (_hidden_aes_256_ctr == NULL
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_256_ctr,16)
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_256_ctr,
EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_CTR_MODE
| EVP_CIPH_FLAG_PIPELINE
| EVP_CIPH_CUSTOM_COPY)
|| !EVP_CIPHER_meth_set_init(_hidden_aes_256_ctr,
dasync_aes256_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_256_ctr,
dasync_aes256_ctr_cipher)
|| !EVP_CIPHER_meth_set_cleanup(_hidden_aes_256_ctr,
dasync_aes256_ctr_cleanup)
|| !EVP_CIPHER_meth_set_ctrl(_hidden_aes_256_ctr,
dasync_aes256_ctr_ctrl)
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_256_ctr,
sizeof(struct dasync_pipeline_ctx))) {
EVP_CIPHER_meth_free(_hidden_aes_256_ctr);
_hidden_aes_256_ctr = NULL;
}
_hidden_aes_128_cbc_hmac_sha1 = EVP_CIPHER_meth_new(
NID_aes_128_cbc_hmac_sha1,
16 /* block size */,
16 /* key len */);
if (_hidden_aes_128_cbc_hmac_sha1 == NULL
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc_hmac_sha1,16)
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc_hmac_sha1,
EVP_CIPH_CBC_MODE
| EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_FLAG_AEAD_CIPHER
| EVP_CIPH_FLAG_PIPELINE
| EVP_CIPH_CUSTOM_COPY)
|| !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc_hmac_sha1,
dasync_aes128_cbc_hmac_sha1_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc_hmac_sha1,
dasync_aes128_cbc_hmac_sha1_cipher)
|| !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc_hmac_sha1,
dasync_aes128_cbc_hmac_sha1_cleanup)
|| !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc_hmac_sha1,
dasync_aes128_cbc_hmac_sha1_ctrl)
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc_hmac_sha1,
sizeof(struct dasync_pipeline_ctx))) {
EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
_hidden_aes_128_cbc_hmac_sha1 = NULL;
}
return 1;
}
static void destroy_pkey(void)
{
/*
* We don't actually need to free the dasync_rsa method since this is
* automatically freed for us by libcrypto.
*/
dasync_rsa_orig = NULL;
dasync_rsa = NULL;
}
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
static int bind_helper(ENGINE *e, const char *id)
{
if (id && (strcmp(id, engine_dasync_id) != 0))
return 0;
if (!bind_dasync(e))
return 0;
return 1;
}
IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
# endif
static ENGINE *engine_dasync(void)
{
ENGINE *ret = ENGINE_new();
if (!ret)
return NULL;
if (!bind_dasync(ret)) {
ENGINE_free(ret);
return NULL;
}
return ret;
}
void engine_load_dasync_int(void)
{
ENGINE *toadd = engine_dasync();
if (!toadd)
return;
ERR_set_mark();
ENGINE_add(toadd);
/*
* If the "add" worked, it gets a structural reference. So either way, we
* release our just-created reference.
*/
ENGINE_free(toadd);
/*
* If the "add" didn't work, it was probably a conflict because it was
* already added (eg. someone calling ENGINE_load_blah then calling
* ENGINE_load_builtin_engines() perhaps).
