/* crypto/rsa/rsa_oaep.c */ /* Written by Ulf Moeller. This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. */ /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */ /* See Victor Shoup, "OAEP reconsidered," Nov. 2000, * * for problems with the security proof for the * original OAEP scheme, which EME-OAEP is based on. * * A new proof can be found in E. Fujisaki, T. Okamoto, * D. Pointcheval, J. Stern, "RSA-OEAP is Still Alive!", * Dec. 2000, . * The new proof has stronger requirements for the * underlying permutation: "partial-one-wayness" instead * of one-wayness. For the RSA function, this is * an equivalent notion. */ #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1) #include #include "cryptlib.h" #include #include #include #include int MGF1(unsigned char *mask, long len, const unsigned char *seed, long seedlen); int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen, const unsigned char *from, int flen, const unsigned char *param, int plen) { int i, emlen = tlen - 1; unsigned char *db, *seed; unsigned char *dbmask, seedmask[SHA_DIGEST_LENGTH]; if (flen > emlen - 2 * SHA_DIGEST_LENGTH - 1) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); return (0); } if (emlen < 2 * SHA_DIGEST_LENGTH + 1) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, RSA_R_KEY_SIZE_TOO_SMALL); return (0); } dbmask = OPENSSL_malloc(emlen - SHA_DIGEST_LENGTH); if (dbmask == NULL) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, ERR_R_MALLOC_FAILURE); return (0); } to[0] = 0; seed = to + 1; db = to + SHA_DIGEST_LENGTH + 1; SHA1(param, plen, db); memset(db + SHA_DIGEST_LENGTH, 0, emlen - flen - 2 * SHA_DIGEST_LENGTH - 1); db[emlen - flen - SHA_DIGEST_LENGTH - 1] = 0x01; memcpy(db + emlen - flen - SHA_DIGEST_LENGTH, from, (unsigned int) flen); if (RAND_bytes(seed, SHA_DIGEST_LENGTH) <= 0) return (0); #ifdef PKCS_TESTVECT memcpy(seed, "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2\xf0\x6c\xb5\x8f", 20); #endif MGF1(dbmask, emlen - SHA_DIGEST_LENGTH, seed, SHA_DIGEST_LENGTH); for (i = 0; i < emlen - SHA_DIGEST_LENGTH; i++) db[i] ^= dbmask[i]; MGF1(seedmask, SHA_DIGEST_LENGTH, db, emlen - SHA_DIGEST_LENGTH); for (i = 0; i < SHA_DIGEST_LENGTH; i++) seed[i] ^= seedmask[i]; OPENSSL_free(dbmask); return (1); } int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen, const unsigned char *from, int flen, int num, const unsigned char *param, int plen) { int i, dblen, mlen = -1; const unsigned char *maskeddb; int lzero; unsigned char *db, seed[SHA_DIGEST_LENGTH], phash[SHA_DIGEST_LENGTH]; if (--num < 2 * SHA_DIGEST_LENGTH + 1) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_OAEP_DECODING_ERROR); return (-1); } dblen = num - SHA_DIGEST_LENGTH; db = OPENSSL_malloc(dblen); if (db == NULL) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, ERR_R_MALLOC_FAILURE); return (-1); } lzero = num - flen; if (lzero < 0) { RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_OAEP_DECODING_ERROR); return (-1); } maskeddb = from - lzero + SHA_DIGEST_LENGTH; MGF1(seed, SHA_DIGEST_LENGTH, maskeddb, dblen); for (i = lzero; i < SHA_DIGEST_LENGTH; i++) seed[i] ^= from[i - lzero]; MGF1(db, dblen, seed, SHA_DIGEST_LENGTH); for (i = 0; i < dblen; i++) db[i] ^= maskeddb[i]; SHA1(param, plen, phash); if (memcmp(db, phash, SHA_DIGEST_LENGTH) != 0) RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_OAEP_DECODING_ERROR); else { for (i = SHA_DIGEST_LENGTH; i < dblen; i++) if (db[i] != 0x00) break; if (db[i] != 0x01 || i++ >= dblen) RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_OAEP_DECODING_ERROR); else { mlen = dblen - i; if (tlen < mlen) { RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, RSA_R_DATA_TOO_LARGE); mlen = -1; } else memcpy(to, db + i, mlen); } } OPENSSL_free(db); return (mlen); } int MGF1(unsigned char *mask, long len, const unsigned char *seed, long seedlen) { long i, outlen = 0; unsigned char cnt[4]; SHA_CTX c; unsigned char md[SHA_DIGEST_LENGTH]; for (i = 0; outlen < len; i++) { cnt[0] = (i >> 24) & 255, cnt[1] = (i >> 16) & 255, cnt[2] = (i >> 8) & 255, cnt[3] = i & 255; SHA1_Init(&c); SHA1_Update(&c, seed, seedlen); SHA1_Update(&c, cnt, 4); if (outlen + SHA_DIGEST_LENGTH <= len) { SHA1_Final(mask + outlen, &c); outlen += SHA_DIGEST_LENGTH; } else { SHA1_Final(md, &c); memcpy(mask + outlen, md, len - outlen); outlen = len; } } return (0); } #endif