/* ==================================================================== * Copyright (c) 2001 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * */ #define OPENSSL_FIPSAPI #include #ifndef OPENSSL_NO_AES #include #include #include #include #include #include "evp_locl.h" #include "modes_lcl.h" #include static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); typedef struct { AES_KEY ks; } EVP_AES_KEY; #define data(ctx) EVP_C_DATA(EVP_AES_KEY,ctx) IMPLEMENT_BLOCK_CIPHER(aes_128, ks, AES, EVP_AES_KEY, NID_aes_128, 16, 16, 16, 128, EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1, aes_init_key, NULL, NULL, NULL, NULL) IMPLEMENT_BLOCK_CIPHER(aes_192, ks, AES, EVP_AES_KEY, NID_aes_192, 16, 24, 16, 128, EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1, aes_init_key, NULL, NULL, NULL, NULL) IMPLEMENT_BLOCK_CIPHER(aes_256, ks, AES, EVP_AES_KEY, NID_aes_256, 16, 32, 16, 128, EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1, aes_init_key, NULL, NULL, NULL, NULL) #define IMPLEMENT_AES_CFBR(ksize,cbits) IMPLEMENT_CFBR(aes,AES,EVP_AES_KEY,ks,ksize,cbits,16,EVP_CIPH_FLAG_FIPS) IMPLEMENT_AES_CFBR(128,1) IMPLEMENT_AES_CFBR(192,1) IMPLEMENT_AES_CFBR(256,1) IMPLEMENT_AES_CFBR(128,8) IMPLEMENT_AES_CFBR(192,8) IMPLEMENT_AES_CFBR(256,8) static int aes_counter (EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned int num; num = ctx->num; #ifdef AES_CTR_ASM void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, const unsigned char ivec[AES_BLOCK_SIZE]); CRYPTO_ctr128_encrypt_ctr32(in,out,len, &((EVP_AES_KEY *)ctx->cipher_data)->ks, ctx->iv,ctx->buf,&num,(ctr128_f)AES_ctr32_encrypt); #else CRYPTO_ctr128_encrypt(in,out,len, &((EVP_AES_KEY *)ctx->cipher_data)->ks, ctx->iv,ctx->buf,&num,(block128_f)AES_encrypt); #endif ctx->num = (size_t)num; return 1; } static const EVP_CIPHER aes_128_ctr_cipher= { NID_aes_128_ctr,1,16,16, EVP_CIPH_CTR_MODE|EVP_CIPH_FLAG_FIPS, aes_init_key, aes_counter, NULL, sizeof(EVP_AES_KEY), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_128_ctr (void) { return &aes_128_ctr_cipher; } static const EVP_CIPHER aes_192_ctr_cipher= { NID_aes_192_ctr,1,24,16, EVP_CIPH_CTR_MODE|EVP_CIPH_FLAG_FIPS, aes_init_key, aes_counter, NULL, sizeof(EVP_AES_KEY), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_192_ctr (void) { return &aes_192_ctr_cipher; } static const EVP_CIPHER aes_256_ctr_cipher= { NID_aes_256_ctr,1,32,16, EVP_CIPH_CTR_MODE|EVP_CIPH_FLAG_FIPS, aes_init_key, aes_counter, NULL, sizeof(EVP_AES_KEY), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_256_ctr (void) { return &aes_256_ctr_cipher; } static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret; if (((ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_ECB_MODE || (ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_CBC_MODE) && !enc) ret=AES_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data); else ret=AES_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data); if(ret < 0) { EVPerr(EVP_F_AES_INIT_KEY,EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } typedef struct { /* AES key schedule to use */ AES_KEY ks; /* Set if key initialised */ int key_set; /* Set if an iv is set */ int iv_set; GCM128_CONTEXT gcm; /* Temporary IV store */ unsigned char *iv; /* IV length */ int ivlen; int taglen; /* It is OK to generate IVs */ int iv_gen; } EVP_AES_GCM_CTX; static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_GCM_CTX *gctx = c->cipher_data; OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); return 1; } /* increment counter (64-bit int) by 1 */ static void ctr64_inc(unsigned char *counter) { int n=8; unsigned char c; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_GCM_CTX *gctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = c->cipher->iv_len; gctx->iv = c->iv; gctx->taglen = -1; gctx->iv_gen = 0; return 1; case EVP_CTRL_GCM_SET_IVLEN: if (arg <= 0) return 0; #ifdef OPENSSL_FIPS if (FIPS_mode() && !