/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "../ssl_locl.h" #include #include #include #include "record_locl.h" #include "../packet_locl.h" #if defined(OPENSSL_SMALL_FOOTPRINT) || \ !( defined(AES_ASM) && ( \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) ) \ ) # undef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK # define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0 #endif void RECORD_LAYER_init(RECORD_LAYER *rl, SSL *s) { rl->s = s; RECORD_LAYER_set_first_record(&s->rlayer); SSL3_RECORD_clear(rl->rrec, SSL_MAX_PIPELINES); } void RECORD_LAYER_clear(RECORD_LAYER *rl) { rl->rstate = SSL_ST_READ_HEADER; /* * Do I need to clear read_ahead? As far as I can tell read_ahead did not * previously get reset by SSL_clear...so I'll keep it that way..but is * that right? */ rl->packet = NULL; rl->packet_length = 0; rl->wnum = 0; memset(rl->handshake_fragment, 0, sizeof(rl->handshake_fragment)); rl->handshake_fragment_len = 0; rl->wpend_tot = 0; rl->wpend_type = 0; rl->wpend_ret = 0; rl->wpend_buf = NULL; SSL3_BUFFER_clear(&rl->rbuf); ssl3_release_write_buffer(rl->s); rl->numrpipes = 0; SSL3_RECORD_clear(rl->rrec, SSL_MAX_PIPELINES); RECORD_LAYER_reset_read_sequence(rl); RECORD_LAYER_reset_write_sequence(rl); if (rl->d) DTLS_RECORD_LAYER_clear(rl); } void RECORD_LAYER_release(RECORD_LAYER *rl) { if (SSL3_BUFFER_is_initialised(&rl->rbuf)) ssl3_release_read_buffer(rl->s); if (rl->numwpipes > 0) ssl3_release_write_buffer(rl->s); SSL3_RECORD_release(rl->rrec, SSL_MAX_PIPELINES); } /* Checks if we have unprocessed read ahead data pending */ int RECORD_LAYER_read_pending(const RECORD_LAYER *rl) { return SSL3_BUFFER_get_left(&rl->rbuf) != 0; } /* Checks if we have decrypted unread record data pending */ int RECORD_LAYER_processed_read_pending(const RECORD_LAYER *rl) { size_t curr_rec = 0, num_recs = RECORD_LAYER_get_numrpipes(rl); const SSL3_RECORD *rr = rl->rrec; while (curr_rec < num_recs && SSL3_RECORD_is_read(&rr[curr_rec])) curr_rec++; return curr_rec < num_recs; } int RECORD_LAYER_write_pending(const RECORD_LAYER *rl) { return (rl->numwpipes > 0) && SSL3_BUFFER_get_left(&rl->wbuf[rl->numwpipes - 1]) != 0; } void RECORD_LAYER_reset_read_sequence(RECORD_LAYER *rl) { memset(rl->read_sequence, 0, sizeof(rl->read_sequence)); } void RECORD_LAYER_reset_write_sequence(RECORD_LAYER *rl) { memset(rl->write_sequence, 0, sizeof(rl->write_sequence)); } size_t ssl3_pending(const SSL *s) { size_t i, num = 0; if (s->rlayer.rstate == SSL_ST_READ_BODY) return 0; for (i = 0; i < RECORD_LAYER_get_numrpipes(&s->rlayer); i++) { if (SSL3_RECORD_get_type(&s->rlayer.rrec[i]) != SSL3_RT_APPLICATION_DATA) return 0; num += SSL3_RECORD_get_length(&s->rlayer.rrec[i]); } return num; } void SSL_CTX_set_default_read_buffer_len(SSL_CTX *ctx, size_t len) { ctx->default_read_buf_len = len; } void SSL_set_default_read_buffer_len(SSL *s, size_t len) { SSL3_BUFFER_set_default_len(RECORD_LAYER_get_rbuf(&s->rlayer), len); } const char *SSL_rstate_string_long(const SSL *s) { switch (s->rlayer.rstate) { case SSL_ST_READ_HEADER: return "read header"; case SSL_ST_READ_BODY: return "read body"; case SSL_ST_READ_DONE: return "read done"; default: return "unknown"; } } const char *SSL_rstate_string(const SSL *s) { switch (s->rlayer.rstate) { case SSL_ST_READ_HEADER: return "RH"; case SSL_ST_READ_BODY: return "RB"; case SSL_ST_READ_DONE: return "RD"; default: return "unknown"; } } /* * Return values are as per SSL_read() */ int ssl3_read_n(SSL *s, size_t n, size_t max, int extend, int clearold, size_t *readbytes) { /* * If extend == 0, obtain new n-byte packet; if extend == 1, increase * packet by another n bytes. The packet will be in the sub-array of * s->s3->rbuf.buf specified by s->packet and s->packet_length. (If * s->rlayer.read_ahead is set, 'max' bytes may be stored in rbuf [plus * s->packet_length bytes if extend == 1].) * if clearold == 1, move the packet to the start of the buffer; if * clearold == 0 then leave any old packets where they were */ size_t len, left, align = 0; unsigned char *pkt; SSL3_BUFFER *rb; if (n == 0) return 0; rb = &s->rlayer.rbuf; if (rb->buf == NULL) if (!ssl3_setup_read_buffer(s)) { /* SSLfatal() already called */ return -1; } left = rb->left; #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0 align = (size_t)rb->buf + SSL3_RT_HEADER_LENGTH; align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD); #endif if (!extend) { /* start with empty packet ... */ if (left == 0) rb->offset = align; else if (align != 0 && left >= SSL3_RT_HEADER_LENGTH) { /* * check if next packet length is large enough to justify payload * alignment... */ pkt = rb->buf + rb->offset; if (pkt[0] == SSL3_RT_APPLICATION_DATA && (pkt[3] << 8 | pkt[4]) >= 128) { /* * Note that even if packet is corrupted and its length field * is insane, we can only be led to wrong decision about * whether memmove will occur or not. Header values has no * effect on memmove arguments and therefore no buffer * overrun can be triggered. */ memmove(rb->buf + align, pkt, left); rb->offset = align; } } s->rlayer.packet = rb->buf + rb->offset; s->rlayer.packet_length = 0; /* ... now we can act as if 'extend' was set */ } len = s->rlayer.packet_length; pkt = rb->buf + align; /* * Move any available bytes to front of buffer: 'len' bytes already * pointed to by 'packet', 'left' extra ones at the end */ if (s->rlayer.packet != pkt && clearold == 1) { memmove(pkt, s->rlayer.packet, len + left); s->rlayer.packet = pkt; rb->offset = len + align; } /* * For DTLS/UDP reads should not span multiple packets because the read * operation returns the