/* ssl/ssl_ciph.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #ifndef OPENSSL_NO_COMP # include #endif #ifndef OPENSSL_NO_ENGINE # include #endif #include "ssl_locl.h" #define SSL_ENC_DES_IDX 0 #define SSL_ENC_3DES_IDX 1 #define SSL_ENC_RC4_IDX 2 #define SSL_ENC_RC2_IDX 3 #define SSL_ENC_IDEA_IDX 4 #define SSL_ENC_NULL_IDX 5 #define SSL_ENC_AES128_IDX 6 #define SSL_ENC_AES256_IDX 7 #define SSL_ENC_CAMELLIA128_IDX 8 #define SSL_ENC_CAMELLIA256_IDX 9 #define SSL_ENC_GOST89_IDX 10 #define SSL_ENC_SEED_IDX 11 #define SSL_ENC_AES128GCM_IDX 12 #define SSL_ENC_AES256GCM_IDX 13 #define SSL_ENC_AES128CCM_IDX 14 #define SSL_ENC_AES256CCM_IDX 15 #define SSL_ENC_AES128CCM8_IDX 16 #define SSL_ENC_AES256CCM8_IDX 17 #define SSL_ENC_NUM_IDX 18 /* NB: make sure indices in these tables match values above */ typedef struct { uint32_t mask; int nid; } ssl_cipher_table; /* Table of NIDs for each cipher */ static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = { {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */ {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */ {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */ {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */ {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */ {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */ {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */ {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */ {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */ {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */ {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */ {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */ {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */ {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */ {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */ {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */ {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */ {SSL_AES256CCM8, NID_aes_256_ccm} /* SSL_ENC_AES256CCM8_IDX 17 */ }; static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; #define SSL_COMP_NULL_IDX 0 #define SSL_COMP_ZLIB_IDX 1 #define SSL_COMP_NUM_IDX 2 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL; #define SSL_MD_MD5_IDX 0 #define SSL_MD_SHA1_IDX 1 #define SSL_MD_GOST94_IDX 2 #define SSL_MD_GOST89MAC_IDX 3 #define SSL_MD_SHA256_IDX 4 #define SSL_MD_SHA384_IDX 5 /* * Constant SSL_MAX_DIGEST equal to size of digests array should be defined * in the ssl_locl.h */ #define SSL_MD_NUM_IDX SSL_MAX_DIGEST /* NB: make sure indices in this table matches values above */ static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = { {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */ {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */ {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */ {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */ {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */ {SSL_SHA384, NID_sha384} /* SSL_MD_SHA384_IDX 5 */ }; static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = { NULL, NULL, NULL, NULL, NULL, NULL }; /* Utility function for table lookup */ static int ssl_cipher_info_find(const ssl_cipher_table * table, size_t table_cnt, uint32_t mask) { size_t i; for (i = 0; i < table_cnt; i++, table++) { if (table->mask == mask) return i; } return -1; } #define ssl_cipher_info_lookup(table, x) \ ssl_cipher_info_find(table, OSSL_NELEM(table), x) /* * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is * found */ static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = { EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef, EVP_PKEY_HMAC, EVP_PKEY_HMAC }; static int ssl_mac_secret_size[SSL_MD_NUM_IDX] = { 0, 0, 0, 0, 0, 0 }; static const int ssl_handshake_digest_flag[SSL_MD_NUM_IDX] = { SSL_HANDSHAKE_MAC_MD5, SSL_HANDSHAKE_MAC_SHA, SSL_HANDSHAKE_MAC_GOST94, 0, SSL_HANDSHAKE_MAC_SHA256, SSL_HANDSHAKE_MAC_SHA384 }; #define CIPHER_ADD 1 #define CIPHER_KILL 2 #define CIPHER_DEL 3 #define CIPHER_ORD 4 #define CIPHER_SPECIAL 5 typedef struct cipher_order_st { const SSL_CIPHER *cipher; int active; int dead; struct cipher_order_st *next, *prev; } CIPHER_ORDER; static const SSL_CIPHER cipher_aliases[] = { /* "ALL" doesn't include eNULL (must be specifically enabled) */ {0, SSL_TXT_ALL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, 0}, /* "COMPLEMENTOFALL" */ {0, SSL_TXT_CMPALL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0}, /* * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in * ALL!) */ {0, SSL_TXT_CMPDEF, 0, 0, 0, ~SSL_eNULL, 0, 0, SSL_NOT_DEFAULT, 0, 0, 0}, /* * key exchange aliases (some of those using only a single bit here * combine multiple key exchange algs according to the RFCs, e.g. kDHE * combines DHE_DSS and DHE_RSA) */ {0, SSL_TXT_kRSA, 0, SSL_kRSA, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kDHr, 0, SSL_kDHr, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kDHd, 0, SSL_kDHd, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kDH, 0, SSL_kDHr | SSL_kDHd, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kEDH, 0, SSL_kDHE, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kDHE, 0, SSL_kDHE, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_DH, 0, SSL_kDHr | SSL_kDHd | SSL_kDHE, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kECDHr, 0, SSL_kECDHr, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kECDHe, 0, SSL_kECDHe, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kECDH, 0, SSL_kECDHr | SSL_kECDHe, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kEECDH, 0, SSL_kECDHE, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kECDHE, 0, SSL_kECDHE, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_ECDH, 0, SSL_kECDHr | SSL_kECDHe | SSL_kECDHE, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kPSK, 0, SSL_kPSK, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kRSAPSK, 0, SSL_kRSAPSK, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kECDHEPSK, 0, SSL_kECDHEPSK, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kDHEPSK, 0, SSL_kDHEPSK, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kSRP, 0, SSL_kSRP, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kGOST, 0, SSL_kGOST, 0, 0, 0, 0, 0, 0, 0, 0}, /* server authentication aliases */ {0, SSL_TXT_aRSA, 0, 0, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aDSS, 0, 0, SSL_aDSS, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_DSS, 0, 0, SSL_aDSS, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aNULL, 0, 0, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, /* no such ciphersuites supported! */ {0, SSL_TXT_aDH, 0, 0, SSL_aDH, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aECDH, 0, 0, SSL_aECDH, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_ECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aPSK, 0, 0, SSL_aPSK, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aGOST01, 0, 0, SSL_aGOST01, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aGOST, 0, 0, SSL_aGOST01, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aSRP, 0, 0, SSL_aSRP, 0, 0, 0, 0, 0, 0, 0}, /* aliases combining key exchange and server authentication */ {0, SSL_TXT_EDH, 0, SSL_kDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_DHE, 0, SSL_kDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_EECDH, 0, SSL_kECDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_ECDHE, 0, SSL_kECDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_NULL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_RSA, 0, SSL_kRSA, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_ADH, 0, SSL_kDHE, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AECDH, 0, SSL_kECDHE, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_PSK, 0, SSL_PSK, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_SRP, 0, SSL_kSRP, 0, 0, 0, 0, 0, 0, 0, 0}, /* symmetric encryption aliases */ {0, SSL_TXT_DES, 0, 0, 0, SSL_DES, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_3DES, 0, 0, 0, SSL_3DES, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_RC4, 0, 0, 0, SSL_RC4, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_RC2, 0, 0, 0, SSL_RC2, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_IDEA, 0, 0, 0, SSL_IDEA, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_SEED, 0, 0, 0, SSL_SEED, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_eNULL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AES128, 0, 0, 0, SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AES256, 0, 0, 0, SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AES, 0, 0, 0, SSL_AES, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AES_GCM, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AES_CCM, 0, 0, 0, SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AES_CCM_8, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_CAMELLIA128, 0, 0, 0, SSL_CAMELLIA128, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_CAMELLIA256, 0, 0, 0, SSL_CAMELLIA256, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_CAMELLIA, 0, 0, 0, SSL_CAMELLIA128 | SSL_CAMELLIA256, 0, 0, 0, 0, 0, 0}, /* MAC aliases */ {0, SSL_TXT_MD5, 0, 0, 0, 0, SSL_MD5, 0, 0, 0, 0, 0}, {0, SSL_TXT_SHA1, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0}, {0, SSL_TXT_SHA, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0}, {0, SSL_TXT_GOST94, 0, 0, 0, 0, SSL_GOST94, 0, 0, 0, 0, 0}, {0, SSL_TXT_GOST89MAC, 0, 0, 0, 0, SSL_GOST89MAC, 0, 0, 0, 0, 0}, {0, SSL_TXT_SHA256, 0, 0, 0, 0, SSL_SHA256, 0, 0, 0, 0, 0}, {0, SSL_TXT_SHA384, 0, 0, 0, 0, SSL_SHA384, 0, 0, 0, 0, 0}, /* protocol version aliases */ {0, SSL_TXT_SSLV3, 0, 0, 0, 0, 0, SSL_SSLV3, 0, 0, 0, 0}, {0, SSL_TXT_TLSV1, 0, 0, 0, 0, 0, SSL_TLSV1, 0, 0, 0, 0}, {0, SSL_TXT_TLSV1_2, 0, 0, 0, 0, 0, SSL_TLSV1_2, 0, 0, 0, 0}, /* export flag */ {0, SSL_TXT_EXP, 0, 0, 0, 0, 0, 0, SSL_EXPORT, 0, 0, 0}, {0, SSL_TXT_EXPORT, 0, 0, 0, 0, 0, 0, SSL_EXPORT, 0, 0, 0}, /* strength classes */ {0, SSL_TXT_EXP40, 0, 0, 0, 0, 0, 0, SSL_EXP40, 0, 0, 0}, {0, SSL_TXT_EXP56, 0, 0, 0, 0, 0, 0, SSL_EXP56, 0, 0, 0}, {0, SSL_TXT_LOW, 0, 0, 0, 0, 0, 0, SSL_LOW, 0, 0, 0}, {0, SSL_TXT_MEDIUM, 0, 0, 0, 0, 0, 0, SSL_MEDIUM, 0, 0, 0}, {0, SSL_TXT_HIGH, 0, 0, 0, 0, 0, 0, SSL_HIGH, 0, 0, 0}, /* FIPS 140-2 approved ciphersuite */ {0, SSL_TXT_FIPS, 0, 0, 0, ~SSL_eNULL, 0, 0, SSL_FIPS, 0, 0, 0}, /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */ {0, SSL3_TXT_EDH_DSS_DES_40_CBC_SHA, 0, SSL_kDHE, SSL_aDSS, SSL_DES, SSL_SHA1, SSL_SSLV3, SSL_EXPORT | SSL_EXP40, 0, 0, 0,}, {0, SSL3_TXT_EDH_DSS_DES_64_CBC_SHA, 0, SSL_kDHE, SSL_aDSS, SSL_DES, SSL_SHA1, SSL_SSLV3, SSL_NOT_EXP | SSL_LOW, 0, 0, 0,}, {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, 0, SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, SSL_SSLV3, SSL_NOT_EXP | SSL_HIGH | SSL_FIPS, 0, 0, 0,}, {0, SSL3_TXT_EDH_RSA_DES_40_CBC_SHA, 0, SSL_kDHE, SSL_aRSA, SSL_DES, SSL_SHA1, SSL_SSLV3, SSL_EXPORT | SSL_EXP40, 0, 0, 0,}, {0, SSL3_TXT_EDH_RSA_DES_64_CBC_SHA, 0, SSL_kDHE, SSL_aRSA, SSL_DES, SSL_SHA1, SSL_SSLV3, SSL_NOT_EXP | SSL_LOW, 0, 0, 0,}, {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, 0, SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, SSL_SSLV3, SSL_NOT_EXP | SSL_HIGH | SSL_FIPS, 0, 0, 0,}, }; /* * Search for public key algorithm with given name and return its pkey_id if * it is available. Otherwise return 0 */ #ifdef OPENSSL_NO_ENGINE static int get_optional_pkey_id(const char *pkey_name) { const EVP_PKEY_ASN1_METHOD *ameth; int pkey_id = 0; ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1); if (ameth) { EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth); } return pkey_id; } #else static int get_optional_pkey_id(const char *pkey_name) { const EVP_PKEY_ASN1_METHOD *ameth; ENGINE *tmpeng = NULL; int pkey_id = 0; ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1); if (ameth) { EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth); } if (tmpeng) ENGINE_finish(tmpeng); return pkey_id; } #endif /* masks of disabled algorithms */ static uint32_t disabled_enc_mask; static uint32_t disabled_mac_mask; static uint32_t disabled_mkey_mask; static uint32_t disabled_auth_mask; void ssl_load_ciphers(void) { size_t i; const ssl_cipher_table *t; disabled_enc_mask = 0; for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) { if (t->nid == NID_undef) { ssl_cipher_methods[i] = NULL; } else { const EVP_CIPHER *cipher = EVP_get_cipherbynid(t->nid); ssl_cipher_methods[i] = cipher; if (cipher == NULL) disabled_enc_mask |= t->mask; } } #ifdef SSL_FORBID_ENULL disabled_enc_mask |= SSL_eNULL; #endif disabled_mac_mask = 0; for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) { const EVP_MD *md = EVP_get_digestbynid(t->nid); ssl_digest_methods[i] = md; if (md == NULL) { disabled_mac_mask |= t->mask; } else { ssl_mac_secret_size[i] = EVP_MD_size(md); OPENSSL_assert(ssl_mac_secret_size[i] >= 0); } } /* Make sure we can access MD5 and SHA1 */ OPENSSL_assert(ssl_digest_methods[SSL_MD_MD5_IDX] != NULL); OPENSSL_assert(ssl_digest_methods[SSL_MD_SHA1_IDX] != NULL); disabled_mkey_mask = 0; disabled_auth_mask = 0; #ifdef OPENSSL_NO_RSA disabled_mkey_mask |= SSL_kRSA | SSL_kRSAPSK; disabled_auth_mask |= SSL_aRSA; #endif #ifdef OPENSSL_NO_DSA disabled_auth_mask |= SSL_aDSS; #endif #ifdef OPENSSL_NO_DH disabled_mkey_mask |= SSL_kDHr | SSL_kDHd | SSL_kDHE | SSL_kDHEPSK; disabled_auth_mask |= SSL_aDH; #endif #ifdef OPENSSL_NO_EC disabled_mkey_mask |= SSL_kECDHe | SSL_kECDHr | SSL_kECDHEPSK; disabled_auth_mask |= SSL_aECDSA | SSL_aECDH; #endif #ifdef OPENSSL_NO_PSK disabled_mkey_mask |= SSL_PSK; disabled_auth_mask |= SSL_aPSK; #endif #ifdef OPENSSL_NO_SRP disabled_mkey_mask |= SSL_kSRP; #endif /* * Check for presence of GOST 34.10 algorithms, and if they are not * present, disable appropriate auth and key exchange */ ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac"); if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) { ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32; } else { disabled_mac_mask |= SSL_GOST89MAC; } if (!get_optional_pkey_id("gost2001")) disabled_auth_mask |= SSL_aGOST01; /* * Disable GOST key exchange if no GOST signature algs are available * */ if ((disabled_auth_mask & SSL_aGOST01) == SSL_aGOST01) disabled_mkey_mask |= SSL_kGOST; } #ifndef OPENSSL_NO_COMP static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b) { return ((*a)->id - (*b)->id); } static void load_builtin_compressions(void) { int got_write_lock = 0; CRYPTO_r_lock(CRYPTO_LOCK_SSL); if (ssl_comp_methods == NULL) { CRYPTO_r_unlock(CRYPTO_LOCK_SSL); CRYPTO_w_lock(CRYPTO_LOCK_SSL); got_write_lock = 1; if (ssl_comp_methods == NULL) { SSL_COMP *comp = NULL; COMP_METHOD *method = COMP_zlib(); MemCheck_off(); ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp); if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) { comp = OPENSSL_malloc(sizeof(*comp)); if (comp != NULL) { comp->method = method; comp->id = SSL_COMP_ZLIB_IDX; comp->name = COMP_get_name(method); sk_SSL_COMP_push(ssl_comp_methods, comp); sk_SSL_COMP_sort(ssl_comp_methods); } } MemCheck_on(); } } if (got_write_lock) CRYPTO_w_unlock(CRYPTO_LOCK_SSL); else CRYPTO_r_unlock(CRYPTO_LOCK_SSL); } #endif int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size, SSL_COMP **comp, int use_etm) { int i; const SSL_CIPHER *c; c = s->cipher; if (c == NULL) return (0); if (comp != NULL) { SSL_COMP ctmp; #ifndef OPENSSL_NO_COMP load_builtin_compressions(); #endif *comp = NULL; ctmp.id = s->compress_meth; if (ssl_comp_methods != NULL) { i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp); if (i >= 0) *comp = sk_SSL_COMP_value(ssl_comp_methods, i); else *comp = NULL; } /* If were only interested in comp then return success */ if ((enc == NULL) && (md == NULL)) return 1; } if ((enc == NULL) || (md == NULL)) return 0; i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc); if (i == -1) *enc = NULL; else { if (i == SSL_ENC_NULL_IDX) *enc = EVP_enc_null(); else *enc = ssl_cipher_methods[i]; } i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac); if (i == -1) { *md = NULL; if (mac_pkey_type != NULL) *mac_pkey_type = NID_undef; if (mac_secret_size != NULL) *mac_secret_size = 0; if (c->algorithm_mac == SSL_AEAD) mac_pkey_type = NULL; } else { *md = ssl_digest_methods[i]; if (mac_pkey_type != NULL) *mac_pkey_type = ssl_mac_pkey_id[i]; if (mac_secret_size != NULL) *mac_secret_size = ssl_mac_secret_size[i]; } if ((*enc != NULL) && (*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER)) && (!mac_pkey_type || *mac_pkey_type != NID_undef)) { const EVP_CIPHER *evp; if (use_etm) return 1; if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR || s->ssl_version < TLS1_VERSION) return 1; if (FIPS_mode()) return 1; if (c->algorithm_enc == SSL_RC4 && c->algorithm_mac == SSL_MD5 && (evp = EVP_get_cipherbyname("RC4-HMAC-MD5"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES128 && c->algorithm_mac == SSL_SHA1 && (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES256 && c->algorithm_mac == SSL_SHA1 && (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES128 && c->algorithm_mac == SSL_SHA256 && (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA256"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES256 && c->algorithm_mac == SSL_SHA256 && (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA256"))) *enc = evp, *md = NULL; return (1); } else return (0); } int ssl_get_handshake_digest(int idx, long *mask, const EVP_MD **md) { if (idx < 0 || idx >= SSL_MD_NUM_IDX) { return 0; } *mask = ssl_handshake_digest_flag[idx]; if (*mask) *md = ssl_digest_methods[idx]; else *md = NULL; return 1; } #define ITEM_SEP(a) \ (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *tail) return; if (curr == *head) *head = curr->next; if (curr->prev != NULL) curr->prev->next = curr->next; if (curr->next != NULL) curr->next->prev = curr->prev; (*tail)->next = curr; curr->prev = *tail; curr->next = NULL; *tail = curr; } static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *head) return; if (curr == *tail) *tail = curr->prev; if (curr->next != NULL) curr->next->prev = curr->prev; if (curr->prev != NULL) curr->prev->next = curr->next; (*head)->prev = curr; curr->next = *head; curr->prev = NULL; *head = curr; } static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, int num_of_ciphers, uint32_t disabled_mkey, uint32_t disabled_auth, uint32_t disabled_enc, uint32_t disabled_mac, uint32_t disabled_ssl, CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int i, co_list_num; const SSL_CIPHER *c; /* * We have num_of_ciphers descriptions compiled in, depending on the * method selected (SSLv3, TLSv1 etc). * These will later be sorted in a linked list with at most num * entries. */ /* Get the initial list of ciphers */ co_list_num = 0; /* actual count of ciphers */ for (i = 0; i < num_of_ciphers; i++) { c = ssl_method->get_cipher(i); /* drop those that use any of that is not available */ if ((c != NULL) && c->valid && (!FIPS_mode() || (c->algo_strength & SSL_FIPS)) && !(c->algorithm_mkey & disabled_mkey) && !(c->algorithm_auth & disabled_auth) && !(c->algorithm_enc & disabled_enc) && !(c->algorithm_mac & disabled_mac) && !(c->algorithm_ssl & disabled_ssl)) { co_list[co_list_num].cipher = c; co_list[co_list_num].next = NULL; co_list[co_list_num].prev = NULL; co_list[co_list_num].active = 0; co_list_num++; /* * if (!sk_push(ca_list,(char *)c)) goto err; */ } } /* * Prepare linked list from list entries */ if (co_list_num > 0) { co_list[0].prev = NULL; if (co_list_num > 1) { co_list[0].next = &co_list[1]; for (i = 1; i < co_list_num - 1; i++) { co_list[i].prev = &co_list[i - 1]; co_list[i].next = &co_list[i + 1]; } co_list[co_list_num - 1].prev = &co_list[co_list_num - 2]; } co_list[co_list_num - 1].next = NULL; *head_p = &co_list[0]; *tail_p = &co_list[co_list_num - 1]; } } static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, int num_of_group_aliases, uint32_t disabled_mkey, uint32_t disabled_auth, uint32_t disabled_enc, uint32_t disabled_mac, uint32_t disabled_ssl, CIPHER_ORDER *head) { CIPHER_ORDER *ciph_curr; const SSL_CIPHER **ca_curr; int i; uint32_t mask_mkey = ~disabled_mkey; uint32_t mask_auth = ~disabled_auth; uint32_t mask_enc = ~disabled_enc; uint32_t mask_mac = ~disabled_mac; uint32_t mask_ssl = ~disabled_ssl; /* * First, add the real ciphers as already collected */ ciph_curr = head; ca_curr = ca_list; while (ciph_curr != NULL) { *ca_curr = ciph_curr->cipher; ca_curr++; ciph_curr = ciph_curr->next; } /* * Now we add the available ones from the cipher_aliases[] table. * They represent either one or more algorithms, some of which * in any affected category must be supported (set in enabled_mask), * or represent a cipher strength value (will be added in any case because algorithms=0). */ for (i = 0; i < num_of_group_aliases; i++) { uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey; uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth; uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc; uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac; uint32_t algorithm_ssl = cipher_aliases[i].algorithm_ssl; if (algorithm_mkey) if ((algorithm_mkey & mask_mkey) == 0) continue; if (algorithm_auth) if ((algorithm_auth & mask_auth) == 0) continue; if (algorithm_enc) if ((algorithm_enc & mask_enc) == 0) continue; if (algorithm_mac) if ((algorithm_mac & mask_mac) == 0) continue; if (algorithm_ssl) if ((algorithm_ssl & mask_ssl) == 0) continue; *ca_curr = (SSL_CIPHER *)(cipher_aliases + i); ca_curr++; } *ca_curr = NULL; /* end of list */ } static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth, uint32_t alg_enc, uint32_t alg_mac, uint32_t alg_ssl, uint32_t algo_strength, int rule, int32_t strength_bits, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { CIPHER_ORDER *head, *tail, *curr, *next, *last; const SSL_CIPHER *cp; int reverse = 0; #ifdef CIPHER_DEBUG fprintf(stderr, "Applying rule %d with %08lx/%08lx/%08lx/%08lx/%08lx %08lx (%d)\n", rule, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength, strength_bits); #endif if (rule == CIPHER_DEL) reverse = 1; /* needed to maintain sorting between * currently deleted ciphers */ head = *head_p; tail = *tail_p; if (reverse) { next = tail; last = head; } else { next = head; last = tail; } curr = NULL; for (;;) { if (curr == last) break; curr = next; if (curr == NULL) break; next = reverse ? curr->prev : curr->next; cp = curr->cipher; /* * Selection criteria is either the value of strength_bits * or the algorithms used. */ if (strength_bits >= 0) { if (strength_bits != cp->strength_bits) continue; } else { #ifdef CIPHER_DEBUG fprintf(stderr, "\nName: %s:\nAlgo = %08lx/%08lx/%08lx/%08lx/%08lx Algo_strength = %08lx\n", cp->name, cp->algorithm_mkey, cp->algorithm_auth, cp->algorithm_enc, cp->algorithm_mac, cp->algorithm_ssl, cp->algo_strength); #endif #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL if (cipher_id && cipher_id != cp->id) continue; #endif if (alg_mkey && !