*/
ERR_pop_to_mark();
}
static int dasync_init(ENGINE *e)
{
return 1;
}
static int dasync_finish(ENGINE *e)
{
return 1;
}
static int dasync_destroy(ENGINE *e)
{
destroy_digests();
destroy_ciphers();
destroy_pkey();
ERR_unload_DASYNC_strings();
return 1;
}
static int dasync_pkey(ENGINE *e, EVP_PKEY_METHOD **pmeth,
const int **pnids, int nid)
{
static const int rnid = EVP_PKEY_RSA;
if (pmeth == NULL) {
*pnids = &rnid;
return 1;
}
if (nid == EVP_PKEY_RSA) {
*pmeth = dasync_rsa;
return 1;
}
*pmeth = NULL;
return 0;
}
static int dasync_digests(ENGINE *e, const EVP_MD **digest,
const int **nids, int nid)
{
int ok = 1;
if (!digest) {
/* We are returning a list of supported nids */
return dasync_digest_nids(nids);
}
/* We are being asked for a specific digest */
switch (nid) {
case NID_sha1:
*digest = dasync_sha1();
break;
default:
ok = 0;
*digest = NULL;
break;
}
return ok;
}
static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid)
{
int ok = 1;
if (cipher == NULL) {
/* We are returning a list of supported nids */
*nids = dasync_cipher_nids;
return (sizeof(dasync_cipher_nids) -
1) / sizeof(dasync_cipher_nids[0]);
}
/* We are being asked for a specific cipher */
switch (nid) {
case NID_aes_128_cbc:
*cipher = dasync_aes_128_cbc();
break;
case NID_aes_256_ctr:
*cipher = dasync_aes_256_ctr();
break;
case NID_aes_128_cbc_hmac_sha1:
*cipher = dasync_aes_128_cbc_hmac_sha1();
break;
default:
ok = 0;
*cipher = NULL;
break;
}
return ok;
}
static void wait_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
OSSL_ASYNC_FD readfd, void *pvwritefd)
{
OSSL_ASYNC_FD *pwritefd = (OSSL_ASYNC_FD *)pvwritefd;
#if defined(ASYNC_WIN)
CloseHandle(readfd);
CloseHandle(*pwritefd);
#elif defined(ASYNC_POSIX)
close(readfd);
close(*pwritefd);
#endif
OPENSSL_free(pwritefd);
}
#define DUMMY_CHAR 'X'
static void dummy_pause_job(void) {
ASYNC_JOB *job;
ASYNC_WAIT_CTX *waitctx;
ASYNC_callback_fn callback;
void *callback_arg;
OSSL_ASYNC_FD pipefds[2] = {0, 0};
OSSL_ASYNC_FD *writefd;
#if defined(ASYNC_WIN)
DWORD numwritten, numread;
char buf = DUMMY_CHAR;
#elif defined(ASYNC_POSIX)
char buf = DUMMY_CHAR;
#endif
if ((job = ASYNC_get_current_job()) == NULL)
return;
waitctx = ASYNC_get_wait_ctx(job);
if (ASYNC_WAIT_CTX_get_callback(waitctx, &callback, &callback_arg) && callback != NULL) {
/*
* In the Dummy async engine we are cheating. We call the callback that the job
* is complete before the call to ASYNC_pause_job(). A real
* async engine would only call the callback when the job was actually complete
*/
(*callback)(callback_arg);
ASYNC_pause_job();
return;
}
if (ASYNC_WAIT_CTX_get_fd(waitctx, engine_dasync_id, &pipefds[0],
(void **)&writefd)) {
pipefds[1] = *writefd;
} else {
writefd = OPENSSL_malloc(sizeof(*writefd));
if (writefd == NULL)
return;
#if defined(ASYNC_WIN)
if (CreatePipe(&pipefds[0], &pipefds[1], NULL, 256) == 0) {
OPENSSL_free(writefd);
return;
}
#elif defined(ASYNC_POSIX)
if (pipe(pipefds) != 0) {
OPENSSL_free(writefd);
return;
}
#endif
*writefd = pipefds[1];
if (!ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_dasync_id, pipefds[0],
writefd, wait_cleanup)) {
wait_cleanup(waitctx, engine_dasync_id, pipefds[0], writefd);
return;
}
}
/*
* In the Dummy async engine we are cheating. We signal that the job
* is complete by waking it before the call to ASYNC_pause_job(). A real
* async engine would only wake when the job was actually complete