whole packet at once (as long as it fits into * the buffer). */ if (SSL_IS_DTLS(s)) { if (left == 0 && extend) return 0; if (left > 0 && n > left) n = left; } /* if there is enough in the buffer from a previous read, take some */ if (left >= n) { s->rlayer.packet_length += n; rb->left = left - n; rb->offset += n; *readbytes = n; return 1; } /* else we need to read more data */ if (n > rb->len - rb->offset) { /* does not happen */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_READ_N, ERR_R_INTERNAL_ERROR); return -1; } /* We always act like read_ahead is set for DTLS */ if (!s->rlayer.read_ahead && !SSL_IS_DTLS(s)) /* ignore max parameter */ max = n; else { if (max < n) max = n; if (max > rb->len - rb->offset) max = rb->len - rb->offset; } while (left < n) { size_t bioread = 0; int ret; /* * Now we have len+left bytes at the front of s->s3->rbuf.buf and * need to read in more until we have len+n (up to len+max if * possible) */ clear_sys_error(); if (s->rbio != NULL) { s->rwstate = SSL_READING; /* TODO(size_t): Convert this function */ ret = BIO_read(s->rbio, pkt + len + left, max - left); if (ret >= 0) bioread = ret; } else { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_READ_N, SSL_R_READ_BIO_NOT_SET); ret = -1; } if (ret <= 0) { rb->left = left; if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s)) if (len + left == 0) ssl3_release_read_buffer(s); return ret; } left += bioread; /* * reads should *never* span multiple packets for DTLS because the * underlying transport protocol is message oriented as opposed to * byte oriented as in the TLS case. */ if (SSL_IS_DTLS(s)) { if (n > left) n = left; /* makes the while condition false */ } } /* done reading, now the book-keeping */ rb->offset += n; rb->left = left - n; s->rlayer.packet_length += n; s->rwstate = SSL_NOTHING; *readbytes = n; return 1; } /* * Call this to write data in records of type 'type' It will return <= 0 if * not all data has been sent or non-blocking IO. */ int ssl3_write_bytes(SSL *s, int type, const void *buf_, size_t len, size_t *written) { const unsigned char *buf = buf_; size_t tot; size_t n, max_send_fragment, split_send_fragment, maxpipes; #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK size_t nw; #endif SSL3_BUFFER *wb = &s->rlayer.wbuf[0]; int i; size_t tmpwrit; s->rwstate = SSL_NOTHING; tot = s->rlayer.wnum; /* * ensure that if we end up with a smaller value of data to write out * than the original len from a write which didn't complete for * non-blocking I/O and also somehow ended up avoiding the check for * this in ssl3_write_pending/SSL_R_BAD_WRITE_RETRY as it must never be * possible to end up with (len-tot) as a large number that will then * promptly send beyond the end of the users buffer ... so we trap and * report the error in a way the user will notice */ if ((len < s->rlayer.wnum) || ((wb->left != 0) && (len < (s->rlayer.wnum + s->rlayer.wpend_tot)))) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_WRITE_BYTES, SSL_R_BAD_LENGTH); return -1; } if (s->early_data_state == SSL_EARLY_DATA_WRITING && !early_data_count_ok(s, len, 0, 1)) { /* SSLfatal() already called */ return -1; } s->rlayer.wnum = 0; /* * When writing early data on the server side we could be "in_init" in * between receiving the EoED and the CF - but we don't want to handle those * messages yet. */ if (SSL_in_init(s) && !ossl_statem_get_in_handshake(s) && s->early_data_state != SSL_EARLY_DATA_UNAUTH_WRITING) { i = s->handshake_func(s); /* SSLfatal() already called */ if (i < 0) return i; if (i == 0) { return -1; } } /* * first check if there is a SSL3_BUFFER still being written out. This * will happen with non blocking IO */ if (wb->left != 0) { /* SSLfatal() already called if appropriate */ i = ssl3_write_pending(s, type, &buf[tot], s->rlayer.wpend_tot, &tmpwrit); if (i <= 0) { /* XXX should we ssl3_release_write_buffer if i<0? */ s->rlayer.wnum = tot; return i; } tot += tmpwrit; /* this might be last fragment */ } #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK /* * Depending on platform multi-block can deliver several *times* * better performance. Downside is that it has to allocate * jumbo buffer to accommodate up to 8 records, but the * compromise is considered worthy. */ if (type == SSL3_RT_APPLICATION_DATA && len >= 4 * (max_send_fragment = ssl_get_max_send_fragment(s)) && s->compress == NULL && s->msg_callback == NULL && !SSL_WRITE_ETM(s) && SSL_USE_EXPLICIT_IV(s) && EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_write_ctx)) & EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK) { unsigned char aad[13]; EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; size_t packlen; int packleni; /* minimize address aliasing conflicts */ if ((max_send_fragment & 0xfff) == 0) max_send_fragment -= 512; if (tot == 0 || wb->buf == NULL) { /* allocate jumbo buffer */ ssl3_release_write_buffer(s); packlen = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE, (int)max_send_fragment, NULL); if (len >= 8 * max_send_fragment) packlen *= 8; else packlen *= 4; if (!ssl3_setup_write_buffer(s, 1, packlen)) { /* SSLfatal() already called */ return -1; } } else if (tot == len) { /* done? */ /* free jumbo buffer */ ssl3_release_write_buffer(s); *written = tot; return 1; } n = (len - tot); for (;;) { if (n < 4 * max_send_fragment) { /* free jumbo buffer */ ssl3_release_write_buffer(s); break; } if (s->s3->alert_dispatch) { i = s->method->ssl_dispatch_alert(s); if (i <= 0) { /* SSLfatal() already called if appropriate */ s->rlayer.wnum = tot; return i; } } if (n >= 8 * max_send_fragment) nw = max_send_fragment * (mb_param.interleave = 8); else nw = max_send_fragment * (mb_param.interleave = 4); memcpy(aad, s->rlayer.write_sequence, 8); aad[8] = type; aad[9] = (unsigned char)(s->version >> 8); aad[10] = (unsigned char)(s->version); aad[11] = 0; aad[12] = 0; mb_param.out = NULL; mb_param.inp = aad; mb_param.len = nw; packleni = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, sizeof(mb_param), &mb_param); packlen = (size_t)packleni; if (packleni <= 0 || packlen > wb->len) { /* never happens */ /* free jumbo buffer */ ssl3_release_write_buffer(s); break; } mb_param.out = wb->buf; mb_param.inp = &buf[tot]; mb_param.len = nw; if (EVP_CIPHER_CTX_ctrl(s->enc_write_ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, sizeof(mb_param), &mb_param) <= 0) return -1; s->rlayer.write_sequence[7] += mb_param.interleave; if (s->rlayer.write_sequence[7] < mb_param.interleave) { int j = 6; while (j >= 0 && (++s->rlayer.write_sequence[j--]) == 0) ; } wb->offset = 0; wb->left = packlen; s->rlayer.wpend_tot = nw; s->rlayer.wpend_buf = &buf[tot]; s->rlayer.wpend_type = type; s->rlayer.wpend_ret = nw; i = ssl3_write_pending(s, type, &buf[tot], nw, &tmpwrit); if (i <= 0) { /* SSLfatal() already called if appropriate */ if (i < 0 && (!s->wbio || !BIO_should_retry(s->wbio))) { /* free jumbo buffer */ ssl3_release_write_buffer(s); } s->rlayer.wnum = tot; return i; } if (tmpwrit == n) { /* free jumbo buffer */ ssl3_release_write_buffer(s); *written = tot + tmpwrit; return 1; } n -= tmpwrit; tot += tmpwrit; } } else #endif /* !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK */ if (tot == len) { /* done? */ if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s)) ssl3_release_write_buffer(s); *written = tot; return 1; } n = (len - tot); max_send_fragment = ssl_get_max_send_fragment(s); split_send_fragment = ssl_get_split_send_fragment(s); /* * If max_pipelines is 0 then this means "undefined" and we default to * 1 pipeline. Similarly if the cipher does not support pipelined * processing then we also only use 1 pipeline, or if we're not using * explicit IVs */ maxpipes = s->max_pipelines; if (maxpipes > SSL_MAX_PIPELINES) { /* * We should have prevented this when we set max_pipelines so we * shouldn't get here */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_WRITE_BYTES, ERR_R_INTERNAL_ERROR); return -1; } if (maxpipes == 0 || s->enc_write_ctx == NULL || !(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_write_ctx)) & EVP_CIPH_FLAG_PIPELINE) || !SSL_USE_EXPLICIT_IV(s)) maxpipes = 1; if (max_send_fragment == 0 || split_send_fragment == 0 || split_send_fragment > max_send_fragment) { /* * We should have prevented this when we set/get the split and max send * fragments so we shouldn't get here */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_WRITE_BYTES, ERR_R_INTERNAL_ERROR); return -1; } for (;;) { size_t pipelens[SSL_MAX_PIPELINES], tmppipelen, remain; size_t numpipes, j; if (n == 0) numpipes = 1; else numpipes = ((n - 1) / split_send_fragment) + 1; if (numpipes > maxpipes) numpipes = maxpipes; if (n / numpipes >= max_send_fragment) { /* * We have enough data to completely fill all available * pipelines */ for (j = 0; j < numpipes; j++) { pipelens[j] = max_send_fragment; } } else { /* We can partially fill all available pipelines */ tmppipelen = n / numpipes; remain = n % numpipes; for (j = 0; j < numpipes; j++) { pipelens[j] = tmppipelen; if (j < remain) pipelens[j]++; } } i = do_ssl3_write(s, type, &(buf[tot]), pipelens, numpipes, 0, &tmpwrit); if (i <= 0) { /* SSLfatal() already called if appropriate */ /* XXX should we ssl3_release_write_buffer if i<0? */ s->rlayer.wnum = tot; return i; } if (tmpwrit == n || (type == SSL3_RT_APPLICATION_DATA && (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE))) { /* * next chunk of data should get another prepended empty fragment * in ciphersuites with known-IV weakness: */ s->s3->empty_fragment_done = 0; if ((i == (int)n) && s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s)) ssl3_release_write_buffer(s); *written = tot + tmpwrit; return 1; } n -= tmpwrit; tot += tmpwrit; } } int do_ssl3_write(SSL *s, int type, const unsigned char *buf, size_t *pipelens, size_t numpipes, int create_empty_fragment, size_t *written) { WPACKET pkt[SSL_MAX_PIPELINES]; SSL3_RECORD wr[SSL_MAX_PIPELINES]; WPACKET *thispkt; SSL3_RECORD *thiswr; unsigned char *recordstart; int i, mac_size, clear = 0; size_t prefix_len = 0; int eivlen = 0; size_t align = 0; SSL3_BUFFER *wb; SSL_SESSION *sess; size_t totlen = 0, len, wpinited = 0; size_t j; for (j = 0; j < numpipes; j++) totlen += pipelens[j]; /* * first check if there is a SSL3_BUFFER still being written out. This * will happen with non blocking IO */ if (RECORD_LAYER_write_pending(&s->rlayer)) { /* Calls SSLfatal() as required */ return ssl3_write_pending(s, type, buf, totlen, written); } /* If we have an alert to send, lets send it */ if (s->s3->alert_dispatch) { i = s->method->ssl_dispatch_alert(s); if (i <= 0) { /* SSLfatal() already called if appropriate */ return i; } /* if it went, fall through and send more stuff */ } if (s->rlayer.numwpipes < numpipes) { if (!ssl3_setup_write_buffer(s, numpipes, 0)) { /* SSLfatal() already called */ return -1; } } if (totlen == 0 && !create_empty_fragment) return 0; sess = s->session; if ((sess == NULL) || (s->enc_write_ctx == NULL) || (EVP_MD_CTX_md(s->write_hash) == NULL)) { clear = s->enc_write_ctx ? 