(alg_mkey & cp->algorithm_mkey)) continue; if (alg_auth && !(alg_auth & cp->algorithm_auth)) continue; if (alg_enc && !(alg_enc & cp->algorithm_enc)) continue; if (alg_mac && !(alg_mac & cp->algorithm_mac)) continue; if (alg_ssl && !(alg_ssl & cp->algorithm_ssl)) continue; if ((algo_strength & SSL_EXP_MASK) && !(algo_strength & SSL_EXP_MASK & cp->algo_strength)) continue; if ((algo_strength & SSL_STRONG_MASK) && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength)) continue; if ((algo_strength & SSL_DEFAULT_MASK) && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength)) continue; } #ifdef CIPHER_DEBUG fprintf(stderr, "Action = %d\n", rule); #endif /* add the cipher if it has not been added yet. */ if (rule == CIPHER_ADD) { /* reverse == 0 */ if (!curr->active) { ll_append_tail(&head, curr, &tail); curr->active = 1; } } /* Move the added cipher to this location */ else if (rule == CIPHER_ORD) { /* reverse == 0 */ if (curr->active) { ll_append_tail(&head, curr, &tail); } } else if (rule == CIPHER_DEL) { /* reverse == 1 */ if (curr->active) { /* * most recently deleted ciphersuites get best positions for * any future CIPHER_ADD (note that the CIPHER_DEL loop works * in reverse to maintain the order) */ ll_append_head(&head, curr, &tail); curr->active = 0; } } else if (rule == CIPHER_KILL) { /* reverse == 0 */ if (head == curr) head = curr->next; else curr->prev->next = curr->next; if (tail == curr) tail = curr->prev; curr->active = 0; if (curr->next != NULL) curr->next->prev = curr->prev; if (curr->prev != NULL) curr->prev->next = curr->next; curr->next = NULL; curr->prev = NULL; } } *head_p = head; *tail_p = tail; } static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int32_t max_strength_bits; int i, *number_uses; CIPHER_ORDER *curr; /* * This routine sorts the ciphers with descending strength. The sorting * must keep the pre-sorted sequence, so we apply the normal sorting * routine as '+' movement to the end of the list. */ max_strength_bits = 0; curr = *head_p; while (curr != NULL) { if (curr->active && (curr->cipher->strength_bits > max_strength_bits)) max_strength_bits = curr->cipher->strength_bits; curr = curr->next; } number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1)); if (number_uses == NULL) { SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE); return (0); } /* * Now find the strength_bits values actually used */ curr = *head_p; while (curr != NULL) { if (curr->active) number_uses[curr->cipher->strength_bits]++; curr = curr->next; } /* * Go through the list of used strength_bits values in descending * order. */ for (i = max_strength_bits; i >= 0; i--) if (number_uses[i] > 0) ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p, tail_p); OPENSSL_free(number_uses); return (1); } static int ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p, const SSL_CIPHER **ca_list, CERT *c) { uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength; const char *l, *buf; int j, multi, found, rule, retval, ok, buflen; uint32_t cipher_id = 0; char ch; retval = 1; l = rule_str; for (;;) { ch = *l; if (ch == '\0') break; /* done */ if (ch == '-') { rule = CIPHER_DEL; l++; } else if (ch == '+') { rule = CIPHER_ORD; l++; } else if (ch == '!') { rule = CIPHER_KILL; l++; } else if (ch == '@') { rule = CIPHER_SPECIAL; l++; } else { rule = CIPHER_ADD; } if (ITEM_SEP(ch)) { l++; continue; } alg_mkey = 0; alg_auth = 0; alg_enc = 0; alg_mac = 0; alg_ssl = 0; algo_strength = 0; for (;;) { ch = *l; buf = l; buflen = 0; #ifndef CHARSET_EBCDIC while (((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || ((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.') || (ch == '=')) #else while (isalnum(ch) || (ch == '-') || (ch == '.') || (ch == '=')) #endif { ch = *(++l); buflen++; } if (buflen == 0) { /* * We hit something we cannot deal with, * it is no command or separator nor * alphanumeric, so we call this an error. */ SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); retval = found = 0; l++; break; } if (rule == CIPHER_SPECIAL) { found = 0; /* unused -- avoid compiler warning */ break; /* special treatment */ } /* check for multi-part specification */ if (ch == '+') { multi = 1; l++; } else multi = 0; /* * Now search for the cipher alias in the ca_list. Be careful * with the strncmp, because the "buflen" limitation * will make the rule "ADH:SOME" and the cipher * "ADH-MY-CIPHER" look like a match for buflen=3. * So additionally check whether the cipher name found * has the correct length. We can save a strlen() call: * just checking for the '\0' at the right place is * sufficient, we have to strncmp() anyway. (We cannot * use strcmp(), because buf is not '\0' terminated.) */ j = found = 0; cipher_id = 0; while (ca_list[j]) { if (strncmp(buf, ca_list[j]->name, buflen) == 0 && (ca_list[j]->name[buflen] == '\0')) { found = 1; break; } else j++; } if (!found) break; /* ignore this entry */ if (ca_list[j]->algorithm_mkey) { if (alg_mkey) { alg_mkey &= ca_list[j]->algorithm_mkey; if (!alg_mkey) { found = 0; break; } } else alg_mkey = ca_list[j]->algorithm_mkey; } if (ca_list[j]->algorithm_auth) { if (alg_auth) { alg_auth &= ca_list[j]->algorithm_auth; if (!alg_auth) { found = 0; break; } } else alg_auth = ca_list[j]->algorithm_auth; } if (ca_list[j]->algorithm_enc) { if (alg_enc) { alg_enc &= ca_list[j]->algorithm_enc; if (!alg_enc) { found = 0; break; } } else alg_enc = ca_list[j]->algorithm_enc; } if (ca_list[j]->algorithm_mac) { if (alg_mac) { alg_mac &= ca_list[j]->algorithm_mac; if (!alg_mac) { found = 0; break; } } else alg_mac = ca_list[j]->algorithm_mac; } if (ca_list[j]->algo_strength & SSL_EXP_MASK) { if (algo_strength & SSL_EXP_MASK) { algo_strength &= (ca_list[j]->algo_strength & SSL_EXP_MASK) | ~SSL_EXP_MASK; if (!