*/
#if defined(ASYNC_WIN)
WriteFile(pipefds[1], &buf, 1, &numwritten, NULL);
#elif defined(ASYNC_POSIX)
if (write(pipefds[1], &buf, 1) < 0)
return;
#endif
/* Ignore errors - we carry on anyway */
ASYNC_pause_job();
/* Clear the wake signal */
#if defined(ASYNC_WIN)
ReadFile(pipefds[0], &buf, 1, &numread, NULL);
#elif defined(ASYNC_POSIX)
if (read(pipefds[0], &buf, 1) < 0)
return;
#endif
}
/*
* SHA1 implementation. At the moment we just defer to the standard
* implementation
*/
static int dasync_sha1_init(EVP_MD_CTX *ctx)
{
dummy_pause_job();
return EVP_MD_meth_get_init(EVP_sha1())(ctx);
}
static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
size_t count)
{
dummy_pause_job();
return EVP_MD_meth_get_update(EVP_sha1())(ctx, data, count);
}
static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md)
{
dummy_pause_job();
return EVP_MD_meth_get_final(EVP_sha1())(ctx, md);
}
/* Cipher helper functions */
static int dasync_cipher_ctrl_helper(EVP_CIPHER_CTX *ctx, int type, int arg,
void *ptr, int aeadcapable,
const EVP_CIPHER *ciph)
{
int ret;
struct dasync_pipeline_ctx *pipe_ctx =
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
if (pipe_ctx == NULL)
return 0;
switch (type) {
case EVP_CTRL_COPY:
{
size_t sz = EVP_CIPHER_impl_ctx_size(ciph);
void *inner_cipher_data = OPENSSL_malloc(sz);
if (inner_cipher_data == NULL)
return -1;
memcpy(inner_cipher_data, pipe_ctx->inner_cipher_data, sz);
pipe_ctx->inner_cipher_data = inner_cipher_data;
}
break;
case EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS:
pipe_ctx->numpipes = arg;
pipe_ctx->outbufs = (unsigned char **)ptr;
break;
case EVP_CTRL_SET_PIPELINE_INPUT_BUFS:
pipe_ctx->numpipes = arg;
pipe_ctx->inbufs = (unsigned char **)ptr;
break;
case EVP_CTRL_SET_PIPELINE_INPUT_LENS:
pipe_ctx->numpipes = arg;
pipe_ctx->lens = (size_t *)ptr;
break;
case EVP_CTRL_AEAD_SET_MAC_KEY:
if (!aeadcapable)
return -1;
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
ret = EVP_CIPHER_meth_get_ctrl(EVP_aes_128_cbc_hmac_sha1())
(ctx, type, arg, ptr);
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
return ret;
case EVP_CTRL_AEAD_TLS1_AAD:
{
unsigned char *p = ptr;
unsigned int len;
if (!aeadcapable || arg != EVP_AEAD_TLS1_AAD_LEN)
return -1;
if (pipe_ctx->aadctr >= SSL_MAX_PIPELINES)
return -1;
memcpy(pipe_ctx->tlsaad[pipe_ctx->aadctr], ptr,
EVP_AEAD_TLS1_AAD_LEN);
pipe_ctx->aadctr++;
len = p[arg - 2] << 8 | p[arg - 1];
if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
if ((p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
if (len < AES_BLOCK_SIZE)
return 0;
len -= AES_BLOCK_SIZE;
}
return ((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE)
& -AES_BLOCK_SIZE) - len;
} else {
return SHA_DIGEST_LENGTH;
}
}
default:
return 0;
}
return 1;
}
static int dasync_cipher_init_key_helper(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *iv, int enc,
const EVP_CIPHER *cipher)
{
int ret;
struct dasync_pipeline_ctx *pipe_ctx =
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
if (pipe_ctx->inner_cipher_data == NULL
&& EVP_CIPHER_impl_ctx_size(cipher) != 0) {
pipe_ctx->inner_cipher_data = OPENSSL_zalloc(
EVP_CIPHER_impl_ctx_size(cipher));
if (pipe_ctx->inner_cipher_data == NULL)
return 0;
}
pipe_ctx->numpipes = 0;
pipe_ctx->aadctr = 0;
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
ret = EVP_CIPHER_meth_get_init(cipher)(ctx, key, iv, enc);