0 : 1; /* must be AEAD cipher */ mac_size = 0; } else { /* TODO(siz_t): Convert me */ mac_size = EVP_MD_CTX_size(s->write_hash); if (mac_size < 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } } /* * 'create_empty_fragment' is true only when this function calls itself */ if (!clear && !create_empty_fragment && !s->s3->empty_fragment_done) { /* * countermeasure against known-IV weakness in CBC ciphersuites (see * http://www.openssl.org/~bodo/tls-cbc.txt) */ if (s->s3->need_empty_fragments && type == SSL3_RT_APPLICATION_DATA) { /* * recursive function call with 'create_empty_fragment' set; this * prepares and buffers the data for an empty fragment (these * 'prefix_len' bytes are sent out later together with the actual * payload) */ size_t tmppipelen = 0; int ret; ret = do_ssl3_write(s, type, buf, &tmppipelen, 1, 1, &prefix_len); if (ret <= 0) { /* SSLfatal() already called if appropriate */ goto err; } if (prefix_len > (SSL3_RT_HEADER_LENGTH + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD)) { /* insufficient space */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } } s->s3->empty_fragment_done = 1; } if (create_empty_fragment) { wb = &s->rlayer.wbuf[0]; #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0 /* * extra fragment would be couple of cipher blocks, which would be * multiple of SSL3_ALIGN_PAYLOAD, so if we want to align the real * payload, then we can just pretend we simply have two headers. */ align = (size_t)SSL3_BUFFER_get_buf(wb) + 2 * SSL3_RT_HEADER_LENGTH; align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD); #endif SSL3_BUFFER_set_offset(wb, align); if (!WPACKET_init_static_len(&pkt[0], SSL3_BUFFER_get_buf(wb), SSL3_BUFFER_get_len(wb), 0) || !WPACKET_allocate_bytes(&pkt[0], align, NULL)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } wpinited = 1; } else if (prefix_len) { wb = &s->rlayer.wbuf[0]; if (!WPACKET_init_static_len(&pkt[0], SSL3_BUFFER_get_buf(wb), SSL3_BUFFER_get_len(wb), 0) || !WPACKET_allocate_bytes(&pkt[0], SSL3_BUFFER_get_offset(wb) + prefix_len, NULL)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } wpinited = 1; } else { for (j = 0; j < numpipes; j++) { thispkt = &pkt[j]; wb = &s->rlayer.wbuf[j]; #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD != 0 align = (size_t)SSL3_BUFFER_get_buf(wb) + SSL3_RT_HEADER_LENGTH; align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD); #endif SSL3_BUFFER_set_offset(wb, align); if (!WPACKET_init_static_len(thispkt, SSL3_BUFFER_get_buf(wb), SSL3_BUFFER_get_len(wb), 0) || !WPACKET_allocate_bytes(thispkt, align, NULL)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } wpinited++; } } /* Explicit IV length, block ciphers appropriate version flag */ if (s->enc_write_ctx && SSL_USE_EXPLICIT_IV(s) && !SSL_TREAT_AS_TLS13(s)) { int mode = EVP_CIPHER_CTX_mode(s->enc_write_ctx); if (mode == EVP_CIPH_CBC_MODE) { /* TODO(size_t): Convert me */ eivlen = EVP_CIPHER_CTX_iv_length(s->enc_write_ctx); if (eivlen <= 1) eivlen = 0; } else if (mode == EVP_CIPH_GCM_MODE) { /* Need explicit part of IV for GCM mode */ eivlen = EVP_GCM_TLS_EXPLICIT_IV_LEN; } else if (mode == EVP_CIPH_CCM_MODE) { eivlen = EVP_CCM_TLS_EXPLICIT_IV_LEN; } } totlen = 0; /* Clear our SSL3_RECORD structures */ memset(wr, 0, sizeof(wr)); for (j = 0; j < numpipes; j++) { unsigned int version = (s->version == TLS1_3_VERSION) ? TLS1_2_VERSION : s->version; unsigned char *compressdata = NULL; size_t maxcomplen; unsigned int rectype; thispkt = &pkt[j]; thiswr = &wr[j]; /* * In TLSv1.3, once encrypting, we always use application data for the * record type */ if (SSL_TREAT_AS_TLS13(s) && s->enc_write_ctx != NULL && (s->statem.enc_write_state != ENC_WRITE_STATE_WRITE_PLAIN_ALERTS || type != SSL3_RT_ALERT)) rectype = SSL3_RT_APPLICATION_DATA; else rectype = type; SSL3_RECORD_set_type(thiswr, rectype); /* * Some servers hang if initial client hello is larger than 256 bytes * and record version number > TLS 1.0 */ if (SSL_get_state(s) == TLS_ST_CW_CLNT_HELLO && !s->renegotiate && TLS1_get_version(s) > TLS1_VERSION && s->hello_retry_request == SSL_HRR_NONE) version = TLS1_VERSION; SSL3_RECORD_set_rec_version(thiswr, version); maxcomplen = pipelens[j]; if (s->compress != NULL) maxcomplen += SSL3_RT_MAX_COMPRESSED_OVERHEAD; /* write the header */ if (!WPACKET_put_bytes_u8(thispkt, rectype) || !WPACKET_put_bytes_u16(thispkt, version) || !WPACKET_start_sub_packet_u16(thispkt) || (eivlen > 0 && !WPACKET_allocate_bytes(thispkt, eivlen, NULL)) || (maxcomplen > 0 && !WPACKET_reserve_bytes(thispkt, maxcomplen, &compressdata))) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } /* lets setup the record stuff. */ SSL3_RECORD_set_data(thiswr, compressdata); SSL3_RECORD_set_length(thiswr, pipelens[j]); SSL3_RECORD_set_input(thiswr, (unsigned char *)&buf[totlen]); totlen += pipelens[j]; /* * we now 'read' from thiswr->input, thiswr->length bytes into * thiswr->data */ /* first we compress */ if (s->compress != NULL) { if (!ssl3_do_compress(s, thiswr) || !WPACKET_allocate_bytes(thispkt, thiswr->length, NULL)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, SSL_R_COMPRESSION_FAILURE); goto err; } } else { if (!WPACKET_memcpy(thispkt, thiswr->input, thiswr->length)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } SSL3_RECORD_reset_input(&wr[j]); } if (SSL_TREAT_AS_TLS13(s) && s->enc_write_ctx != NULL && (s->statem.enc_write_state != ENC_WRITE_STATE_WRITE_PLAIN_ALERTS || type != SSL3_RT_ALERT)) { size_t rlen, max_send_fragment; if (!WPACKET_put_bytes_u8(thispkt, type)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } SSL3_RECORD_add_length(thiswr, 1); /* Add TLS1.3 padding */ max_send_fragment = ssl_get_max_send_fragment(s); rlen = SSL3_RECORD_get_length(thiswr); if (rlen < max_send_fragment) { size_t padding = 0; size_t