#! /usr/bin/env perl # Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # March 2016 # # Initial support for Fujitsu SPARC64 X/X+ comprises minimally # required key setup and single-block procedures. $output = pop; open STDOUT,">$output"; { my ($inp,$out,$key,$rounds,$tmp,$mask) = map("%o$_",(0..5)); $code.=<<___; .text .globl aes_fx_encrypt .align 32 aes_fx_encrypt: and $inp, 7, $tmp ! is input aligned? alignaddr $inp, %g0, $inp ld [$key + 240], $rounds ldd [$key + 0], %f6 ldd [$key + 8], %f8 ldd [$inp + 0], %f0 ! load input brz,pt $tmp, .Lenc_inp_aligned ldd [$inp + 8], %f2 ldd [$inp + 16], %f4 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 .Lenc_inp_aligned: ldd [$key + 16], %f10 ldd [$key + 24], %f12 add $key, 32, $key fxor %f0, %f6, %f0 ! ^=round[0] fxor %f2, %f8, %f2 ldd [$key + 0], %f6 ldd [$key + 8], %f8 sub $rounds, 4, $rounds .Loop_enc: fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 ldd [$key + 16], %f10 ldd [$key + 24], %f12 add $key, 32, $key fmovd %f0, %f4 faesencx %f2, %f6, %f0 faesencx %f4, %f8, %f2 ldd [$key + 0], %f6 ldd [$key + 8], %f8 brnz,a $rounds, .Loop_enc sub $rounds, 2, $rounds andcc $out, 7, $tmp ! is output aligned? mov 0xff, $mask alignaddrl $out, %g0, $out srl $mask, $tmp, $mask fmovd %f0, %f4 faesencx %f2, %f10, %f0 faesencx %f4, %f12, %f2 fmovd %f0, %f4 faesenclx %f2, %f6, %f0 faesenclx %f4, %f8, %f2 bnz,pn %icc, .Lenc_out_unaligned nop std %f0, [$out + 0] retl std %f2, [$out + 8] .Lenc_out_unaligned: faligndata %f0, %f0, %f4 faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $mask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $mask, $mask retl stda %f8, [$out + $mask]0xc0 ! partial store .type aes_fx_encrypt,#function .size aes_fx_encrypt,.-aes_fx_encrypt .globl aes_fx_decrypt .align 32 aes_fx_decrypt: and $inp, 7, $tmp ! is input aligned? alignaddr $inp, %g0, $inp ld [$key + 240], $rounds ldd [$key + 0], %f6 ldd [$key + 8], %f8 ldd [$inp + 0], %f0 ! load input brz,pt $tmp, .Ldec_inp_aligned ldd [$inp + 8], %f2 ldd [$inp + 16], %f4 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 .Ldec_inp_aligned: ldd [$key + 16], %f10 ldd [$key + 24], %f12 add $key, 32, $key fxor %f0, %f6, %f0 ! ^=round[0] fxor %f2, %f8, %f2 ldd [$key + 0], %f6 ldd [$key + 8], %f8 sub $rounds, 4, $rounds .Loop_dec: fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 ldd [$key + 16], %f10 ldd [$key + 24], %f12 add $key, 32, $key fmovd %f0, %f4 faesdecx %f2, %f6, %f0 faesdecx %f4, %f8, %f2 ldd [$key + 0], %f6 ldd [$key + 8], %f8 brnz,a $rounds, .Loop_dec sub $rounds, 2, $rounds andcc $out, 7, $tmp ! is output aligned? mov 0xff, $mask alignaddrl $out, %g0, $out srl $mask, $tmp, $mask fmovd %f0, %f4 faesdecx %f2, %f10, %f0 faesdecx %f4, %f12, %f2 fmovd %f0, %f4 faesdeclx %f2, %f6, %f0 faesdeclx %f4, %f8, %f2 bnz,pn %icc, .Ldec_out_unaligned nop std %f0, [$out + 0] retl std %f2, [$out + 8] .Ldec_out_unaligned: faligndata %f0, %f0, %f4 faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $mask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $mask, $mask retl stda %f8, [$out + $mask]0xc0 ! partial store .type aes_fx_decrypt,#function .size aes_fx_decrypt,.-aes_fx_decrypt ___ } { my ($inp,$bits,$out,$tmp,$inc) = map("%o$_",(0..5)); $code.=<<___; .globl aes_fx_set_decrypt_key .align 32 aes_fx_set_decrypt_key: b .Lset_encrypt_key mov -1, $inc retl nop .type aes_fx_set_decrypt_key,#function .size aes_fx_set_decrypt_key,.