(algo_strength & SSL_EXP_MASK)) { found = 0; break; } } else algo_strength |= ca_list[j]->algo_strength & SSL_EXP_MASK; } if (ca_list[j]->algo_strength & SSL_STRONG_MASK) { if (algo_strength & SSL_STRONG_MASK) { algo_strength &= (ca_list[j]->algo_strength & SSL_STRONG_MASK) | ~SSL_STRONG_MASK; if (!(algo_strength & SSL_STRONG_MASK)) { found = 0; break; } } else algo_strength |= ca_list[j]->algo_strength & SSL_STRONG_MASK; } if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) { if (algo_strength & SSL_DEFAULT_MASK) { algo_strength &= (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) | ~SSL_DEFAULT_MASK; if (!(algo_strength & SSL_DEFAULT_MASK)) { found = 0; break; } } else algo_strength |= ca_list[j]->algo_strength & SSL_DEFAULT_MASK; } if (ca_list[j]->valid) { /* * explicit ciphersuite found; its protocol version does not * become part of the search pattern! */ cipher_id = ca_list[j]->id; } else { /* * not an explicit ciphersuite; only in this case, the * protocol version is considered part of the search pattern */ if (ca_list[j]->algorithm_ssl) { if (alg_ssl) { alg_ssl &= ca_list[j]->algorithm_ssl; if (!alg_ssl) { found = 0; break; } } else alg_ssl = ca_list[j]->algorithm_ssl; } } if (!multi) break; } /* * Ok, we have the rule, now apply it */ if (rule == CIPHER_SPECIAL) { /* special command */ ok = 0; if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) ok = ssl_cipher_strength_sort(head_p, tail_p); else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) { int level = buf[9] - '0'; if (level < 0 || level > 5) { SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); } else { c->sec_level = level; ok = 1; } } else SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); if (ok == 0) retval = 0; /* * We do not support any "multi" options * together with "@", so throw away the * rest of the command, if any left, until * end or ':' is found. */ while ((*l != '\0') && !ITEM_SEP(*l)) l++; } else if (found) { ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength, rule, -1, head_p, tail_p); } else { while ((*l != '\0') && !ITEM_SEP(*l)) l++; } if (*l == '\0') break; /* done */ } return (retval); } #ifndef OPENSSL_NO_EC static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c, const char **prule_str) { unsigned int suiteb_flags = 0, suiteb_comb2 = 0; if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) { suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY; } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) { suiteb_comb2 = 1; suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS; } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) { suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS; } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) { suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS; } if (suiteb_flags) { c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS; c->cert_flags |= suiteb_flags; } else suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS; if (!suiteb_flags) return 1; /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */ if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) { if (meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ONLY_DTLS_1_2_ALLOWED_IN_SUITEB_MODE); else SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ONLY_TLS_1_2_ALLOWED_IN_SUITEB_MODE); return 0; } # ifndef OPENSSL_NO_EC switch (suiteb_flags) { case SSL_CERT_FLAG_SUITEB_128_LOS: if (suiteb_comb2) *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384"; else *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384"; break; case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256"; break; case SSL_CERT_FLAG_SUITEB_192_LOS: *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384"; break; } /* Set auto ECDH parameter determination */ c->ecdh_tmp_auto = 1; return 1; # else SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE); return 0; # endif } #endif STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER) **cipher_list, STACK_OF(SSL_CIPHER) **cipher_list_by_id, const char *rule_str, CERT *c) { int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases; uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl; STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list; const char *rule_p; CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; const SSL_CIPHER **ca_list = NULL; /* * Return with error if nothing to do. */ if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL) return NULL; #ifndef OPENSSL_NO_EC if (!check_suiteb_cipher_list(ssl_method, c, &rule_str)) return NULL; #endif /* * To reduce the work to do we only want to process the compiled * in algorithms, so we first get the mask of disabled ciphers. */ disabled_mkey = disabled_mkey_mask; disabled_auth = disabled_auth_mask; disabled_enc = disabled_enc_mask; disabled_mac = disabled_mac_mask; disabled_ssl = 0; /* * Now we have to collect the available ciphers from the compiled * in ciphers. We cannot get more than the number compiled in, so * it is used for allocation. */ num_of_ciphers = ssl_method->num_ciphers(); co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers); if (co_list == NULL) { SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE); return (NULL); /* Failure */ } ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl, co_list, &head, &tail); /* Now arrange all ciphers by preference: */ /* * Everything else being equal, prefer ephemeral ECDH over other key * exchange mechanisms */ ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); /* AES is our preferred symmetric cipher */ ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); /* Temporarily enable everything else for sorting */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); /* Low priority for MD5 */ ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head, &tail); /* * Move anonymous ciphers to the end. Usually, these will remain * disabled. (For applications that allow them, they aren't too bad, but * we prefer authenticated ciphers.) */ ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); /* Move ciphers without forward secrecy to the end */ ssl_cipher_apply_rule(0, 0, SSL_aECDH, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); /* * ssl_cipher_apply_rule(0, 0, SSL_aDH, 0, 0, 0, 0, CIPHER_ORD, -1, * &head, &tail); */ ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); /* RC4 is sort-of broken -- move the the end */ ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); /* * Now sort by symmetric encryption strength. The above ordering remains * in force within each class */ if (!ssl_cipher_strength_sort(&head, &tail)) { OPENSSL_free(co_list); return NULL; } /* Now disable everything (maintaining the ordering!) */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); /* * We also need cipher aliases for selecting based on the rule_str. * There might be two types of entries in the rule_str: 1) names * of ciphers themselves 2) aliases for groups of ciphers. * For 1) we need the available ciphers and for 2) the cipher * groups of cipher_aliases added together in one list (otherwise * we would be happy with just the cipher_aliases table). */ num_of_group_aliases = OSSL_NELEM(cipher_aliases); num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max); if (ca_list == NULL) { OPENSSL_free(co_list); SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE); return (NULL); /* Failure */ } ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl, head); /* * If the rule_string begins with DEFAULT, apply the default rule * before using the (possibly available) additional rules. */ ok = 1; rule_p = rule_str; if (strncmp(rule_str, "DEFAULT", 7) == 0) { ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail, ca_list, c); rule_p += 7; if (*rule_p == ':') rule_p++; } if (ok && (strlen(rule_p) > 0)) ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c); OPENSSL_free(ca_list); /* Not needed anymore */ if (!ok) { /* Rule processing failure */ OPENSSL_free(co_list); return (NULL); } /* * Allocate new "cipherstack" for the result, return with error * if we cannot get one. */ if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) { OPENSSL_free(co_list); return (NULL); } /* * The cipher selection for the list is done. The ciphers are added * to the resulting precedence to the STACK_OF(SSL_CIPHER). */ for (curr = head; curr != NULL; curr = curr->next) { if (curr->active && (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS)) { if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) { OPENSSL_free(co_list); sk_SSL_CIPHER_free(cipherstack); return NULL; } #ifdef CIPHER_DEBUG fprintf(stderr, "<%s>\n", curr->cipher->name); #endif } } OPENSSL_free(co_list); /* Not needed any longer */ tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); if (tmp_cipher_list == NULL) { sk_SSL_CIPHER_free(cipherstack); return NULL; } sk_SSL_CIPHER_free(*cipher_list); *cipher_list = cipherstack; if (*cipher_list_by_id != NULL) sk_SSL_CIPHER_free(*cipher_list_by_id); *cipher_list_by_id = tmp_cipher_list; (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp); sk_SSL_CIPHER_sort(*cipher_list_by_id); return (cipherstack); } char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) { int is_export, pkl, kl; const char *ver, *exp_str; const char *kx, *au, *enc, *mac; uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl; static const char *format = "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n"; alg_mkey = cipher->algorithm_mkey; alg_auth = cipher->algorithm_auth; alg_enc = cipher->algorithm_enc; alg_mac = cipher->algorithm_mac; alg_ssl = cipher->algorithm_ssl; is_export = SSL_C_IS_EXPORT(cipher); pkl = SSL_C_EXPORT_PKEYLENGTH(cipher); kl = SSL_C_EXPORT_KEYLENGTH(cipher); exp_str = is_export ? " export" : ""; if (alg_ssl & SSL_SSLV3) ver = "SSLv3"; else if (alg_ssl & SSL_TLSV1_2) ver = "TLSv1.2"; else ver = "unknown"; switch (alg_mkey) { case SSL_kRSA: kx = is_export ? (pkl == 512 ? "RSA(512)" : "RSA(1024)") : "RSA"; break; case SSL_kDHr: kx = "DH/RSA"; break; case SSL_kDHd: kx = "DH/DSS"; break; case SSL_kDHE: kx = is_export ? (pkl == 512 ? "DH(512)" : "DH(1024)") : "DH"; break; case SSL_kECDHr: kx = "ECDH/RSA"; break; case SSL_kECDHe: kx = "ECDH/ECDSA"; break; case SSL_kECDHE: kx = "ECDH"; break; case SSL_kPSK: kx = "PSK"; break; case SSL_kRSAPSK: kx = "RSAPSK"; break; case SSL_kECDHEPSK: kx = "ECDHEPSK"; break; case SSL_kDHEPSK: kx = "DHEPSK"; break; case SSL_kSRP: kx = "SRP"; break; case SSL_kGOST: kx = "GOST"; break; default: kx = "unknown"; } switch (alg_auth) { case SSL_aRSA: au = "RSA"; break; case SSL_aDSS: au = "DSS"; break; case SSL_aDH: au = "DH"; break; case SSL_aECDH: au = "ECDH"; break; case SSL_aNULL: au = "None"; break; case SSL_aECDSA: au = "ECDSA"; break; case SSL_aPSK: au = "PSK"; break; case SSL_aSRP: au = "SRP"; break; case SSL_aGOST01: au = "GOST01"; break; default: au = "unknown"; break; } switch (alg_enc) { case SSL_DES: enc = (is_export && kl == 5) ? "DES(40)" : "DES(56)"; break; case SSL_3DES: enc = "3DES(168)"; break; case SSL_RC4: enc = is_export ? (kl == 5 ? "RC4(40)" : "RC4(56)") : "RC4(128)"; break; case SSL_RC2: enc = is_export ? (kl == 5 ? "RC2(40)" : "RC2(56)") : "RC2(128)"; break; case SSL_IDEA: enc = "IDEA(128)"; break; case SSL_eNULL: enc = "None"; break; case SSL_AES128: enc = "AES(128)"; break; case SSL_AES256: enc = "AES(256)"; break; case SSL_AES128GCM: enc = "AESGCM(128)"; break; case SSL_AES256GCM: enc = "AESGCM(256)"; break; case SSL_AES128CCM: enc = "AESCCM(128)"; break; case SSL_AES256CCM: enc = "AESCCM(256)"; break; case SSL_AES128CCM8: enc = "AESCCM8(128)"; break; case SSL_AES256CCM8: enc = "AESCCM8(256)"; break; case SSL_CAMELLIA128: enc = "Camellia(128)"; break; case SSL_CAMELLIA256: enc = "Camellia(256)"; break; case SSL_SEED: enc = "SEED(128)"; break; case SSL_eGOST2814789CNT: enc = "GOST89(256)"; break; default: enc = "unknown"; break; } switch (alg_mac) { case SSL_MD5: mac = "MD5"; break; case SSL_SHA1: mac = "SHA1"; break; case SSL_SHA256: mac = "SHA256"; break; case SSL_SHA384: mac = "SHA384"; break; case SSL_AEAD: mac = "AEAD"; break; case SSL_GOST89MAC: mac = "GOST89"; break; case SSL_GOST94: mac = "GOST94"; break; default: mac = "unknown"; break; } if (buf == NULL) { len = 128; buf = OPENSSL_malloc(len); if (buf == NULL) return ("OPENSSL_malloc Error"); } else if (len < 128) return ("Buffer too small"); BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac, exp_str); return (buf); } char *SSL_CIPHER_get_version(const SSL_CIPHER *c) { int i; if (c == NULL) return ("(NONE)"); i = (int)(c->id >> 24L); if (i == 3) return ("TLSv1/SSLv3"); else return ("unknown"); } /* return the actual cipher being used */ const char *SSL_CIPHER_get_name(const SSL_CIPHER *c) { if (c != NULL) return (c->name); return ("(NONE)"); } /* number of bits for symmetric cipher */ int32_t SSL_CIPHER_get_bits(const SSL_CIPHER *c, uint32_t *alg_bits) { int32_t ret = 0; if (c != NULL) { if (alg_bits != NULL) *alg_bits = c->alg_bits; ret = c->strength_bits; } return ret; } uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c) { return c->id; } SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n) { SSL_COMP *ctmp; int i, nn; if ((n == 0) || (sk == NULL)) return (NULL); nn = sk_SSL_COMP_num(sk); for (i = 0; i < nn; i++) { ctmp = sk_SSL_COMP_value(sk, i); if (ctmp->id == n) return (ctmp); } return (NULL); } #ifdef OPENSSL_NO_COMP STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return NULL; } STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP) *meths) { return meths; } void SSL_COMP_free_compression_methods(void) { } int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; } #else STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { load_builtin_compressions(); return (ssl_comp_methods); } STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP) *meths) { STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods; ssl_comp_methods = meths; return old_meths; } static void cmeth_free(SSL_COMP *cm) { OPENSSL_free(cm); } void SSL_COMP_free_compression_methods(void) { STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods; ssl_comp_methods = NULL; sk_SSL_COMP_pop_free(old_meths, cmeth_free); } int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { SSL_COMP *comp; if (cm == NULL || COMP_get_type(cm) == NID_undef) return 1; /*- * According to draft-ietf-tls-compression-04.txt, the * compression number ranges should be the following: * * 0 to 63: methods defined by the IETF * 64 to 192: external party methods assigned by IANA * 193 to 255: reserved for private use */ if (id < 193 || id > 255) { SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE); return 0; } MemCheck_off(); comp = OPENSSL_malloc(sizeof(*comp)); if (comp == NULL) { MemCheck_on(); SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE); return (1); } comp->id = id; comp->method = cm; load_builtin_compressions(); if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) { OPENSSL_free(comp); MemCheck_on(); SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, SSL_R_DUPLICATE_COMPRESSION_ID); return (1); } else if ((ssl_comp_methods == NULL) || !sk_SSL_COMP_push(ssl_comp_methods, comp)) { OPENSSL_free(comp); MemCheck_on(); SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE); return (1); } else { MemCheck_on(); return (0); } } #endif const char *SSL_COMP_get_name(const COMP_METHOD *comp) { #ifndef OPENSSL_NO_COMP return comp ? COMP_get_name(comp) : NULL; #else return NULL; #endif } /* For a cipher return the index corresponding to the certificate type */ int ssl_cipher_get_cert_index(const SSL_CIPHER *c) { uint32_t alg_k, alg_a; alg_k = c->algorithm_mkey; alg_a = c->algorithm_auth; if (alg_k & (SSL_kECDHr | SSL_kECDHe)) { /* * we don't need to look at SSL_kECDHE since no certificate is needed * for anon ECDH and for authenticated ECDHE, the check for the auth * algorithm will set i correctly NOTE: For ECDH-RSA, we need an ECC * not an RSA cert but for ECDHE-RSA we need an RSA cert. Placing the * checks for SSL_kECDH before RSA checks ensures the correct cert is * chosen. */ return SSL_PKEY_ECC; } else if (alg_a & SSL_aECDSA) return SSL_PKEY_ECC; else if (alg_k & SSL_kDHr) return SSL_PKEY_DH_RSA; else if (alg_k & SSL_kDHd) return SSL_PKEY_DH_DSA; else if (alg_a & SSL_aDSS) return SSL_PKEY_DSA_SIGN; else if (alg_a & SSL_aRSA) return SSL_PKEY_RSA_ENC; else if (alg_a & SSL_aGOST01) return SSL_PKEY_GOST01; return -1; } const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr) { const SSL_CIPHER *c; c = ssl->method->get_cipher_by_char(ptr); if (c == NULL || c->valid == 0) return NULL; return c; } const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr) { return ssl->method->get_cipher_by_char(ptr); } int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c) { int i; if (c == NULL) return -1; i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc); if (i == -1) return -1; return ssl_cipher_table_cipher[i].nid; } int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c) { int i; if (c == NULL) return -1; i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac); if (i == -1) return -1; return ssl_cipher_table_mac[i].nid; }