max_padding = max_send_fragment - rlen; if (s->record_padding_cb != NULL) { padding = s->record_padding_cb(s, type, rlen, s->record_padding_arg); } else if (s->block_padding > 0) { size_t mask = s->block_padding - 1; size_t remainder; /* optimize for power of 2 */ if ((s->block_padding & mask) == 0) remainder = rlen & mask; else remainder = rlen % s->block_padding; /* don't want to add a block of padding if we don't have to */ if (remainder == 0) padding = 0; else padding = s->block_padding - remainder; } if (padding > 0) { /* do not allow the record to exceed max plaintext length */ if (padding > max_padding) padding = max_padding; if (!WPACKET_memset(thispkt, 0, padding)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } SSL3_RECORD_add_length(thiswr, padding); } } } /* * we should still have the output to thiswr->data and the input from * wr->input. Length should be thiswr->length. thiswr->data still points * in the wb->buf */ if (!SSL_WRITE_ETM(s) && mac_size != 0) { unsigned char *mac; if (!WPACKET_allocate_bytes(thispkt, mac_size, &mac) || !s->method->ssl3_enc->mac(s, thiswr, mac, 1)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } } /* * Reserve some bytes for any growth that may occur during encryption. * This will be at most one cipher block or the tag length if using * AEAD. SSL_RT_MAX_CIPHER_BLOCK_SIZE covers either case. */ if (!WPACKET_reserve_bytes(thispkt, SSL_RT_MAX_CIPHER_BLOCK_SIZE, NULL) /* * We also need next the amount of bytes written to this * sub-packet */ || !WPACKET_get_length(thispkt, &len)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } /* Get a pointer to the start of this record excluding header */ recordstart = WPACKET_get_curr(thispkt) - len; SSL3_RECORD_set_data(thiswr, recordstart); SSL3_RECORD_reset_input(thiswr); SSL3_RECORD_set_length(thiswr, len); } if (s->statem.enc_write_state == ENC_WRITE_STATE_WRITE_PLAIN_ALERTS) { /* * We haven't actually negotiated the version yet, but we're trying to * send early data - so we need to use the tls13enc function. */ if (tls13_enc(s, wr, numpipes, 1) < 1) { if (!ossl_statem_in_error(s)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); } goto err; } } else { if (s->method->ssl3_enc->enc(s, wr, numpipes, 1) < 1) { if (!ossl_statem_in_error(s)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); } goto err; } } for (j = 0; j < numpipes; j++) { size_t origlen; thispkt = &pkt[j]; thiswr = &wr[j]; /* Allocate bytes for the encryption overhead */ if (!WPACKET_get_length(thispkt, &origlen) /* Encryption should never shrink the data! */ || origlen > thiswr->length || (thiswr->length > origlen && !WPACKET_allocate_bytes(thispkt, thiswr->length - origlen, NULL))) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } if (SSL_WRITE_ETM(s) && mac_size != 0) { unsigned char *mac; if (!WPACKET_allocate_bytes(thispkt, mac_size, &mac) || !s->method->ssl3_enc->mac(s, thiswr, mac, 1)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } SSL3_RECORD_add_length(thiswr, mac_size); } if (!WPACKET_get_length(thispkt, &len) || !WPACKET_close(thispkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } if (s->msg_callback) { recordstart = WPACKET_get_curr(thispkt) - len - SSL3_RT_HEADER_LENGTH; s->msg_callback(1, 0, SSL3_RT_HEADER, recordstart, SSL3_RT_HEADER_LENGTH, s, s->msg_callback_arg); if (SSL_TREAT_AS_TLS13(s) && s->enc_write_ctx != NULL) { unsigned char ctype = type; s->msg_callback(1, s->version, SSL3_RT_INNER_CONTENT_TYPE, &ctype, 1, s, s->msg_callback_arg); } } if (!WPACKET_finish(thispkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } /* * we should now have thiswr->data pointing to the encrypted data, which * is thiswr->length long */ SSL3_RECORD_set_type(thiswr, type); /* not needed but helps for * debugging */ SSL3_RECORD_add_length(thiswr, SSL3_RT_HEADER_LENGTH); if (create_empty_fragment) { /* * we are in a recursive call; just return the length, don't write * out anything here */ if (j > 0) { /* We should never be pipelining an empty fragment!! */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } *written = SSL3_RECORD_get_length(thiswr); return 1; } /* now let's set up wb */ SSL3_BUFFER_set_left(&s->rlayer.wbuf[j], prefix_len + SSL3_RECORD_get_length(thiswr)); } /* * memorize arguments so that ssl3_write_pending can detect bad write * retries later */ s->rlayer.wpend_tot = totlen; s->rlayer.wpend_buf = buf; s->rlayer.wpend_type = type; s->rlayer.wpend_ret = totlen; /* we now just need to write the buffer */ return ssl3_write_pending(s, type, buf, totlen, written); err: for (j = 0; j < wpinited; j++) WPACKET_cleanup(&pkt[j]); return -1; } /* if s->s3->wbuf.left != 0, we need to call this * * Return values are as per SSL_write() */ int ssl3_write_pending(SSL *s, int type, const unsigned char *buf, size_t len, size_t *written) { int i; SSL3_BUFFER *wb = s->rlayer.wbuf; size_t currbuf = 0; size_t tmpwrit = 0; if ((s->rlayer.wpend_tot > len) || (!