(c->flags & EVP_CIPH_FLAG_NON_FIPS_ALLOW) && arg < 12) return 0; #endif /* Allocate memory for IV if needed */ if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); gctx->iv = OPENSSL_malloc(arg); if (!gctx->iv) return 0; } gctx->ivlen = arg; return 1; case EVP_CTRL_GCM_SET_TAG: if (arg <= 0 || arg > 16 || c->encrypt) return 0; memcpy(c->buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_GCM_GET_TAG: if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) return 0; memcpy(ptr, c->buf, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole IV */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* Fixed field must be at least 4 bytes and invocation field * at least 8. */ if ((arg < 4) || (gctx->ivlen - arg) < 8) return 0; if (arg) memcpy(gctx->iv, ptr, arg); if (RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) return 0; gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) return 0; CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); memcpy(ptr, gctx->iv, gctx->ivlen); /* Invocation field will be at least 8 bytes in size and * so no need to check wrap around or increment more than * last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; default: return -1; } } static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)AES_encrypt); /* If we have an iv can set it directly, otherwise use * saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } static int aes_gcm(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; /* If not set up, return error */ if (!gctx->iv_set && !gctx->key_set) return -1; if (!ctx->encrypt && gctx->taglen < 0) return -1; if (in) { if (out == NULL) { if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) return -1; } else if (ctx->encrypt) { if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len)) return -1; } else { if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len)) return -1; } return len; } else { if (!ctx->encrypt) { if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) return -1; gctx->iv_set = 0; return 0; } CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); gctx->taglen = 16; /* Don't reuse the IV */ gctx->iv_set = 0; return 0; } } static const EVP_CIPHER aes_128_gcm_cipher= { NID_aes_128_gcm,1,16,12, EVP_CIPH_GCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT, aes_gcm_init_key, aes_gcm, aes_gcm_cleanup, sizeof(EVP_AES_GCM_CTX), NULL, NULL, aes_gcm_ctrl, NULL }; const EVP_CIPHER *EVP_aes_128_gcm (void) { return &aes_128_gcm_cipher; } static const EVP_CIPHER aes_192_gcm_cipher= { NID_aes_192_gcm,1,24,12, EVP_CIPH_GCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT, aes_gcm_init_key, aes_gcm, aes_gcm_cleanup, sizeof(EVP_AES_GCM_CTX), NULL, NULL, aes_gcm_ctrl, NULL }; const EVP_CIPHER *EVP_aes_192_gcm (void) { return &aes_192_gcm_cipher; } static const EVP_CIPHER aes_256_gcm_cipher= { NID_aes_256_gcm,1,32,12, EVP_CIPH_GCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT, aes_gcm_init_key, aes_gcm, aes_gcm_cleanup, sizeof(EVP_AES_GCM_CTX), NULL, NULL, aes_gcm_ctrl, NULL }; const EVP_CIPHER *EVP_aes_256_gcm (void) { return &aes_256_gcm_cipher; } typedef struct { /* AES key schedules to use */ AES_KEY ks1, ks2; XTS128_CONTEXT xts; } EVP_AES_XTS_CTX; static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_XTS_CTX *xctx = c->cipher_data; if (type != EVP_CTRL_INIT) return -1; /* key1 and key2 are used as an indicator both key and IV are set */ xctx->xts.key1 = NULL; xctx->xts.key2 = NULL; return 1; } static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { /* key_len is two AES keys */ if (ctx->encrypt) { AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1); xctx->xts.block1 = (block128_f)AES_encrypt; } else { AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1); xctx->xts.block1 = (block128_f)AES_decrypt; } AES_set_encrypt_key(key + ctx->key_len/2, ctx->key_len * 4, &xctx->ks2); xctx->xts.block2 = (block128_f)AES_encrypt; xctx->xts.key1 = &xctx->ks1; } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } static int aes_xts(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!xctx->xts.key1 || !xctx->xts.key2) return -1; if (!out || !in) return -1; #ifdef OPENSSL_FIPS /* Requirement of SP800-38E */ if (FIPS_mode() && !