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
return ret;
}
static int dasync_cipher_helper(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl,
const EVP_CIPHER *cipher)
{
int ret = 1;
unsigned int i, pipes;
struct dasync_pipeline_ctx *pipe_ctx =
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
pipes = pipe_ctx->numpipes;
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
if (pipes == 0) {
if (pipe_ctx->aadctr != 0) {
if (pipe_ctx->aadctr != 1)
return -1;
EVP_CIPHER_meth_get_ctrl(cipher)
(ctx, EVP_CTRL_AEAD_TLS1_AAD,
EVP_AEAD_TLS1_AAD_LEN,
pipe_ctx->tlsaad[0]);
}
ret = EVP_CIPHER_meth_get_do_cipher(cipher)
(ctx, out, in, inl);
} else {
if (pipe_ctx->aadctr > 0 && pipe_ctx->aadctr != pipes)
return -1;
for (i = 0; i < pipes; i++) {
if (pipe_ctx->aadctr > 0) {
EVP_CIPHER_meth_get_ctrl(cipher)
(ctx, EVP_CTRL_AEAD_TLS1_AAD,
EVP_AEAD_TLS1_AAD_LEN,
pipe_ctx->tlsaad[i]);
}
ret = ret && EVP_CIPHER_meth_get_do_cipher(cipher)
(ctx, pipe_ctx->outbufs[i], pipe_ctx->inbufs[i],
pipe_ctx->lens[i]);
}
pipe_ctx->numpipes = 0;
}
pipe_ctx->aadctr = 0;
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
return ret;
}
static int dasync_cipher_cleanup_helper(EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *cipher)
{
struct dasync_pipeline_ctx *pipe_ctx =
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
OPENSSL_clear_free(pipe_ctx->inner_cipher_data,
EVP_CIPHER_impl_ctx_size(cipher));
return 1;
}
/*
* AES128 CBC Implementation
*/
static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
void *ptr)
{
return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 0, EVP_aes_128_cbc());
}
static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
return dasync_cipher_init_key_helper(ctx, key, iv, enc, EVP_aes_128_cbc());
}
static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc());
}
static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx)
{
return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc());
}
static int dasync_aes256_ctr_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
void *ptr)
{
return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 0, EVP_aes_256_ctr());
}
static int dasync_aes256_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
return dasync_cipher_init_key_helper(ctx, key, iv, enc, EVP_aes_256_ctr());
}
static int dasync_aes256_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_256_ctr());
}
static int dasync_aes256_ctr_cleanup(EVP_CIPHER_CTX *ctx)
{
return dasync_cipher_cleanup_helper(ctx, EVP_aes_256_ctr());
}
/*
* AES128 CBC HMAC SHA1 Implementation
*/
static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
int arg, void *ptr)
{
return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 1, EVP_aes_128_cbc_hmac_sha1());
}
static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *key,
const unsigned char *iv,
int enc)
{
/*
* We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
* see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
*/
return dasync_cipher_init_key_helper(ctx, key, iv, enc,
EVP_aes_128_cbc_hmac_sha1());
}
static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
unsigned char *out,
const unsigned char *in,
size_t inl)
{
return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc_hmac_sha1());
}
static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx)
{
/*
* We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