(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER) && (s->rlayer.wpend_buf != buf)) || (s->rlayer.wpend_type != type)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_WRITE_PENDING, SSL_R_BAD_WRITE_RETRY); return -1; } for (;;) { /* Loop until we find a buffer we haven't written out yet */ if (SSL3_BUFFER_get_left(&wb[currbuf]) == 0 && currbuf < s->rlayer.numwpipes - 1) { currbuf++; continue; } clear_sys_error(); if (s->wbio != NULL) { s->rwstate = SSL_WRITING; /* TODO(size_t): Convert this call */ i = BIO_write(s->wbio, (char *) &(SSL3_BUFFER_get_buf(&wb[currbuf]) [SSL3_BUFFER_get_offset(&wb[currbuf])]), (unsigned int)SSL3_BUFFER_get_left(&wb[currbuf])); if (i >= 0) tmpwrit = i; } else { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_WRITE_PENDING, SSL_R_BIO_NOT_SET); i = -1; } if (i > 0 && tmpwrit == SSL3_BUFFER_get_left(&wb[currbuf])) { SSL3_BUFFER_set_left(&wb[currbuf], 0); SSL3_BUFFER_add_offset(&wb[currbuf], tmpwrit); if (currbuf + 1 < s->rlayer.numwpipes) continue; s->rwstate = SSL_NOTHING; *written = s->rlayer.wpend_ret; return 1; } else if (i <= 0) { if (SSL_IS_DTLS(s)) { /* * For DTLS, just drop it. That's kind of the whole point in * using a datagram service */ SSL3_BUFFER_set_left(&wb[currbuf], 0); } return i; } SSL3_BUFFER_add_offset(&wb[currbuf], tmpwrit); SSL3_BUFFER_sub_left(&wb[currbuf], tmpwrit); } } /*- * Return up to 'len' payload bytes received in 'type' records. * 'type' is one of the following: * * - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us) * - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us) * - 0 (during a shutdown, no data has to be returned) * * If we don't have stored data to work from, read a SSL/TLS record first * (possibly multiple records if we still don't have anything to return). * * This function must handle any surprises the peer may have for us, such as * Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec * messages are treated as if they were handshake messages *if* the |recd_type| * argument is non NULL. * Also if record payloads contain fragments too small to process, we store * them until there is enough for the respective protocol (the record protocol * may use arbitrary fragmentation and even interleaving): * Change cipher spec protocol * just 1 byte needed, no need for keeping anything stored * Alert protocol * 2 bytes needed (AlertLevel, AlertDescription) * Handshake protocol * 4 bytes needed (HandshakeType, uint24 length) -- we just have * to detect unexpected Client Hello and Hello Request messages * here, anything else is handled by higher layers * Application data protocol * none of our business */ int ssl3_read_bytes(SSL *s, int type, int *recvd_type, unsigned char *buf, size_t len, int peek, size_t *readbytes) { int i, j, ret; size_t n, curr_rec, num_recs, totalbytes; SSL3_RECORD *rr; SSL3_BUFFER *rbuf; void (*cb) (const SSL *ssl, int type2, int val) = NULL; int is_tls13 = SSL_IS_TLS13(s); rbuf = &s->rlayer.rbuf; if (!SSL3_BUFFER_is_initialised(rbuf)) { /* Not initialized yet */ if (!ssl3_setup_read_buffer(s)) { /* SSLfatal() already called */ return -1; } } if ((type && (type != SSL3_RT_APPLICATION_DATA) && (type != SSL3_RT_HANDSHAKE)) || (peek && (type != SSL3_RT_APPLICATION_DATA))) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR); return -1; } if ((type == SSL3_RT_HANDSHAKE) && (s->rlayer.handshake_fragment_len > 0)) /* (partially) satisfy request from storage */ { unsigned char *src = s->rlayer.handshake_fragment; unsigned char *dst = buf; unsigned int k; /* peek == 0 */ n = 0; while ((len > 0) && (s->rlayer.handshake_fragment_len > 0)) { *dst++ = *src++; len--; s->rlayer.handshake_fragment_len--; n++; } /* move any remaining fragment bytes: */ for (k = 0; k < s->rlayer.handshake_fragment_len; k++) s->rlayer.handshake_fragment[k] = *src++; if (recvd_type != NULL) *recvd_type = SSL3_RT_HANDSHAKE; *readbytes = n; return 1; } /* * Now s->rlayer.handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE. */ if (!ossl_statem_get_in_handshake(s) && SSL_in_init(s)) { /* type == SSL3_RT_APPLICATION_DATA */ i = s->handshake_func(s); /* SSLfatal() already called */ if (i < 0) return i; if (i == 0) return -1; } start: s->rwstate = SSL_NOTHING; /*- * For each record 'i' up to |num_recs] * rr[i].type - is the type of record * rr[i].data, - data * rr[i].off, - offset into 'data' for next read * rr[i].length, - number of bytes. */ rr = s->rlayer.rrec; num_recs = RECORD_LAYER_get_numrpipes(&s->rlayer); do { /* get new records if necessary */ if (num_recs == 0) { ret = ssl3_get_record(s); if (ret <= 0) { /* SSLfatal() already called if appropriate */ return ret; } num_recs = RECORD_LAYER_get_numrpipes(&s->rlayer); if (num_recs == 0) { /* Shouldn't happen */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR); return -1; } } /* Skip over any records we have already read */ for (curr_rec = 0; curr_rec < num_recs && SSL3_RECORD_is_read(&rr[curr_rec]); curr_rec++) ; if (curr_rec == num_recs) { RECORD_LAYER_set_numrpipes(&s->rlayer, 0); num_recs = 0; curr_rec = 0; } } while (num_recs == 0); rr = &rr[curr_rec]; /* * Reset the count of consecutive warning alerts if we've got a non-empty * record that isn't an alert. */ if (SSL3_RECORD_get_type(rr) != SSL3_RT_ALERT && SSL3_RECORD_get_length(rr) != 0) s->rlayer.alert_count = 0; /* we now have a packet which can be read and processed */ if (s->s3->change_cipher_spec /* set when we receive ChangeCipherSpec, * reset by ssl3_get_finished */ && (SSL3_RECORD_get_type(rr) != SSL3_RT_HANDSHAKE)) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_READ_BYTES, SSL_R_DATA_BETWEEN_CCS_AND_FINISHED); return -1; } /* * If the other end has shut down, throw anything we read away (even in * 'peek' mode) */ if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { SSL3_RECORD_set_length(rr, 0); s->rwstate = SSL_NOTHING; return 0; } if (type == SSL3_RECORD_get_type(rr) || (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC && type == SSL3_RT_HANDSHAKE && recvd_type != NULL && !is_tls13)) { /* * SSL3_RT_APPLICATION_DATA or * SSL3_RT_HANDSHAKE or * SSL3_RT_CHANGE_CIPHER_SPEC */ /* * make sure that we are not getting application data when we are * doing a handshake for the first time */ if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) && (s->enc_read_ctx == NULL)) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_READ_BYTES, SSL_R_APP_DATA_IN_HANDSHAKE); return -1; } if (type == SSL3_RT_HANDSHAKE && SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC && s->rlayer.handshake_fragment_len > 0) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_READ_BYTES, SSL_R_CCS_RECEIVED_EARLY); return -1; } if (recvd_type != NULL) *recvd_type = SSL3_RECORD_get_type(rr); if (len == 0) { /* * Mark a zero length record as read. This ensures multiple calls to * SSL_read() with a zero length buffer will eventually cause * SSL_pending() to report data as being available. */ if (SSL3_RECORD_get_length(rr) == 0) SSL3_RECORD_set_read(rr); return 0; } totalbytes = 0; do { if (len - totalbytes > SSL3_RECORD_get_length(rr)) n = SSL3_RECORD_get_length(rr); else n = len - totalbytes; memcpy(buf, &(rr->data[rr->off]), n); buf += n; if (peek) { /* Mark any zero length record as consumed CVE-2016-6305 */ if (SSL3_RECORD_get_length(rr) == 0) SSL3_RECORD_set_read(rr); } else { SSL3_RECORD_sub_length(rr, n); SSL3_RECORD_add_off(rr, n); if (SSL3_RECORD_get_length(rr) == 0) { s->rlayer.rstate = SSL_ST_READ_HEADER; SSL3_RECORD_set_off(rr, 0); SSL3_RECORD_set_read(rr); } } if (SSL3_RECORD_get_length(rr) == 0 || (peek && n == SSL3_RECORD_get_length(rr))) { curr_rec++; rr++; } totalbytes += n; } while (type == SSL3_RT_APPLICATION_DATA && curr_rec < num_recs && totalbytes < len); if (totalbytes == 0) { /* We must have read empty records. Get more data */ goto start; } if (!peek && curr_rec == num_recs && (s->mode & SSL_MODE_RELEASE_BUFFERS) && SSL3_BUFFER_get_left(rbuf) == 0) ssl3_release_read_buffer(s); *readbytes = totalbytes; return 1; } /* * If we get here, then type != rr->type; if we have a handshake message, * then it was unexpected (Hello Request or Client Hello) or invalid (we * were actually expecting a CCS). */ /* * Lets just double check that we've not got an SSLv2 record */ if (rr->rec_version == SSL2_VERSION) { /* * Should never happen. ssl3_get_record() should only give us an SSLv2 * record back if this is the first packet and we are looking for an * initial ClientHello. Therefore |type| should always be equal to * |rr->type|. If not then something has gone horribly wrong */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR); return -1; } if (s->method->version == TLS_ANY_VERSION && (s->server || rr->type != SSL3_RT_ALERT)) { /* * If we've got this far and still haven't decided on what version * we're using then this must be a client side alert we're dealing with * (we don't allow heartbeats yet). We shouldn't be receiving anything * other than a ClientHello if we are a server. */ s->version = rr->rec_version; SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_MESSAGE); return -1; } /*- * s->rlayer.handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAKE; * (Possibly rr is 'empty' now, i.e. rr->length may be 0.) */ if (SSL3_RECORD_get_type(rr) == SSL3_RT_ALERT) { unsigned int alert_level, alert_descr; unsigned char *alert_bytes = SSL3_RECORD_get_data(rr) + SSL3_RECORD_get_off(rr); PACKET alert; if (!PACKET_buf_init(&alert, alert_bytes, SSL3_RECORD_get_length(rr)) || !PACKET_get_1(&alert, &alert_level) || !PACKET_get_1(&alert, &alert_descr) || PACKET_remaining(&alert) != 0) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_READ_BYTES, SSL_R_INVALID_ALERT); return -1; } if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_ALERT, alert_bytes, 2, s, s->msg_callback_arg); if (s->info_callback != NULL) cb = s->info_callback; else if (s->ctx->info_callback != NULL) cb = s->ctx->info_callback; if (cb != NULL) { j = (alert_level << 8) | alert_descr; cb(s, SSL_CB_READ_ALERT, j); } if (alert_level == SSL3_AL_WARNING || (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED)) { s->s3->warn_alert = alert_descr; SSL3_RECORD_set_read(rr); s->rlayer.alert_count++; if (s->rlayer.alert_count == MAX_WARN_ALERT_COUNT) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_READ_BYTES, SSL_R_TOO_MANY_WARN_ALERTS); return -1; } } /* * Apart from close_notify the only other warning alert in TLSv1.3 * is user_cancelled - which we just ignore. */ if (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED) { goto start; } else if (alert_descr == SSL_AD_CLOSE_NOTIFY && (is_tls13 || alert_level == SSL3_AL_WARNING)) { s->shutdown |= SSL_RECEIVED_SHUTDOWN; return 0; } else if (alert_level == SSL3_AL_FATAL || is_tls13) { char tmp[16]; s->rwstate = SSL_NOTHING; s->s3->fatal_alert = alert_descr; SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_READ_BYTES, SSL_AD_REASON_OFFSET + alert_descr); BIO_snprintf(tmp, sizeof tmp, "%d", alert_descr); ERR_add_error_data(2, "SSL alert number ", tmp); s->shutdown |= SSL_RECEIVED_SHUTDOWN; SSL3_RECORD_set_read(rr); SSL_CTX_remove_session(s->session_ctx, s->session); return 0; } else if (alert_descr == SSL_AD_NO_RENEGOTIATION) { /* * This is a warning but we receive it if we requested * renegotiation and the peer denied it. Terminate with a fatal * alert because if application tried to renegotiate it * presumably had a good reason and expects it to succeed. In * future we might have a renegotiation where we don't care if * the peer refused it where we carry on. */ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL3_READ_BYTES, SSL_R_NO_RENEGOTIATION); return -1; } else if (alert_level == SSL3_AL_WARNING) { /* We ignore any other warning alert in TLSv1.2 and below */ goto start; } SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL3_READ_BYTES, SSL_R_UNKNOWN_ALERT_TYPE); return -1; } /* * If we've sent a close_notify