(ctx->flags & EVP_CIPH_FLAG_NON_FIPS_ALLOW) && (len > (1L<<20)*16)) { EVPerr(EVP_F_AES_XTS, EVP_R_TOO_LARGE); return -1; } #endif if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len, ctx->encrypt)) return -1; return len; } static const EVP_CIPHER aes_128_xts_cipher= { NID_aes_128_xts,16,32,16, EVP_CIPH_XTS_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT, aes_xts_init_key, aes_xts, 0, sizeof(EVP_AES_XTS_CTX), NULL, NULL, aes_xts_ctrl, NULL }; const EVP_CIPHER *EVP_aes_128_xts (void) { return &aes_128_xts_cipher; } static const EVP_CIPHER aes_256_xts_cipher= { NID_aes_256_xts,16,64,16, EVP_CIPH_XTS_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT, aes_xts_init_key, aes_xts, 0, sizeof(EVP_AES_XTS_CTX), NULL, NULL, aes_xts_ctrl, NULL }; const EVP_CIPHER *EVP_aes_256_xts (void) { return &aes_256_xts_cipher; } typedef struct { /* AES key schedule to use */ AES_KEY ks; /* Set if key initialised */ int key_set; /* Set if an iv is set */ int iv_set; /* Set if tag is valid */ int tag_set; /* Set if message length set */ int len_set; /* L and M parameters from RFC3610 */ int L, M; CCM128_CONTEXT ccm; } EVP_AES_CCM_CTX; static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_CCM_CTX *cctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: cctx->key_set = 0; cctx->iv_set = 0; cctx->L = 8; cctx->M = 12; cctx->tag_set = 0; cctx->len_set = 0; return 1; case EVP_CTRL_CCM_SET_IVLEN: arg = 15 - arg; case EVP_CTRL_CCM_SET_L: if (arg < 2 || arg > 8) return 0; cctx->L = arg; return 1; case EVP_CTRL_CCM_SET_TAG: if ((arg & 1) || arg < 4 || arg > 16) return 0; if ((c->encrypt && ptr) || (!c->encrypt && !ptr)) return 0; if (ptr) { cctx->tag_set = 1; memcpy(c->buf, ptr, arg); } cctx->M = arg; return 1; case EVP_CTRL_CCM_GET_TAG: if (!c->encrypt || !cctx->tag_set) return 0; if(!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) return 0; cctx->tag_set = 0; cctx->iv_set = 0; cctx->len_set = 0; return 1; default: return -1; } } static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f)AES_encrypt); cctx->key_set = 1; } if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } static int aes_ccm(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; CCM128_CONTEXT *ccm = &cctx->ccm; /* If not set up, return error */ if (!cctx->iv_set && !cctx->key_set) return -1; if (!ctx->encrypt && !cctx->tag_set) return -1; if (!out) { if (!in) { if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,len)) return -1; cctx->len_set = 1; return len; } /* If have AAD need message length */ if (!cctx->len_set && len) return -1; CRYPTO_ccm128_aad(ccm, in, len); return len; } /* EVP_*Final() doesn't return any data */ if (!in) return 0; /* If not set length yet do it */ if (!cctx->len_set) { if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) return -1; cctx->len_set = 1; } if (ctx->encrypt) { if (CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; cctx->tag_set = 1; return len; } else { int rv = -1; if (!CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!memcmp(tag, ctx->buf, cctx->M)) rv = len; } } if (rv == -1) OPENSSL_cleanse(out, len); cctx->iv_set = 0; cctx->tag_set = 0; cctx->len_set = 0; return rv; } } static const EVP_CIPHER aes_128_ccm_cipher= { NID_aes_128_ccm,1,16,12, EVP_CIPH_CCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT, aes_ccm_init_key, aes_ccm, 0, sizeof(EVP_AES_CCM_CTX), NULL, NULL, aes_ccm_ctrl, NULL }; const EVP_CIPHER *EVP_aes_128_ccm (void) { return &aes_128_ccm_cipher; } static const EVP_CIPHER aes_192_ccm_cipher= { NID_aes_192_ccm,1,24,12, EVP_CIPH_CCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT, aes_ccm_init_key, aes_ccm, 0, sizeof(EVP_AES_CCM_CTX), NULL, NULL, aes_ccm_ctrl, NULL }; const EVP_CIPHER *EVP_aes_192_ccm (void) { return &aes_192_ccm_cipher; } static const EVP_CIPHER aes_256_ccm_cipher= { NID_aes_256_ccm,1,32,12, EVP_CIPH_CCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT, aes_ccm_init_key, aes_ccm, 0, sizeof(EVP_AES_CCM_CTX), NULL, NULL, aes_ccm_ctrl, NULL }; const EVP_CIPHER *EVP_aes_256_ccm (void) { return &aes_256_ccm_cipher; } #endif