/* * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "crypto/ctype.h" #include "crypto/lhash.h" #include "lhash_local.h" /* * A hashing implementation that appears to be based on the linear hashing * algorithm: * https://en.wikipedia.org/wiki/Linear_hashing * * Litwin, Witold (1980), "Linear hashing: A new tool for file and table * addressing", Proc. 6th Conference on Very Large Databases: 212-223 * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf * * From the Wikipedia article "Linear hashing is used in the BDB Berkeley * database system, which in turn is used by many software systems such as * OpenLDAP, using a C implementation derived from the CACM article and first * published on the Usenet in 1988 by Esmond Pitt." * * The CACM paper is available here: * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf */ #undef MIN_NODES #define MIN_NODES 16 #define UP_LOAD (2*LH_LOAD_MULT) /* load times 256 (default 2) */ #define DOWN_LOAD (LH_LOAD_MULT) /* load times 256 (default 1) */ static int expand(OPENSSL_LHASH *lh); static void contract(OPENSSL_LHASH *lh); static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash); static ossl_inline int tsan_lock(const OPENSSL_LHASH *lh) { #ifdef TSAN_REQUIRES_LOCKING if (!CRYPTO_THREAD_write_lock(lh->tsan_lock)) return 0; #endif return 1; } static ossl_inline void tsan_unlock(const OPENSSL_LHASH *lh) { #ifdef TSAN_REQUIRES_LOCKING CRYPTO_THREAD_unlock(lh->tsan_lock); #endif } OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c) { OPENSSL_LHASH *ret; if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { /* * Do not set the error code, because the ERR code uses LHASH * and we want to avoid possible endless error loop. * ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); */ return NULL; } if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL) goto err; #ifdef TSAN_REQUIRES_LOCKING if ((ret->tsan_lock = CRYPTO_THREAD_lock_new()) == NULL) goto err; #endif ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c); ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h); ret->num_nodes = MIN_NODES / 2; ret->num_alloc_nodes = MIN_NODES; ret->pmax = MIN_NODES / 2; ret->up_load = UP_LOAD; ret->down_load = DOWN_LOAD; return ret; err: OPENSSL_free(ret->b); OPENSSL_free(ret); return NULL; } void OPENSSL_LH_free(OPENSSL_LHASH *lh) { if (lh == NULL) return; OPENSSL_LH_flush(lh); #ifdef TSAN_REQUIRES_LOCKING CRYPTO_THREAD_lock_free(lh->tsan_lock); #endif OPENSSL_free(lh->b); OPENSSL_free(lh); } void OPENSSL_LH_flush(OPENSSL_LHASH *lh) { unsigned int i; OPENSSL_LH_NODE *n, *nn; if (lh == NULL) return; for (i = 0; i < lh->num_nodes; i++) { n = lh->b[i]; while (n != NULL) { nn = n->next; OPENSSL_free(n); n = nn; } lh->b[i] = NULL; } } void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data) { unsigned long hash; OPENSSL_LH_NODE *nn, **rn; void *ret; lh->error = 0; if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh)) return NULL; /* 'lh->error++' already done in 'expand' */ rn = getrn(lh, data, &hash); if (*rn == NULL) { if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) { lh->error++; return NULL; } nn->data = data; nn->next = NULL; nn->hash = hash; *rn = nn; ret = NULL; lh->num_insert++; lh->num_items++; } else { /* replace same key */ ret = (*rn)->data; (*rn)->data = data; lh->num_replace++; } return ret; } void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data) { unsigned long hash; OPENSSL_LH_NODE *nn, **rn; void *ret; lh->error = 0; rn = getrn(lh, data, &hash); if (*rn == NULL) { lh->num_no_delete++; return NULL; } else { nn = *rn; *rn = nn->next; ret = nn->data; OPENSSL_free(nn); lh->num_delete++; } lh->num_items--; if ((lh->num_nodes > MIN_NODES) && (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes))) contract(lh); return ret; } void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data) { unsigned long hash; OPENSSL_LH_NODE **rn; /*- * This should be atomic without tsan. * It's not clear why it was done this way and not elsewhere. */ tsan_store((TSAN_QUALIFIER int *)&lh->error, 0); rn = getrn(lh, data, &hash); if (tsan_lock(lh)) { tsan_counter(*rn == NULL ? &lh->num_retrieve_miss : &lh->num_retrieve); tsan_unlock(lh); } return *rn == NULL ? NULL : (*rn)->data; } static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg, OPENSSL_LH_DOALL_FUNC func, OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg) { int i; OPENSSL_LH_NODE *a, *n; if (lh == NULL) return; /* * reverse the order so we search from 'top to bottom' We were having * memory leaks otherwise */ for (i = lh->num_nodes - 1; i >= 0; i--) { a = lh->b[i]; while (a != NULL) { n = a->next; if (use_arg) func_arg(a->data, arg); else func(a->data); a = n; } } } void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func) { doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL); } void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg) { doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg); } static int expand(OPENSSL_LHASH *lh) { OPENSSL_LH_NODE **n, **n1, **n2, *np; unsigned int p, pmax, nni, j; unsigned long hash; nni = lh->num_alloc_nodes; p = lh->p; pmax = lh->pmax; if (p + 1 >= pmax) { j = nni * 2; n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j); if (n == NULL) { lh->error++; return 0; } lh->b = n; memset(n + nni, 0, sizeof(*n) * (j - nni)); lh->pmax = nni; lh->num_alloc_nodes = j; lh->num_expand_reallocs++; lh->p = 0; } else { lh->p++; } lh->num_nodes++; lh->num_expands++; n1 = &(lh->b[p]); n2 = &(lh->b[p + pmax]); *n2 = NULL; for (np = *n1; np != NULL;) { hash = np->hash; if ((hash % nni) != p) { /* move it */ *n1 = (*n1)->next; np->next = *n2; *n2 = np; } else n1 = &((*n1)->next); np = *n1; } return 1; } static void contract(OPENSSL_LHASH *lh) { OPENSSL_LH_NODE **n, *n1, *np; np = lh->b[lh->p + lh->pmax - 1]; lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */ if (lh->p == 0) { n = OPENSSL_realloc(lh->b, (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax)); if (n == NULL) { /* fputs("realloc error in lhash", stderr); */ lh->error++; return; } lh->num_contract_reallocs++; lh->num_alloc_nodes /= 2; lh->pmax /= 2; lh->p = lh->pmax - 1; lh->b = n; } else lh->p--; lh->num_nodes--; lh->num_contracts++; n1 = lh->b[(int)lh->p]; if (n1 == NULL) lh->b[(int)lh->p] = np; else { while (n1->next != NULL) n1 = n1->next; n1->next = np; } } static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash) { OPENSSL_LH_NODE **ret, *n1; unsigned long hash, nn; OPENSSL_LH_COMPFUNC cf; int do_tsan = 1; #ifdef TSAN_REQUIRES_LOCKING do_tsan = tsan_lock(lh); #endif hash = (*(lh->hash)) (data); if (do_tsan) tsan_counter(&lh->num_hash_calls); *rhash = hash; nn = hash % lh->pmax; if (nn < lh->p) nn = hash % lh->num_alloc_nodes; cf = lh->comp; ret = &(lh->b[(int)nn]); for (n1 = *ret; n1 != NULL; n1 = n1->next) { if (do_tsan) tsan_counter(&lh->num_hash_comps); if (n1->hash != hash) { ret = &(n1->next); continue; } if (do_tsan) tsan_counter(&lh->num_comp_calls); if (cf(n1->data, data) == 0) break; ret = &(n1->next); } if (do_tsan) tsan_unlock(lh); return ret; } /* * The following hash seems to work very well on normal text strings no * collisions on /usr/dict/words and it distributes on %2^n quite well, not * as good as MD5, but still good. */ unsigned long OPENSSL_LH_strhash(const char *c) { unsigned long ret = 0; long n; unsigned long v; int r; if ((c == NULL) || (*c == '\0')) return ret; n = 0x100; while (*c) { v = n | (*c); n += 0x100; r = (int)((v >> 2) ^ v) & 0x0f; ret = (ret << r) | (ret >> (32 - r)); ret &= 0xFFFFFFFFL; ret ^= v * v; c++; } return (ret >> 16) ^ ret; } unsigned long ossl_lh_strcasehash(const char *c) { unsigned long ret = 0; long n; unsigned long v; int r; if (c == NULL || *c == '\0') return ret; for (n = 0x100; *c != '\0'; n += 0x100) { v = n | ossl_tolower(*c); r = (int)((v >> 2) ^ v) & 0x0f; ret = (ret << r) | (ret >> (32 - r)); ret &= 0xFFFFFFFFL; ret ^= v * v; c++; } return (ret >> 16) ^ ret; } unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh) { return lh ? lh->num_items : 0; } unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh) { return lh->down_load; } void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load) { lh->down_load = down_load; } int OPENSSL_LH_error(OPENSSL_LHASH *lh) { return lh->error; }