but not yet received one back then ditch * anything we read. */ if ((s->shutdown & SSL_SENT_SHUTDOWN) != 0) { /* * In TLSv1.3 this could get problematic if we receive a KeyUpdate * message after we sent a close_notify because we're about to ditch it, * so we won't be able to read a close_notify sent afterwards! We don't * support that. */ SSL3_RECORD_set_length(rr, 0); SSL3_RECORD_set_read(rr); if (SSL3_RECORD_get_type(rr) == SSL3_RT_HANDSHAKE) { BIO *rbio; if ((s->mode & SSL_MODE_AUTO_RETRY) != 0) goto start; s->rwstate = SSL_READING; rbio = SSL_get_rbio(s); BIO_clear_retry_flags(rbio); BIO_set_retry_read(rbio); } else { /* * The peer is continuing to send application data, but we have * already sent close_notify. If this was expected we should have * been called via SSL_read() and this would have been handled * above. * No alert sent because we already sent close_notify */ SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_READ_BYTES, SSL_R_APPLICATION_DATA_AFTER_CLOSE_NOTIFY); } return -1; } /* * For handshake data we have 'fragment' storage, so fill that so that we * can process the header at a fixed place. This is done after the * "SHUTDOWN" code above to avoid filling the fragment storage with data * that we're just going to discard. */ if (SSL3_RECORD_get_type(rr) == SSL3_RT_HANDSHAKE) { size_t dest_maxlen = sizeof(s->rlayer.handshake_fragment); unsigned char *dest = s->rlayer.handshake_fragment; size_t *dest_len = &s->rlayer.handshake_fragment_len; n = dest_maxlen - *dest_len; /* available space in 'dest' */ if (SSL3_RECORD_get_length(rr) < n) n = SSL3_RECORD_get_length(rr); /* available bytes */ /* now move 'n' bytes: */ memcpy(dest + *dest_len, SSL3_RECORD_get_data(rr) + SSL3_RECORD_get_off(rr), n); SSL3_RECORD_add_off(rr, n); SSL3_RECORD_sub_length(rr, n); *dest_len += n; if (SSL3_RECORD_get_length(rr) == 0) SSL3_RECORD_set_read(rr); if (*dest_len < dest_maxlen) goto start; /* fragment was too small */ } if (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_READ_BYTES, SSL_R_CCS_RECEIVED_EARLY); return -1; } /* * Unexpected handshake message (ClientHello, NewSessionTicket (TLS1.3) or * protocol violation) */ if ((s->rlayer.handshake_fragment_len >= 4) && !ossl_statem_get_in_handshake(s)) { int ined = (s->early_data_state == SSL_EARLY_DATA_READING); /* We found handshake data, so we're going back into init */ ossl_statem_set_in_init(s, 1); i = s->handshake_func(s); /* SSLfatal() already called if appropriate */ if (i < 0) return i; if (i == 0) { return -1; } /* * If we were actually trying to read early data and we found a * handshake message, then we don't want to continue to try and read * the application data any more. It won't be "early" now. */ if (ined) return -1; if (!(s->mode & SSL_MODE_AUTO_RETRY)) { if (SSL3_BUFFER_get_left(rbuf) == 0) { /* no read-ahead left? */ BIO *bio; /* * In the case where we try to read application data, but we * trigger an SSL handshake, we return -1 with the retry * option set. Otherwise renegotiation may cause nasty * problems in the blocking world */ s->rwstate = SSL_READING; bio = SSL_get_rbio(s); BIO_clear_retry_flags(bio); BIO_set_retry_read(bio); return -1; } } goto start; } switch (SSL3_RECORD_get_type(rr)) { default: /* * TLS 1.0 and 1.1 say you SHOULD ignore unrecognised record types, but * TLS 1.2 says you MUST send an unexpected message alert. We use the * TLS 1.2 behaviour for all protocol versions to prevent issues where * no progress is being made and the peer continually sends unrecognised * record types, using up resources processing them. */ SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_RECORD); return -1; case SSL3_RT_CHANGE_CIPHER_SPEC: case SSL3_RT_ALERT: case SSL3_RT_HANDSHAKE: /* * we already handled all of these, with the possible exception of * SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but * that should not happen when type != rr->type */ SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR); return -1; case SSL3_RT_APPLICATION_DATA: /* * At this point, we were expecting handshake data, but have * application data. If the library was running inside ssl3_read() * (i.e. in_read_app_data is set) and it makes sense to read * application data at this point (session renegotiation not yet * started), we will indulge it. */ if (ossl_statem_app_data_allowed(s)) { s->s3->in_read_app_data = 2; return -1; } else if (ossl_statem_skip_early_data(s)) { /* * This can happen after a client sends a CH followed by early_data, * but the server responds with a HelloRetryRequest. The server * reads the next record from the client expecting to find a * plaintext ClientHello but gets a record which appears to be * application data. The trial decrypt "works" because null * decryption was applied. We just skip it and move on to the next * record. */ if (!early_data_count_ok(s, rr->length, EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) { /* SSLfatal() already called */ return -1; } SSL3_RECORD_set_read(rr); goto start; } else { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_RECORD); return -1; } } } void ssl3_record_sequence_update(unsigned char *seq) { int i; for (i = 7; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) break; } } /* * Returns true if the current rrec was sent in SSLv2 backwards compatible * format and false otherwise. */ int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl) { return SSL3_RECORD_is_sslv2_record(&rl->rrec[0]); } /* * Returns the length in bytes of the current rrec */ size_t RECORD_LAYER_get_rrec_length(RECORD_LAYER *rl) { return SSL3_RECORD_get_length(&rl->rrec[0]); }