* see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
*/
return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc_hmac_sha1());
}
/*
* RSA implementation
*/
static int dasync_rsa_init(EVP_PKEY_CTX *ctx)
{
static int (*pinit)(EVP_PKEY_CTX *ctx);
if (pinit == NULL)
EVP_PKEY_meth_get_init(dasync_rsa_orig, &pinit);
return pinit(ctx);
}
static void dasync_rsa_cleanup(EVP_PKEY_CTX *ctx)
{
static void (*pcleanup)(EVP_PKEY_CTX *ctx);
if (pcleanup == NULL)
EVP_PKEY_meth_get_cleanup(dasync_rsa_orig, &pcleanup);
pcleanup(ctx);
}
static int dasync_rsa_paramgen_init(EVP_PKEY_CTX *ctx)
{
static int (*pparamgen_init)(EVP_PKEY_CTX *ctx);
if (pparamgen_init == NULL)
EVP_PKEY_meth_get_paramgen(dasync_rsa_orig, &pparamgen_init, NULL);
return pparamgen_init != NULL ? pparamgen_init(ctx) : 1;
}
static int dasync_rsa_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
{
static int (*pparamgen)(EVP_PKEY_CTX *c, EVP_PKEY *pkey);
if (pparamgen == NULL)
EVP_PKEY_meth_get_paramgen(dasync_rsa_orig, NULL, &pparamgen);
return pparamgen != NULL ? pparamgen(ctx, pkey) : 1;
}
static int dasync_rsa_keygen_init(EVP_PKEY_CTX *ctx)
{
static int (*pkeygen_init)(EVP_PKEY_CTX *ctx);
if (pkeygen_init == NULL)
EVP_PKEY_meth_get_keygen(dasync_rsa_orig, &pkeygen_init, NULL);
return pkeygen_init != NULL ? pkeygen_init(ctx) : 1;
}
static int dasync_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
{
static int (*pkeygen)(EVP_PKEY_CTX *c, EVP_PKEY *pkey);
if (pkeygen == NULL)
EVP_PKEY_meth_get_keygen(dasync_rsa_orig, NULL, &pkeygen);
return pkeygen(ctx, pkey);
}
static int dasync_rsa_encrypt_init(EVP_PKEY_CTX *ctx)
{
static int (*pencrypt_init)(EVP_PKEY_CTX *ctx);
if (pencrypt_init == NULL)
EVP_PKEY_meth_get_encrypt(dasync_rsa_orig, &pencrypt_init, NULL);
return pencrypt_init != NULL ? pencrypt_init(ctx) : 1;
}
static int dasync_rsa_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
size_t *outlen, const unsigned char *in,
size_t inlen)
{
static int (*pencryptfn)(EVP_PKEY_CTX *ctx, unsigned char *out,
size_t *outlen, const unsigned char *in,
size_t inlen);
if (pencryptfn == NULL)
EVP_PKEY_meth_get_encrypt(dasync_rsa_orig, NULL, &pencryptfn);
return pencryptfn(ctx, out, outlen, in, inlen);
}
static int dasync_rsa_decrypt_init(EVP_PKEY_CTX *ctx)
{
static int (*pdecrypt_init)(EVP_PKEY_CTX *ctx);
if (pdecrypt_init == NULL)
EVP_PKEY_meth_get_decrypt(dasync_rsa_orig, &pdecrypt_init, NULL);
return pdecrypt_init != NULL ? pdecrypt_init(ctx) : 1;
}
static int dasync_rsa_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
size_t *outlen, const unsigned char *in,
size_t inlen)
{
static int (*pdecrypt)(EVP_PKEY_CTX *ctx, unsigned char *out,
size_t *outlen, const unsigned char *in,
size_t inlen);
if (pdecrypt == NULL)
EVP_PKEY_meth_get_decrypt(dasync_rsa_orig, NULL, &pdecrypt);
return pdecrypt(ctx, out, outlen, in, inlen);
}
static int dasync_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
{
static int (*pctrl)(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
if (pctrl == NULL)
EVP_PKEY_meth_get_ctrl(dasync_rsa_orig, &pctrl, NULL);
return pctrl(ctx, type, p1, p2);
}
static int dasync_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
const char *value)
{
static int (*pctrl_str)(EVP_PKEY_CTX *ctx, const char *type,
const char *value);
if (pctrl_str == NULL)
EVP_PKEY_meth_get_ctrl(dasync_rsa_orig, NULL, &pctrl_str);
return pctrl_str(ctx, type, value);
}