-aes_fx_set_decrypt_key .globl aes_fx_set_encrypt_key .align 32 aes_fx_set_encrypt_key: mov 1, $inc .Lset_encrypt_key: and $inp, 7, $tmp alignaddr $inp, %g0, $inp nop cmp $bits, 192 ldd [$inp + 0], %f0 bl,pt %icc, .L128 ldd [$inp + 8], %f2 be,pt %icc, .L192 ldd [$inp + 16], %f4 brz,pt $tmp, .L256aligned ldd [$inp + 24], %f6 ldd [$inp + 32], %f8 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 faligndata %f4, %f6, %f4 faligndata %f6, %f8, %f6 .L256aligned: mov 14, $bits and $inc, `14*16`, $tmp st $bits, [$out + 240] ! store rounds add $out, $tmp, $out ! start or end of key schedule sllx $inc, 4, $inc ! 16 or -16 ___ for ($i=0; $i<6; $i++) { $code.=<<___; std %f0, [$out + 0] faeskeyx %f6, `0x10+$i`, %f0 std %f2, [$out + 8] add $out, $inc, $out faeskeyx %f0, 0x00, %f2 std %f4, [$out + 0] faeskeyx %f2, 0x01, %f4 std %f6, [$out + 8] add $out, $inc, $out faeskeyx %f4, 0x00, %f6 ___ } $code.=<<___; std %f0, [$out + 0] faeskeyx %f6, `0x10+$i`, %f0 std %f2, [$out + 8] add $out, $inc, $out faeskeyx %f0, 0x00, %f2 std %f4,[$out+0] std %f6,[$out+8] add $out, $inc, $out std %f0,[$out+0] std %f2,[$out+8] retl xor %o0, %o0, %o0 ! return 0 .align 16 .L192: brz,pt $tmp, .L192aligned nop ldd [$inp + 24], %f6 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 faligndata %f4, %f6, %f4 .L192aligned: mov 12, $bits and $inc, `12*16`, $tmp st $bits, [$out + 240] ! store rounds add $out, $tmp, $out ! start or end of key schedule sllx $inc, 4, $inc ! 16 or -16 ___ for ($i=0; $i<8; $i+=2) { $code.=<<___; std %f0, [$out + 0] faeskeyx %f4, `0x10+$i`, %f0 std %f2, [$out + 8] add $out, $inc, $out faeskeyx %f0, 0x00, %f2 std %f4, [$out + 0] faeskeyx %f2, 0x00, %f4 std %f0, [$out + 8] add $out, $inc, $out faeskeyx %f4, `0x10+$i+1`, %f0 std %f2, [$out + 0] faeskeyx %f0, 0x00, %f2 std %f4, [$out + 8] add $out, $inc, $out ___ $code.=<<___ if ($i<6); faeskeyx %f2, 0x00, %f4 ___ } $code.=<<___; std %f0, [$out + 0] std %f2, [$out + 8] retl xor %o0, %o0, %o0 ! return 0 .align 16 .L128: brz,pt $tmp, .L128aligned nop ldd [$inp + 16], %f4 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 .L128aligned: mov 10, $bits and $inc, `10*16`, $tmp st $bits, [$out + 240] ! store rounds add $out, $tmp, $out ! start or end of key schedule sllx $inc, 4, $inc ! 16 or -16 ___ for ($i=0; $i<10; $i++) { $code.=<<___; std %f0, [$out + 0] faeskeyx %f2, `0x10+$i`, %f0 std %f2, [$out + 8] add $out, $inc, $out faeskeyx %f0, 0x00, %f2 ___ } $code.=<<___; std %f0, [$out + 0] std %f2, [$out + 8] retl xor %o0, %o0, %o0 ! return 0 .type aes_fx_set_encrypt_key,#function .size aes_fx_set_encrypt_key,.-aes_fx_set_encrypt_key ___ } # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis { my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %visopf = ( "faligndata" => 0x048, "bshuffle" => 0x04c, "fxor" => 0x06c, "fsrc2" => 0x078 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unvis3 { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my ($ref,$opf); my %visopf = ( "alignaddr" => 0x018, "bmask" => 0x019, "alignaddrl" => 0x01a ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%([goli])([0-9])/); $_=$bias{$1}+$2; } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unfx { my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %aesopf = ( "faesencx" => 0x90, "faesdecx" => 0x91, "faesenclx" => 0x92, "faesdeclx" => 0x93, "faeskeyx" => 0x94 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if (defined($opf=$aesopf{$mnemonic})) { $rs2 = ($rs2 =~ /%f([0-6]*[02468])/) ? (($1|$1>>5)&31) : $rs2; $rs2 = oct($rs2) if ($rs2 =~ /^0/); foreach ($rs1,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x36<<19|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(faes[^x]{3,4}x)\s+(%f[0-9]{1,2}),\s*([%fx0-9]+),\s*(%f[0-9]{1,2})/ &unfx($1,$2,$3,$4,$5) /ge or s/\b([fb][^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unvis($1,$2,$3,$4) /ge or s/\b(alignaddr[l]*)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unvis3($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT;